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A STENCIL SCALING APPROACH FOR ACCELERATING
MATRIX-FREE FINITE ELEMENT IMPLEMENTATIONS\ast 
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Abstract. We present a novel approach to fast on-the-fly low order finite element assembly
for scalar elliptic partial differential equations of Darcy type with variable coefficients optimized for
matrix-free implementations. Our approach introduces a new operator that is obtained by appro-
priately scaling the reference stiffness matrix from the constant coefficient case. Assuming sufficient
regularity, an a priori analysis shows that solutions obtained by this approach are unique and have
asymptotically optimal order convergence in the H1- and the L2-norms on hierarchical hybrid grids.
For the preasymptotic regime, we present a local modification that guarantees uniform ellipticity of
the operator. Cost considerations show that our novel approach requires roughly one-third of the
floating-point operations compared to a classical finite element assembly scheme employing nodal
integration. Our theoretical considerations are illustrated by numerical tests that confirm the expec-
tations with respect to accuracy and run-time. A large scale application with more than a hundred
billion (1.6 \cdot 1011) degrees of freedom executed on 14 310 compute cores demonstrates the efficiency
of the new scaling approach.
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1. Introduction. Traditional finite element implementations are based on com-
puting local element stiffness matrices, followed by a local-to-global assembly step,
resulting in a sparse matrix. However, the cost of storing the global stiffness matrix
is significant. Even for scalar equations and low order 3D tetrahedral elements, the
stiffness matrix has, on average, fifteen entries per row, and thus a standard sparse
matrix format will require thirty times as much storage for the matrix as for the solu-
tion vector. This limits the size of the problems that can be tackled and becomes the
dominating cost factor since the sparse matrix must be reread from memory repeat-
edly when iterative solvers are applied. On all current and future computing systems
memory throughput and memory access latency can determine the run-time more crit-
ically than the floating-point operations executed. Furthermore, energy consumption
has been identified as one of the fundamental roadblocks in exascale computing. In
this cost metric, memory access is again more expensive than computation. Against
the backdrop of this technological development, it has become mandatory to develop
numerical techniques that reduce memory traffic. In the context of partial differen-
tial equations (PDEs) this is leading to a renewed interest in so-called matrix-free
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techniques and---in some sense---to a revival of techniques that are well known in the
context of finite difference methods.

Matrix-free techniques are motivated by the observation that many iterative
solvers, e.g., Richardson iteration or Krylov subspace methods, require only the result
of multiplying the global system matrix with a vector, but not the matrix itself. The
former can be computed by local operations in each element, which avoids setting
up, storing, and loading the global stiffness matrix. One of the first papers in this
direction is [10], which describes the so-called element-by-element (EBE) approach, in
which the global matrix-vector product (MVP) is assembled from the contributions
of MVPs of element matrices with local vectors of unknowns. The element matrices
are either precomputed and stored or recomputed on the fly. Note that storing all
element matrices, even for low order elements, has a higher memory footprint than
the global matrix1 itself.

Consequently, the traditional EBE approach has not found wide application in
unstructured mesh settings. However, it has been successfully applied in cases where
the discretization is based on undeformed hexahedral elements with trilinear trial
functions; see, e.g., [1, 7, 15, 37]. In such a setting, the element matrix is the same
for all elements, which significantly reduces the storage requirements, and variable
material parameters can be introduced by weighting local matrix entries in the same
on-the-fly fashion as will be developed in this paper.

Matrix-free approaches for higher order elements, as described in, e.g., [9, 25, 28,
29, 32], differ from the classic EBE approach in that they do not set up the element
matrix and consecutively multiply it with the local vector. Instead, they fuse the two
steps by going back to numerical integration of the weak form itself. The process is
accelerated by precomputing and storing certain quantities, such as, e.g., derivatives
of basis functions at quadrature points within a reference element. These techniques
in principle work for arbitrarily shaped elements and orders, although a significant
reduction in complexity can be achieved for tensor-product elements.

However, these matrix-free approaches also have shortcomings. While the low
order settings [1, 7, 15, 37] require structured hexahedral meshes, modern techniques
for unstructured meshes only pay off for elements with tensor-product spaces with
polynomial orders of at least two; see [25, 28].

In this paper we will present a novel matrix-free approach for low order finite
elements designed for the hierarchical hybrid grids framework (HHG); see, e.g., [3, 4,
5]. HHG offers significantly more geometric flexibility than undeformed hexahedral
meshes. It is based on two interleaved ideas. The first one is a special discretization of
the problem domain. In HHG, the computational grid is created by way of a uniform
refinement following the rules of [6], starting from a possibly unstructured simplicial
macro-mesh. The resulting nested hierarchy of meshes allows for the implementation
of powerful geometric multigrid solvers. The elements of the macro-mesh are called
macro-elements, and the resulting subtriangulation reflects a uniform structure within
these macro-elements. The second aspect is based on the fact that each row of the
global finite element stiffness matrix can be considered as a difference stencil. This
notion and point of view is classical on structured grids and recently has found re-
newed interest in the context of finite elements too; see, e.g., [14]. In combination
with the HHG grid construction this implies that for linear simplicial elements one
obtains stencils with identical structure for each inner node of a macro primitive.

1However, it requires less memory than storage schemes for sparse direct solvers which reserve
space for fill-in, the original competing scenario in [10].
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We define macro primitives as the geometrical entities of the macro-mesh of different
dimensions, i.e., vertex, edge, face, and tetrahedrons. If additionally the coefficients
of the PDE are constant per macro-element, then also the stencil entries are exactly
the same. Consequently, only a few different stencils (one per macro primitive) can
occur and need to be stored. This leads to extremely efficient matrix-free techniques,
as has been demonstrated, e.g., in [3, 18].

Let us now consider the setting of an elliptic PDE with piecewise smooth variable
coefficients, assuming that the macro-mesh resolves jumps in the coefficients. In
this case, a standard finite element formulation is based on quadrature formulas and
introduces a variational crime. According to [11, 34], there is flexibility in how the
integrals are approximated without degenerating the order of convergence. This was
recently exploited in [2] with a method that approximates these integral values on
the fly using suitable surrogate polynomials with respect to the macro-mesh. The
resulting two-scale method is able to preserve the convergence order if the coarse and
fine scales are related properly. Here we propose an alternative which is based on the
fine scale.

For this article, we restrict ourselves to the lowest order case of conforming finite
elements on simplicial meshes. Then the most popular quadrature formula is the
one-point Gauss rule, which in the simplest case of div(k\nabla u) as PDE operator just
weights the element-based reference stiffness matrix of the Laplacian by a factor of
k(xT ), where xT is the barycenter of the element T . Alternatively, one can select a
purely vertex-based quadrature formula. Here, the weighting of the element matrix is
given by

\sum d+1
i=1 k(xi

T )/(d+1), where d is the space dimension and xi
T are the vertices

of element T . Using a vertex-based quadrature formula saves function evaluations and
is thus attractive whenever the evaluation of the coefficient function is expensive, and
it pays off to reuse once-computed values in several element stiffness matrices. Note
that reusing barycentric data on general unstructured meshes will require nontrivial
storage schemes.

In the case of variable coefficient functions, stencil entries can vary from one mesh
node to another. The number of possibly different stencils within each macro-element
becomes 1

d!2
d\ell + \scrO (2(d - 1)\ell ), where \ell is the number of uniform refinement steps for

HHG. Now we can resort to two options: Either these stencils are computed once and
then saved, effectively creating a sparse matrix data structure, or they are computed
on the fly each time they are needed. Neither of these techniques is ideal for extreme
scale computations. While for the first option \scrO (2d\ell ) extra memory is consumed and
extensive memory traffic occurs, the second option requires recomputation of \scrO (2d\ell )
local contributions.

The efficiency of a numerical PDE solver can be analyzed following the textbook
paradigm [8] that defines a work unit (WU) to be the cost of one application of the
discrete operator for a given problem. With this definition, the analysis of iterative
solvers can be conducted in terms of WU. Classical multigrid textbook efficiency is
achieved when the solution is obtained in less than 10 WU. For devising an efficient
method it is, however, equally critical to design algorithms that reduce the cost of a
WU without sacrificing accuracy. Clearly, the real-life cost of a WU depends on the
computer hardware and the efficiency of the implementation, as, e.g., analyzed for
parallel supercomputers in [18]. On the other side, matrix-free techniques, such as
the one proposed in this article, seek opportunities to reduce the cost of a WU by a
clever rearrangement of the algorithms or by exploiting approximations where this is
possible; see also, e.g., [2].

These preliminary considerations motivate our novel approach to reducing the
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cost of a WU by recomputing the surrogate stencil entries for a matrix-free solver
more efficiently. We find that these values can be assembled from a reference stencil
of the constant coefficient case which is scaled appropriately using nodal values of the
coefficient function. We will show that under suitable conditions, this technique does
not sacrifice accuracy. However, we also demonstrate that the new method can reduce
the cost of a WU considerably and in consequence helps reduce the time-to-solution.

The rest of this paper is structured as follows: In section 2, we define our new
scaling approach. The variational crime is analyzed in section 3, where optimal order
a priori results for the L2- and H1-norms are obtained. In section 4, we consider
modifications in the preasymptotic regime to guarantee uniform ellipticity. Section 5
is devoted to the reproduction property and the primitive concept which allows for
a fast on-the-fly reassembling in a matrix-free software framework. In section 6, we
discuss the cost compared to a standard nodal-based elementwise assembling. Finally,
in section 7 we perform numerically an accuracy study and a run-time comparison to
illustrate the performance gain of the new scaling approach.

2. Problem setting and definition of the scaling approach. We consider
a scalar elliptic PDE of Darcy type, i.e.,

 - div K\nabla u = f in \Omega , tr u = 0 on \partial \Omega ,

where tr stands for the boundary trace operator and f \in L2(\Omega ). Here \Omega \subset \BbbR d, d =
2, 3, is a bounded polygonal/polyhedral domain, and K denotes a uniformly positive
and symmetric tensor with coefficients specified through a number of functions km,
m = 1, . . . ,M , where M \leq 3 in 2D and M \leq 6 in 3D due to symmetry.

For the Darcy operator with a scalar uniform positive permeability, that is,
 - div(k\nabla u), we can set M = 1 and k1 := k. The above setting also covers blending
finite elements approaches [19]. Here K is related to the Jacobian of the blending
function. For example, if the standard Laplacian model problem is considered on the
physical domain \Omega phy but the actual assembly is carried out on a reference domain
\Omega := \Phi (\Omega phy), we have

a(v, w) =

\int 
\Omega phy

\nabla vphy \cdot \nabla wphy dxphy =

\int 
\Omega 

\nabla v \cdot (D\Phi )(D\Phi )\top 

| det D\Phi | 
\nabla w dx,(2.1)

where D\Phi is the Jacobian of the mapping \Phi , and vphy := v \circ \Phi , wphy := w \circ \Phi .

2.1. Definition of our scaling approach. The weak form associated with the
PDE is defined in terms of the bilinear form a(v, w) :=

\int 
\Omega 
\nabla v \cdot K\nabla w dx, and the weak

solution u \in V0 := H1
0 (\Omega ) satisfies

a(u, v) = (f, v), v \in V0.

This bilinear form can be affinely decomposed as

a(v, w) :=

M\sum 
m=1

am(v, w), am(v, w) :=

\int 
\Omega 

km(x)(Dmv,Dmw) dx, v, w \in V := H1(\Omega ),

(2.2)

where Dm is a first order partial differential operator and (\cdot , \cdot ) stands for some suitable
inner product. In the case of a scalar permeability we find D1 := \nabla and (\cdot , \cdot ) stands
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for the scalar product in \BbbR d. For (2.1) in 2D, however, one can, as one alternative,
e.g., define

k1 := (K11  - K12), k2 := K12, k3 := (K22  - K11),

D1 := \nabla , D2 := \partial /\partial x + \partial /\partial y, D3 := \partial /\partial y,

where K = (Kij) and the same scalar product (\cdot , \cdot ) as above. Note that this decom-
position reduces to the one in case of a scalar permeability, i.e., for K = diag(k, k).

Let \scrT H , H > 0 fixed, be a possibly unstructured simplicial triangulation resolving
\Omega . We call \scrT H also macro-triangulation and denote its elements by T . Using uniform
mesh refinement, we obtain \scrT h/2 from \scrT h by decomposing each element into 2d sub-
elements, h \in \{ H/2, H/4, . . .\} ; see [6] for the 3D case. The elements of \scrT h are denoted
by t. The macro-triangulation is then decomposed into the following geometrical
primitives: elements, faces, edges, and vertices. Each of these geometric primitives
acts as a container for a subset of unknowns associated with the refined triangulations.
These sets of unknowns can be stored in array-like data structures, resulting in a
contiguous memory layout that conforms inherently to the refinement hierarchy; see
[5, 18]. In particular, the unknowns can be accessed without indirect addressing
such that the overhead is reduced significantly when compared to conventional sparse
matrix data structures. Associated with \scrT h is the space Vh \subset V of piecewise linear
finite elements. In Vh, we do not include the homogeneous boundary conditions. We
denote by \phi i \in Vh the nodal basis functions associated to the ith mesh node. Node
i is located at the vertex xi. For vh :=

\sum 
i \nu i\phi i and wh :=

\sum 
j \chi j\phi j , we define our

scaled discrete bilinear forms ah(\cdot , \cdot ) and ahm(\cdot , \cdot ) by

ah(vh, wh) :=

M\sum 
m=1

ahm(vh, wh),

(2.3a)

ahm(vh, wh) :=
1

4

\sum 
T\in \scrT H

\sum 
i,j

(km| T (xi) + km| T (xj))(\nu i  - \nu j)(\chi j  - \chi i)

\int 
T

(Dm\phi i, Dm\phi j) dx.

(2.3b)

This definition is motivated by the fact that am(vh, wh) can be written as

am(vh, wh) =
1

2

\sum 
T\in \scrT H

\sum 
i,j

(\nu i  - \nu j)(\chi j  - \chi i)

\int 
T

km(x)(Dm\phi i, Dm\phi j) dx.(2.4)

Here we have exploited symmetry and the row sum property. It is obvious that if
km is a constant restricted to T , we do obtain ahm(vh, wh) = am(vh, wh). In general,
however, the definition of ah(\cdot , \cdot ) introduces a variational crime, and it does not even
correspond to an elementwise local assembling based on a quadrature formula. We
note that each node on \partial T is redundantly existent in the data structure and that we
can easily account for jumps in the coefficient function when resolved by the macro-
mesh elements T .

Similar scaling techniques have been used in [39] for a generalized Stokes problem
from geodynamics with coupled velocity components. However, for vectorial equations
such a simple scaling does not asymptotically result in a physically correct solution.
For the computation of integrals on triangles containing derivatives in the form of
(2.2), cubature formulas of the form (2.3b) in combination with Euler--MacLaurin-
type asymptotic expansions have been applied [31, Table 1].
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Remark 2.1. At first glance the definition (2.3b) might not be more attractive
than (2.4) regarding computational cost. In a matrix-free approach, however, where
we have to reassemble the entries in each matrix call, (2.3b) turns out to be much more
favorable. In order see this, we have to recall that we work with hybrid hierarchical
meshes. This means that for each inner node i in T , we find the same entries in the
sense that \int 

T

(Dm\phi i, Dm\phi j) dx =

\int 
T

(Dm\phi l, Dm\phi xj+\delta x) dx.

Here we have identified the index notation with the vertex notation, and the vertex
xl is obtained from the vertex xi by a shift of \delta x, i.e., xl = xi + \delta x. Consequently,
the values of

\int 
T
(Dm\phi i, Dm\phi j) dx do not have to be recomputed but can be efficiently

stored.

For simplicity of notation, we shall restrict ourselves in the following to the case
of the Darcy equation with a scalar uniformly positive definite permeability; i.e., let
M = 1 and drop the index m. However, the proofs in section 3 can be generalized to
conceptually the same type of results as for M > 1. In subsection 7.3, we also show
numerical results for M = 6 in 3D.

2.2. Stencil structure. We exploit the hierarchical grid structure to save a
significant amount of memory compared to classical sparse matrix formats. Any
direct neighbor xj \in \scrN T (xi) can be described through a direction vector wj such that
xj = xi + wj . The regularity of the grid in the interior of a macro-element T implies
that these vectors remain the same when we move from one node to another node.
Additionally, for each neighbor xj \in \scrN T (xi) \setminus \{ xi\} there is a mirrored neighbor x\prime 

j of
xi reachable by wj =  - wj\prime ; see Figure 2.1.

Let ni = | \scrN T (xi)| denote the stencil size at mesh node xi. We define the stencil
\^sTxi

\in \BbbR ni associated to the ith mesh node xi restricted on T as

(\^sTxi
)j :=

\int 
T

(\nabla \phi xi+wj ,\nabla \phi xi) dx .

The symmetry of the bilinear form yields

(\^sTxi
)j = (\^sTxi+wj

)j\prime .

1\prime 0 1

3 2

2\prime 3\prime 

6 7

5 4

4\prime 5\prime 

7\prime 6\prime 

Fig. 2.1. From left to right: exemplary local indices j and their corresponding direction vectors
of a 15 point stencil in 3D; six elements attached to one edge; four elements attached to one edge.
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We recall that for each mesh node xi we have ni \leq 7 in 2D and ni \leq 15 in 3D. Out
of these entries only 3 in 2D and 7 in 3D have to be computed since the remaining
ones follow from symmetry arguments and the observation that

\sum 
j(\^s

T
xi
)j = 0.

Due to the hierarchical hybrid grid structure, two stencils, \^sTxi1
and \^sTxi2

, are
exactly the same if xi1 and xi2 are two nodes belonging to the same primitive; i.e., we
find only 15 different kinds of stencils per macro-element in 3D, one for each of its 15
primitives (4 vertices, 6 edges, 4 faces, 1 volume), and 7 in 2D. This observation allows
for an extremely fast and memory-efficient on-the-fly (re)assembly of the entries of
the stiffness matrix in stencil form. For each node xi in the data structure, we save
the nodal values of the coefficient function k. With these considerations in mind,
the bilinear form (2.3b) can be evaluated very efficiently and requires only a suitable
scaling of the reference entries; see section 6 for detailed cost considerations.

3. Variational crime framework and a priori analysis. In order to obtain
order h and h2 a priori estimates of the modified finite element approximation in the
H1- and L2-norms, respectively, we analyze the discrete bilinear form. From now on,
we assume that k| T \in W 2,\infty (T ) for each T \in \scrT H . Moreover, we denote by \| \cdot \| 0 the
L2-norm on \Omega and \| \cdot \| \infty := supT\in \scrT H

\| \cdot \| \infty ;T defines a broken L\infty -norm. We recall
that the coefficient function is only assumed to be elementwise smooth with respect
to the macro-triangulation. Existence and uniqueness of a finite element solution
uh \in Vh \cap V0 of

ah(uh, vh) = f(vh), vh \in Vh \cap V0,

is given, provided that the following assumption (A1) holds true:
(A1) ah(\cdot , \cdot ) is uniformly coercive on Vh \cap V0.
(A2) | a(vh, wh) - ah(vh, wh)| \lesssim h\| \nabla k\| \infty \| \nabla vh\| 0\| \nabla wh\| 0, vh, wh \in Vh.

Here and in the following, the notation \lesssim is used as abbreviation for \leq C, where
C < \infty is independent of the mesh-size h. The assumption (A2), if combined with
Strang's first lemma, yields that the finite element solution results in \scrO (h) a priori
estimates with respect to the H1-norm; see, e.g., [11, 34]. We note that for h small
enough, the uniform coercivity (A1) follows from the consistency assumption (A2),
since for vh \in Vh

ah(vh, vh) \geq a(vh, vh) - | ah(vh, vh) - a(vh, vh)| \geq C(1 - ch)\| \nabla vh\| 20.

Remark 3.1. As is commonly done in the finite element analysis in unweighted
Sobolev norms, we allow the generic constant C to be dependent on the global contrast
of k defined by sup\Omega k/ inf\Omega k. Numerical results, however, show that the resulting
bounds may be overly pessimistic for coefficients with large global variations. In [33]
and the references therein, methods to improve the bounds in this case are presented.
The examples show that the bounds may be improved significantly for coefficients
with a global contrast in the magnitude of about 105. We are mainly interested in
showing alternative assembly techniques to the standard finite element method and
in comparing them to the well-established approaches in standard norms. Moreover,
in our modification only the local variation of the coefficient k is important; therefore
we shall not work out these subtleties here.

3.1. Abstract framework for \bfitL \bftwo -norm estimates. Since (A2) does not au-
tomatically guarantee optimal order L2-estimates, we employ duality arguments. To
get a better feel for the required accuracy of ah(\cdot , \cdot ), we briefly recall the basic steps
occurring in the proof of the upper bound. As is standard, we assume H2-regularity
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of the primal and the dual problem. Restricting ourselves to the case of homogeneous
Dirichlet boundaries, the dual PDE and boundary operators coincide with the primal
ones. Let us denote by Phu the standard Galerkin approximation of u, i.e., the finite
element solution obtained as the solution of a discrete problem using the bilinear form
a(\cdot , \cdot ). It is well known that under the given assumptions \| u - Phu\| 0 = \scrO (h2). Now,
to obtain an L2-estimate for uh, we consider the dual problem with uh  - Phu on the
right-hand side. Let w \in V0 be the solution of a(v, w) = (uh  - Phu, v)0 for v \in V0.
Due to the standard Galerkin orthogonality, we obtain

\| uh  - Phu\| 20 = a(uh  - Phu,w) = a(uh  - Phu, Phw) = a(uh, Phw) - ah(uh, Phw).

(3.1)

This straightforward consideration shows us that compared to (A2), we need to make
stronger assumptions on the mesh-dependent bilinear form ah(\cdot , \cdot ). We define (A3)
by

(A3) | a(vh, wh) - ah(vh, wh)| \lesssim h2\| Hk\| \infty \| \nabla vh\| 0\| \nabla wh\| 0+h\| \nabla k\| \infty \| \nabla vh\| 0;Sh
\| \nabla wh\| 0;Sh

,

where Hk denotes the Hessian of k and Sh := \cup T\in \scrT H
Sh(T ) with Sh(T ) := \{ t \in 

\scrT h; \partial t \cap \partial T \not = \emptyset \} ; see Figure 3.1 for a 2D illustration. The seminorm \| \cdot \| 0;Sh
stands

for the L2-norm restricted to Sh.

Fig. 3.1. Elements in Sh(T ) (left) and Sh (right) for d = 2 .

Lemma 3.2. Let the problem under consideration be H2-regular, let h be suffi-
ciently small, and let (A3) be satisfied. Then we obtain a unique solution and optimal
order convergence in the H1- and L2-norms, i.e.,

\| uh  - u\| 0 + h\| \nabla (uh  - u)\| 0 \lesssim h2(\| Hu\| 0 + \| Hk\| \infty \| \nabla u\| 0 + \| \nabla k\| \infty (\| \nabla u\| 0 + \| Hu\| 0)).
(3.2)

Proof. Given that h is small enough, (A1) follows from (A3). In terms of (3.1)
and (A3), we get

\| uh  - Phu\| 20 \lesssim h2\| Hk\| \infty \| \nabla uh\| 0\| \nabla Phw\| 0 + h\| \nabla k\| \infty \| \nabla uh\| 0;Sh
\| \nabla Phw\| 0;Sh

.(3.3)

The stability of the standard conforming Galerkin formulation yields \| \nabla Phw\| 0 \lesssim 
\| uh  - Phu\| 0. By definition (2.3), we find that the discrete bilinear form ah(\cdot , \cdot ) is
uniformly continuous for a coefficient function in L\infty (\Omega ), and thus \| \nabla uh\| 0 \lesssim \| \nabla u\| 0.
To bound the two terms involving \| \nabla \cdot \| 0;Sh

, we use the 1D Sobolev embedding
H1((0, 1)) \subset L\infty ((0, 1)) [36]. More precisely, for an element in Hs(\Omega ), s > 0.5, we
have \| v\| 0;Sh

\lesssim \| v\| Hs(\Omega ); see [27]. Here we use s = 1, and in terms of theH2-regularity
assumption we obtain

\| \nabla uh\| 0;Sh
\leq \| \nabla (u - uh)\| 0;Sh

+\| \nabla u\| 0;Sh
\lesssim \| \nabla (u - uh)\| 0;Sh

+
\surd 
h(\| \nabla u\| 0 + \| Hu\| 0),

\| \nabla Phw\| 0;Sh
\leq \| \nabla (w  - Phw)\| 0;Sh

+
\surd 
h\| uh  - Phu\| 0 \lesssim 

\surd 
h\| uh  - Phu\| 0.
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Using the above estimates, (3.3) reduces to

\| uh - Phu\| 0 \lesssim h2 (\| Hk\| \infty \| \nabla u\| 0+\| \nabla k\| \infty (\| \nabla u\| 0+\| Hu\| 0))+h
3
2 \| \nabla k\| \infty \| \nabla (u - uh)\| 0.

Applying the triangle inequality and using the approximation properties of the Galer-
kin finite element solution results in the extra term h2\| Hu\| 0 in the upper bound for
\| u - uh\| 0. The bound for h\| \nabla (uh  - u)\| 0 follows by a standard inverse estimate for
elements in Vh and the best approximation property of Vh \cap V0. Since for h small
enough it holds that c1

\surd 
h\| \nabla k\| \infty \leq 1/2, where c1 < \infty is a suitably fixed positive

constant, the upper bound (3.2) follows.

3.2. Verification of the assumptions. It is well known [11] that assumptions
(A1)--(A3) are satisfied for the bilinear form

\~ah(uh, vh) :=
\sum 
t\in \scrT h

| t| 
d+ 1

d+1\sum 
i=1

k| t(xt
i)\nabla uh| t(xt

i) \cdot \nabla vh| t(xt
i) =

\sum 
t\in \scrT h

\=kt

\int 
t

\nabla uh \cdot \nabla vh dx.

(3.4)

Here xt
i denotes the vertices of the d-dimensional simplex t; i.e., we approximate the

integral by a nodal quadrature rule and \=kt := (
\sum d+1

i=1 k| t(xt
i))/(d+1). Thus, to verify

the assumptions also for ah(\cdot , \cdot ), it is sufficient to consider ah(vh, wh) - \~ah(vh, wh) in
more detail with ah(\cdot , \cdot ) given by (2.3). Let

\^At :=

\left(    
at
1,1 at

1,2 . . . at
1,d+1

at
1,2 at

2,2 . . . at
2,d+1

...
...

...
at
1,d+1 at

2,d+1 . . . at
d+1,d+1

\right)    , Kt :=

\left(    
kt
1,1 kt

1,2 . . . kt
1,d+1

kt
1,2 kt

2,2 . . . kt
2,d+1

...
...

...
kt
1,d+1 kt

2,d+1 . . . kt
d+1,d+1

\right)    
be the local stiffness matrix associated with the nodal basis functions \phi t

i, i.e., a
t
i,j :=\int 

t
\nabla \phi t

i \cdot \nabla \phi t
j dx, and the local coefficient function with kti,j := 1

2 (k| t(x
t
i) + k| t(xt

j)),
i \not = j. The diagonal entries of Kt are defined differently as

kti,i :=
 - 1

ati,i

\sum 
j \not =i

kti,ja
t
i,j .(3.5)

We introduce the componentwise Hadamard product between two matrices as (B \circ 
C)ij := BijCij and define the rank-one matrix \~Kt by ( \~Kt)ij := \=kt.

Due to the symmetry of \^At and the fact that the row sum of \^At is equal to zero,
we can rewrite the discrete bilinear forms. With vh, wh \in Vh, we associate locally
elements vt,wt \in \BbbR d+1 with (vt)i := vh(x

t
i), (wt)i := wh(x

t
i). We recall that if

vh, wh \in Vh \cap V0 and xt
i is a boundary node, then vh(x

t
i) = 0 = wh(x

t
i).

Lemma 3.3. The bilinear forms given by (2.3) and (3.4) have the algebraic form

ah(vh, wh) =
1

2

\sum 
t\in \scrT h

d+1\sum 
i,j=1

((vt)i  - (vt)j) (Kt \circ \^At)ij ((wt)j  - (wt)i) , vh, wh \in Vh,

(3.6)

\~ah(vh, wh) =
1

2

\sum 
t\in \scrT h

d+1\sum 
i,j=1

((vt)i  - (vt)j) ( \~Kt \circ \^At)ij ((wt)j  - (wt)i) , vh, wh \in Vh.

(3.7)
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Proof. We note that (3.5) yields that the row sum of Kt \circ \^At is equal to zero.

Moreover, Kt\circ \^At is by construction symmetric. Introducing for T \in \scrT H the set \scrT i,j;T
h

of all elements T \supset t \in \scrT h sharing the global nodes i and j, we identify by it the local
index of the node i associated with the element t, and by jt the local index of the
global node j. Then the standard local-to-global assembling process yields that the
right-hand side in (3.6) reads

1

2

\sum 
T\in \scrT H

\sum 
i,j

(\nu i  - \nu j)(\chi j  - \chi i)
\sum 

t\in \scrT i,j;T
h

ktitjta
t
itjt .

Comparing this result with the definition (2.3b), we find equality since the coefficient
function is assumed to be smooth within each T . The proof of (3.7) follows with
exactly the same arguments as the one for (3.6).

Although the proof of the previous lemma is straightforward, the implication of it
for large scale simulations cannot be underestimated. In 2D, the number of different
edge types per macro-element is three, while in 3D it is seven, assuming uniform
refinement. All edges in 3D in the interior of a macro-element T share only four or six
elements; see Figure 2.1. We have three edge types that have four elements attached
to them and four edge types with six adjacent elements.

The algebraic formulations (3.7) and (3.6) allow us to estimate the effects of the
variational crime introduced by the stencil scaling approach.

Lemma 3.4. Assumptions (A2) and (A3) hold true.

Proof. The required\scrO (h) bound for (A2) is straightforward and also holds true for
any unstructured mesh refinement strategy. Recalling that Kt = \~Kt if the coefficient
function k restricted to t is a constant, (3.7) and (3.6) yield

| ah(vh, wh) - \~ah(vh, wh)| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 12
\sum 
t\in \scrT h

d+1\sum 
i,j=1

((vt)i - (vt)j)
\Bigl( 
(Kt - \~Kt) \circ \^At

\Bigr) 
ij
((wt)j - (wt)i)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\lesssim h2 - d max

t\in \scrT h

\Bigl( 
\lambda max(Kt  - \~Kt)\lambda max( \^At)

\Bigr) 
\| \nabla vh\| 0\| \nabla wh\| 0

\lesssim max
t\in \scrT h

\Bigl( 
\lambda max(Kt  - \~Kt)

\Bigr) 
\| \nabla vh\| 0\| \nabla wh\| 0 \lesssim h\| \nabla k\| L\infty \| \nabla vh\| 0\| \nabla wh\| 0,

where \lambda max(\cdot ) denotes the maximal eigenvalue of its argument.
To show (A3), we have to exploit the structure of the mesh \scrT h. Let \scrE T

h be the

set of all edges in \=T , and \scrT e;T
h the subset of elements t \subset T which share the edge e

having the two global nodes i and j as endpoints. As before, we identify the local

indices of these endpoints by it and jt. We note that the two sets \scrE T
h and \scrE \^T

h , T \not = \^T ,
are not necessarily disjoint. Observing that each element t \subset T is exactly contained
in 1

2d(d+ 1) elements of \scrT e;T
h , we find

ah(vh, wh) - \~ah(vh, wh)

=
1

d(d+ 1)

\sum 
T\in \scrT H

\sum 
e\in \scrE T

h

\sum 
t\in \scrT e;T

h

((vt)it  - (vt)jt)
\Bigl( 
(Kt  - \~Kt) \circ \^At

\Bigr) 
itjt

((wt)jt  - (wt)it),

and thus it is sufficient to focus on the contributions resulting from t \in \scrT e;T
h . We

consider two cases separately: First, we consider the case that the edge e is part of
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\partial T for at least one T ; then we directly find the upper bound

h\| \nabla k\| L\infty (t)\| \nabla vh\| t\| \nabla wh\| t.

Second, we consider the case that e is in the interior of one T . Then for each
element t \in \scrT e;T

h there exists exactly one tm \in \scrT e;T
h such that tm is obtained by point

reflection at the midpoint of the edge e; see Figure 3.2. In the following, we exploit
that the midpoint of the edge is the barycenter of t \cup tm. Here the local indices it
and jt are associated with the global nodes i and j, respectively. Without loss of
generality, we assume a local renumbering such that it = 1, jt = 2 and that xtm

imt
is

the point reflected vertex of xt
it
; see also Figure 3.2.

1

2
3

2

1

3

t
tm

i

j

(\mathrm{a}) \mathrm{L}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{l} \mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{a}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g} \mathrm{a}\mathrm{n} \mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}
\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e} e \mathrm{i}\mathrm{n} 2\mathrm{D}.

(\mathrm{b}) \mathrm{L}\mathrm{o}\mathrm{c}\mathrm{a}\mathrm{l} \mathrm{n}\mathrm{u}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{a}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g} \mathrm{a}\mathrm{n} \mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}
\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e} e \mathrm{i}\mathrm{n} 3\mathrm{D}.

Fig. 3.2. Local numbering in element t and its point reflected element tm in 2D and 3D.

Let us next focus on

Et
ij(vh, wh) :=

\bigm| \bigm| \bigm| ((vt)1  - (vt)2)((Kt  - \~Kt) \circ \^At)1,2((wt)2  - (wt)1)

+((vtm)2  - (vtm)1)((Ktm  - \~Ktm) \circ Atm)2,1((wtm)1  - (wtm)2)
\bigm| \bigm| \bigm| .

Exploiting the fact that ( \^At)1,2 = ( \^Atm)2,1, we can bound Et
ij(\cdot , \cdot ) by the local H1-

seminorms:

Et
ij(vh, wh)

\lesssim \| \nabla vh\| 0;t\cup tm\| \nabla wh\| 0;t\cup tm

\bigm| \bigm| \bigm| \bigm| \bigm| (k| T (xi) + k| T (xj)) - 
1

d+ 1

d+1\sum 
l=1

(k| T (xt
l) + k| T (xtm

l ))

\bigm| \bigm| \bigm| \bigm| \bigm| .
A Taylor expansion of k in 1

2 (x
t
1 + xtm

1 ) = 1
2 (xi + xj) guarantees that the terms of

zeroth and first order cancel out and only second order derivatives of k scaled with
h2 remain, i.e.,

Et
ij(vh, wh) \lesssim h2\| Hk\| L\infty (t\cup tm)\| \nabla vh\| 0;t\cup tm\| \nabla wh\| 0;t\cup tm .

Then the summation over all macro-elements, all edges, and all elements in the subsets
\scrT e;T
l in combination with a finite covering argument [16] yields the upper bound of

(A3).
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4. Guaranteed uniform coercivity. While for our hierarchical hybrid mesh
framework the assumptions (A2) and (A3) are satisfied, and thus asymptotically, i.e.,
for h sufficiently small, (A1) is also satisfied, (A1) is not necessarily guaranteed for
any given mesh \scrT h.

Lemma 4.1. If the matrix representation of the discrete Laplace operator is an
M-matrix, then the scaled bilinear form ah(\cdot , \cdot ) is positive semidefinite on Vh \times Vh for
k globally smooth.

Proof. Let \^Ah be the matrix representation of the discrete Laplace operator; then
the M -matrix property guarantees that ( \^Ah)ij \leq 0 for i \not = j. Taking into account

that
\sum 

T\in \scrT H
\^sTij = ( \^Ah)ij , definition (2.3) for the special case M = 1 and k globally

smooth yields

ah(vh, vh) =
 - 1

4

\sum 
i,j

(k(xi) + k(xj))(\nu i  - \nu j)
2( \^Ah)ij \geq 0.

Remark 4.2. In 2D it is well known [12] that if all elements of the macro-mesh
have no obtuse angle, then \^Ah is an M -matrix and we are in the setting of Lemma 4.1.

4.1. Preasymptotic modification in 2D based on (A2). Here we work
out the technical details of a modification in 2D that guarantees uniform ellipticity
assuming that at least one macro-element T has an obtuse angle. Our modification
yields a linear condition on the local mesh-size depending on the discrete gradient of k.
It only applies to selected stencil directions. In 2D our 7-point stencil associated with
an interior fine grid node has exactly two positive off-center entries if the associated
macro-element has an obtuse angle. We call the edges associated with a positive
reference stencil entry to be of gray type. With each macro-element T , we associate
the reference stiffness matrix \^AT . Without loss of generality, we assume that the local
enumeration is done in such a way that the largest interior angle of the macro-element
T is located at the local node 3; i.e., if T has an obtuse angle, then aT1,2 > 0, aT1,3 < 0,

and aT2,3 < 0, and otherwise aTi,j \leq 0, 1 \leq i < j \leq 3. By \lambda T
min we denote the smallest

nondegenerated eigenvalue of the generalized eigenvalue problem

\^ATx :=

\left(   aT1,1 aT1,2 aT1,3
aT1,2 aT2,2 aT2,3
aT1,3 aT2,3 aT3,3

\right)   x = \lambda 

\left(  2  - 1  - 1
 - 1 2  - 1
 - 1  - 1 2

\right)  x, x \in \BbbR 3.

We note that both matrices in the eigenvalue problem are symmetric, are positive
semidefinite, and have the same 1D kernel and thus \lambda T

min > 0.
Let e be a gray type edge. For each such edge e, we possibly adapt our approach

locally. We denote by \omega e;T the element patch of all elements t \in \scrT h, such that t \subset T
and e \subset \partial t. Then we define

ke;min := min
\~e\in \scrE e

h

k\~e, k\~e :=
1

2
(k| T (x\~e

1) + k| T (x\~e
2)),

where \scrE e
h is the set of all edges being in \=\omega e;T , and x\~e

1 and x\~e
2 are the two endpoints of

\~e. In the preasymptotic regime, i.e., if

(MA2) (ke  - ke;min)a
T
1,2 > ke;min\lambda 

T
min,



C760 BAUER, DRZISGA, MOHR, R\"UDE, WALUGA, AND WOHLMUTH

we replace the scaling factor ke =
1
2 (k| T (x

e
1) + k| T (xe

2)) in definition (2.3) by

kmod
e := ke;min

\Biggl( 
1 +

\lambda T
min

aT1,2

\Biggr) 
.

Then it is obvious that ke;min < kmod
e < ke. We note that 2aT1,2 is the value of the

7-point stencil associated with a gray edge and thus trivial to access.

Lemma 4.3. Let the bilinear form be modified according to (MA2); then it is
uniformly positive definite on Vh \cap V0 \times Vh \cap V0 for all simplicial hierarchical meshes.

Proof. As it holds true for standard bilinear forms, our modified one can also
be decomposed into element contributions. The local stiffness At matrix for t \subset T
associated with (2.3) reads At = Kt \circ \^At = Kt \circ \^AT and can be rewritten in terms of
ktmin := min1\leq i<j\leq 3 k

t
i,j and \delta kti,j := kti,j  - ktmin as

(4.1)

At = ktmin
\^AT + \delta kt1,2

\left(   - aT1,2 aT1,2 0
aT1,2  - aT1,2 0
0 0 0

\right)  + \delta kt1,3

\left(   - aT1,3 0 aT1,3
0 0 0

aT1,3 0  - aT1,3

\right)  
+ \delta kt2,3

\left(  0 0 0
0  - aT2,3 aT2,3
0 aT2,3  - aT2,3

\right)  ,

where we use a consistent local node enumeration. We note that each \delta kti,j \geq 0. Now
we consider two cases separately.

First, let t \subset T , and let T be a macro-element having no obtuse angle; then we
find that all four matrices on the right-hand side of (4.1) are positive semidefinite.
Thus, we obtain At \geq ktmin

\^AT and no modification is required.
Second, let t \subset T , and let T be a macro-element having one obtuse angle. Then

the second matrix on the right-hand side of (4.1) is negative semidefinite, while the
three other ones are positive semidefinite. Now we find

x\top Atx \geq ktminx
\top \^ATx+ x\top \delta kt1,2

\left(   - aT1,2 aT1,2 0
aT1,2  - aT1,2 0
0 0 0

\right)  x

\geq \lambda T
mink

t
min((x1  - x3)

2 + (x2  - x3)
2) + (\lambda T

mink
t
min  - aT1,2\delta k

t
1,2)(x1  - x2)

2

\geq \lambda T
minke;min((x1  - x3)

2 + (x2  - x3)
2) + (\lambda T

minke;min  - aT1,2\delta k
t
1,2)(x1  - x2)

2,

where e is the edge associated with the two local nodes 1 and 2. Provided (MA2) is
not satisfied, we have x\top Atx \geq \lambda T

minke;min((x1  - x3)
2 + (x2  - x3)

2) \geq cke;minx
\top \^ATx.

If (MA2) is satisfied, we do not work with the bilinear form (2.3) but replace kt1,2 with

kmod
e . With this modification it is now obvious that the newly defined bilinear form

is positive semidefinite on Vh\times Vh and moreover positive definite on Vh\cap V0\times Vh\cap V0.
The coercivity constant depends only on the shape regularity of the macro-mesh,
min k, and the Poincar\'e--Friedrichs constant.

Remark 4.4. From the proof it is obvious that any other positive scaling factor
less than or equal to kmod

e also preserves the uniform ellipticity.

Remark 4.5. We can replace in the modification criterion the local condition
(MA2) by

lT 2
 - (\ell +1)\| \nabla k\| L\infty (\omega e;T )a

T
1,2 \geq inf

x\in \=\omega e;T

k(x)\lambda T
min,
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where \scrT h is obtained by \ell uniform refinement steps from \scrT H , and lT is the length of
the second longest edge in T . Both these criteria allow a local marking of gray-type
edges which have to be modified. To avoid computation of ke;min each time it is
needed, and thus further reducing computational cost, we set the scaling factor for
all gray-type edges in a marked T to

(4.2)
1

2
(kmin(x

e
1) + kmin(x

e
2)), kmin(xi) := min \{ k(xj) | xj \in \scrN T (xi)\} ,

where \scrN T (xi) denotes the set of all mesh nodes that are connected to node xi via an
edge and belonging to the macro-element \=T , including xi itself. The quantity kmin can
be precomputed for each node xi once at the beginning and stored as a node-based
vector such as k is. For nonlinear problems where k depends on the solution itself,
kmin can be updated directly after the update of k.

The presented preasymptotic modification based on (A2) yields a condition on the
local mesh-size and only affects edge types associated with a positive stencil entry.
However, the proof of (A3) shows that a condition on the square of the mesh-size
is basically sufficient to guarantee (A1). This observation allows us to design an
alternative modification yielding a condition on the square of the local mesh-size and
involving the Hessian of k, except for the elements which are in Sh. However, in
contrast to the option discussed before, we possibly also have to alter entries which
are associated with negative reference stencil entries, and therefore we do not discuss
this case in detail. It is obvious that for piecewise smooth k there exists an \ell 0 such
that for all refinement levels \ell \geq \ell 0 no local modification has to be applied. This holds
true for both types of modifications. Thus, all the a priori estimates also hold true
for our modified versions. Since we are interested in piecewise moderate variations
of k and large scale computations, i.e., large \ell , we assume that we are already in the
asymptotic regime, i.e., that no modification has to be applied for our 3D numerical
test cases, and we do not work out the technical details for the modifications in 3D.

4.2. Numerical counterexample in the preasymptotic regime. In the case
where we are outside the setting of Lemma 4.1, it is easy to come up with an example
where the scaled bilinear form is not positive semidefinite, even for a globally smooth
k. For a given mesh-size h, one can always construct a k with a variation large enough
such that the scaled stiffness matrix has negative eigenvalues.

Here we consider a 2D setting on the unit square with an initial mesh which is
not Delaunay; see the left part of Figure 4.1. For the coefficient function k, we use a
sigmoid function defined as

k(x, y;m, \eta ) =
\eta 

1 + exp( - m(y  - x - 0.2))
+ 1,

with m = 50, which yields a steep gradient. Further, we vary the magnitude of k by
setting \eta \in \{ 1, 10, 100, 1000\} .

Now, we assemble the global stiffness matrix and report in Table 4.1 for different
choices of \eta its minimal and maximal eigenvalues over a sequence of uniform refinement
steps. We show the eigenvalues for our scaling approach (2.3) with and without
modification (MA2) and for the standard nodal integration assembly (3.4).

We find that for \eta \geqslant 100 the stiffness matrix of the scaling approach has negative
eigenvalues in the preasymptotic regime. In these cases three or four refinement steps
are required, respectively, to enter the asymptotic regime. However, the positive
definiteness of the matrix can be recovered on coarser resolutions if (MA2) is applied.
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Fig. 4.1. Application of (MA2): mesh with two critical macro-elements used for Table 4.1
(left) and mesh where all macro-elements have an obtuse angle (right).

Table 4.1
Minimal and maximal eigenvalues of the global stiffness matrix A. Italic entries highlight

application of (MA2).

Scaling approach

\lambda A
min \lambda A

max

\eta \setminus \ell 0 1 2 3 4 5 0 1 2 3 4 5

1 2.7 0.72 0.18 0.046 0.011 0.0029 9.1 13.3 15.1 17.4 19.8 21.3
10 2.8 0.89 0.24 0.063 0.016 0.0039 40.0 69.3 80.7 93.2 108 116

100  - 8.9  - 10.6  - 5.5 0.066 0.018 0.0045 353 633 739 853 985 1066
1000  - 128  - 148  - 94.5  - 3.0 0.019 0.0049 3486 6265 7317 8450 9759 10562

Scaling approach modified with (MA2)

\lambda A
min \lambda A

max

\eta \setminus \ell 0 1 2 3 4 5 0 1 2 3 4 5

1 2.7 0.72 0.18 0.046 0.011 0.0029 9.1 13.3 15.1 17.4 19.8 21.3
10 3.8 1.1 0.26 0.063 0.016 0.0039 40.8 69.4 80.7 93.2 108 116

100 4.0 1.3 0.30 0.072 0.018 0.0045 364 634 739 853 985 1066
1000 4.4 1.3 0.33 0.078 0.019 0.0049 3598 6278 7321 8453 9759 10562

Standard nodal integration

\lambda A
min \lambda A

max

\eta \setminus \ell 0 1 2 3 4 5 0 1 2 3 4 5

1 2.8 0.72 0.18 0.046 0.011 0.0029 9.0 12.8 14.7 17.1 19.7 21.2
10 5.7 1.3 0.27 0.065 0.016 0.0040 36.6 64.9 78.4 90.7 107 116

100 27.7 1.8 0.34 0.076 0.018 0.0045 316 590 717 829 977 1064
1000 247 1.9 0.38 0.084 0.020 0.0049 3116 5840 7104 8211 9682 10549

Asymptotically, the minimal or maximal eigenvalues of all three approaches tend to
the same values.

In Figure 4.1, we illustrate the action of the modification and show how the region
of elements where it has to be applied gets smaller and finally vanishes with increasing
number of refinement steps. To further illustrate how the region that is affected by
(MA2) changes, we show a second example where all initial elements have an obtuse
angle. The underlying color bar represents the coefficient function k with \eta = 1000
for the first (left) example and \eta = 100 for the second (right). The location of the
steepest gradient of k is marked by a dashed line. Note that the gradient of k is
constant along lines parallel to the dashed one. For all edges that are modified by
(MA2) the adjacent elements are shown. The color intensity refers to the refinement
level and goes from bright (initial mesh) to dark.

4.3. The sign of the stencil entries in 3D. In contrast to the 2D setting,
a macro-mesh with no obtuse angle does not yield that \^Ah is an M -matrix. Here
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Fig. 4.2. Uniform refinement of one macro-element T (left) into three subclasses (middle);
gray edge between blue and green subtetrahedra (right).

-3.3e-01 +1.7e+00 -3.3e-01

-8.3e-02 -1.7e-01

-1.7e-01 -8.3e-02

-8.3e-02 +8.3e-02

+8.3e-02 -3.3e-01

-3.3e-01 +8.3e-02

+8.3e-02 -8.3e-02

(\mathrm{a}) \mathrm{U}\mathrm{n}\mathrm{i}\mathrm{t} \mathrm{r}\mathrm{e}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e} \mathrm{t}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{h}\mathrm{e}\mathrm{d}\mathrm{r}\mathrm{o}\mathrm{n}:
x1 = (0, 0, 0), x2 = (1, 0, 0),
x3 = (0, 1, 0), x4 = (0, 0, 1)

-2.9e-01 +2.4e+00 -2.9e-01

-2.9e-01 -5.9e-02

-5.9e-02 -2.9e-01

-2.9e-01 +1.2e-01

-5.9e-02 -2.9e-01

-2.9e-01 -5.9e-02

+1.2e-01 -2.9e-01

(\mathrm{b}) \mathrm{R}\mathrm{e}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{r} \mathrm{t}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{h}\mathrm{e}\mathrm{d}\mathrm{r}\mathrm{o}\mathrm{n}:
x1 = (1, 0, - 1/

\surd 
2) , x2 = ( - 1, 0, - 1/

\surd 
2) ,

x3 = (0, 1,+1/
\surd 
2) , x4 = (0, - 1,+1/

\surd 
2)

Fig. 4.3. Stencil entries colored by their sign at an inner node of two times refined tetrahedra,
each without any obtuse angles between faces. On the left (a), the stencil of the unit reference
tetrahedron, and on the right (b), the stencil of a regular tetrahedron is depicted. The gray edge
corresponds to the interior edge through 1

2
(x1 + x3) and 1

2
(x2 + x4). The green edge is the one

in direction between x1 and x3, and the blue one in direction between x2 and x4. All other edge
directions are marked in red. (Color available online.)

the uniform refinement rule yields that for each macro-element three subclasses of
tetrahedra (gray, blue, green) exist. To each of these we associate one interior edge
type (gray, blue, green) defined by not being parallel to any of the six edges of the
respective tetrahedron type. Figure 4.2 shows the subclasses and as example the gray
edge type. The coloring of the subclasses is up to now arbitrary. We always associate
the gray color with the macro-element and call the associated interior edge a gray-
type edge. The interior edges associated with the blue and green elements are called
blue- and green-type edges, respectively. All other remaining edges are by notation
red-type edges.

If the macro-element T has no obtuse angle between two faces, then it follows
from [26, 24] that the reference stencil entries, i.e., the entries associated with the
Laplace operator, associated with gray-type edges have a positive sign; see Figure 4.3.
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However, it can be shown by some simple geometrical considerations that not both,
green- and blue-type edges, can have a positive sign. If one of these has a positive
sign, we call this the blue- and the other one the green-type edge. Conversely, if both
have a negative sign, the coloring is arbitrary. In case the macro-element T has no
obtuse angle, the sign associated with all red-type edges is automatically not positive.
Thus, we find for such elements in our 15-point stencil either two or four positive
off-diagonal entries. Then a modification similar to the one proposed for the 2D case
can now be applied to the edges of gray and possibly blue type.

The situation can be drastically different if the macro-element T has an obtuse
angle between two faces. In that case, we find up to four edge directions which carry
a positive sign in the stencil.

5. Reproduction property and primitive concept. As already mentioned,
our goal is to reduce the cost of a WU and the run-times while preserving discretization
errors that are qualitatively and quantitatively on the same level as for standard
conforming finite elements. Here we focus on the 3D case, but similar results can be
obtained for the 2D setting. The a priori bounds of Lemma 3.2 do not necessarily
guarantee that for an affine coefficient function k and affine solution u the error is equal
to zero. In the upper bound (3.2) a term of the form \| \nabla k\| \infty \| \nabla u\| 0 remains. A closer
look at the proof reveals that this nontrivial contribution can be traced back to the
terms associated with nodes on the boundary of a macro-element. This observation
motivates us to introduce a modification of our stencil scaling approach. As already
mentioned, all nodes are grouped into primitives, and we have easy access to the
elements of these primitives. Recall that \~ah(\cdot , \cdot ) defined as in (3.4) is associated with
the standard finite element approach with nodal quadrature. Let us by \scrW V , \scrW E , and
\scrW F denote the set of all nodes associated with the vertex, edge, and face primitives,
respectively. Now we introduce a modified stencil scaling approach (cf. (2.3) and
(3.4)):

(5.1) ah;\scrI (vh, \phi i) :=

\biggl\{ 
\~ah(vh, \phi i), i \in \scrI ,
ah(vh, \phi i), i \not \in \scrI .

Replacing ah(\cdot , \cdot ) by ah;\scrI (\cdot , \cdot ) with \scrI \subset \scrW := \scrW V \cup \scrW E \cup \scrW F still yields that all node
stencils associated with a node in a volume primitive are cheap to assemble. The
number of node stencils which have to be more expensively assembled grow only at
most with 4\ell , while the total number of nodes grows with 8\ell .

Remark 5.1. The modification (5.1) introduces an asymmetry in the definition
of the stiffness matrix to which multigrid solvers are not sensitive. Moreover, the
asymmetry tends asymptotically to zero with \scrO (h2).

Lemma 5.2. Let \scrI = \scrW or \scrI = \scrW V \cup \scrW E; then an affine solution can be repro-
duced if k is affine, i.e., uh = u.

Proof. For i \not \in \scrW , associated with a node in the macro-element T and k affine,
we have kij(\^s

T
i )j = (sTi )j , and thus the bilinear form ah;\scrI (\cdot , \cdot ) is identical to \~ah(\cdot , \cdot )

for \scrI = \scrW . Since then no variational crime occurs, we find uh = u for any affine
solution u.

The case \scrI = \scrW V \cup \scrW E is more involved. Here the bilinear forms ah;\scrI (\cdot , \cdot ) and
\~ah(\cdot , \cdot ) are not identical. However, it can be shown that for any affine function vaff
we find

ah;\scrI (vaff, \cdot ) = \~ah(vaff, \cdot )
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(\mathrm{a}) \mathrm{E}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t} t \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{s}\mathrm{h}\mathrm{i}\mathrm{f}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}\mathrm{e} ts.

Used bilinear form to Discretization error
define FE approximation in discrete L2-norm

\~ah(\cdot , \cdot ) standard FE 3.85104e-15
ah;\scrI (\cdot , \cdot ), \scrI = \scrW 2.10913e-15
ah;\scrI (\cdot , \cdot ), \scrI = \scrW V \cup \scrW E 1.75099e-15
ah;\scrI (\cdot , \cdot ), \scrI = \scrW V \cup \scrW F 6.82596e-04
ah;\scrI (\cdot , \cdot ), \scrI = \scrW E \cup \scrW F 9.19145e-07
ah;\scrI (\cdot , \cdot ), \scrI = \scrW V 6.82032e-04
ah;\scrI (\cdot , \cdot ), \scrI = \scrW E 9.17523e-07
ah(\cdot , \cdot ) stencil scaling 6.81942e-04

(\mathrm{b}) \mathrm{R}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{t}\mathrm{y}.

Fig. 5.1. Illustration of the effect of the hierarchical mesh structure.

on Vh\cap V0. To see this, we follow arguments similar to those in the proof of Lemma 3.4.
This time we do not use a point reflected element tm but a shifted element ts; see
Figure 5.1. We note that \nabla vaff is constant and

1

2
(k(xi) + k(xi + wj)) - 

1

2
(k(xi) + k(xi + wj\prime )) = k(xt

c) - k(xts

c ).(5.2)

Here xt
c and xts

c stand for the barycenter of the elements t and ts, respectively. Two
of the four vertices of element t are the nodes xi and xi +wj . The shifted element ts

is obtained from t by a shift of  - wj .
This observation yields for a node i \not \in \scrW V \cup \scrW E that the sum over the nodes can

be split into two parts,

ah;\scrI (vaff, \phi i) = ah(vaff, \phi i) =
1

2

\sum 
j\in \scrW 

(k(xj) + k(xi))(vaff(xj) - vaff(xi))(\^s
T
xi
)j

+
1

2

\sum 
j \not \in \scrW 

(k(xj) + k(xi))(vaff(xj) - vaff(xi))(\^s
T
xi
)j .

For the second sum on the right, we have already shown equality to the corresponding
term in the bilinear form \~ah(vaff, \phi i). We recall that each node j in \scrW such that xi

and xj form an edge has a point mirrored node xj\prime , i.e., xi = 0.5(xj + xj\prime ). For the
first term on the right, we find that for a node j \in \scrW it holds that (\^sTxi

)j = (\^sTxi
)j\prime .

In terms of vaff(xi + wj)  - vaff(xi) = vaff(xi)  - vaff(xi + wj\prime ), the first summand on
the right can thus be further simplified to

1

2

ni\sum 
j=1

\biggl( 
1

2
(k(xi + wj) + k(xi) - (k(xi + wj\prime ) + k(xi)))(vaff(xi + wj) - vaff(xi))

\biggr) 
(\^sTxi

)j .

Together with (5.2), this yields the stated equality.

To illustrate Lemma 5.2, we consider a 3D example on the unit cube \Omega = (0, 1)3.
We use as solution u(x, y, z) =  - 7x+y+3z and k(x, y, z) = 2x+3y+5z+1 for the coef-
ficient function. The standard finite element solution reproduces the exact solution up
to machine precision. We test the influence of the stencil scaling approach on different



C766 BAUER, DRZISGA, MOHR, R\"UDE, WALUGA, AND WOHLMUTH

sets of primitives. In the right of Figure 5.1, we report the discretization error in the
discrete L2-norm for different combinations. Note that the macro-triangulation of the
unit cube consists of 12 tetrahedral elements and of one nonboundary macro-vertex
at (0.5, 0.5, 0.5). These considerations show that the choice \scrI = \scrW V \cup \scrW E is quite
attractive. The number of stencils which have to be expensively evaluated grows only
with 2\ell , while we still can guarantee the reproduction property for an affine solution
in the case of an affine coefficient function.

6. Cost of a work unit. The stencil scaling has been introduced as a means
to reduce the cost of a WU and hence enable the design of less expensive and thus
more efficient PDE solvers. We will first employ a cost metric based on operation
count. While we are aware that real run-times will be influenced by many additional
factors, including, e.g., the quality of the implementation, compiler settings, and
various hardware details, the classic measure still provides useful insight. Another
important aspect that we will address here is the question of memory accesses. A
more technical hardware-aware performance analysis, as conducted in [18] to evaluate
the efficiency on real computers, is beyond our current scope. Since asymptotically
the contributions from the element primitives dominate the cost, we restrict ourselves
to the study of stencils for nodes located in the interior of a macro-element T .

6.1. Cost for stencil scaling. Let \^sTi be the 15-point stencil associated with
the Laplacian at an inner node i of T which is independent of the node location within
T . Recall that the scaled stencil is given by

sTij :=
1

2

\Bigl( 
\kappa (xi) + \kappa (xj)

\Bigr) 
\^sTij \forall j \in \scrN T (i) \setminus \{ i\} , sTii :=  - 

\sum 
j\in \scrN T (i)\setminus \{ i\} 

sTij ,

where \kappa (xi) represents either the value of the parameter k at node xi or a modified
version of it as suggested in (4.2). Note that this definition is the direct translation
of the approach described in section 2.1 from the bilinear form to the pure stencil.
Assuming that the constant 1/2 factor is incorporated into the stencil \^sTi at setup
and taking into account the number of edges emanating from xi, being 6 in 2D and
14 in 3D, we can compute the noncentral stencil entries with 12 and 28 operations,
respectively. The computation of the central entry via the zero row sum property
takes 5 and 13 additions, respectively. This is summarized in Table 6.1.

We next compare the cost for the stencil scaling approach to an on-the-fly com-
putation based on classic FEM techniques which, however, exploits the advantages of
hierarchical hybrid grids; see also [17].

Remark 6.1. The cost to approximate the stencil coefficients with the two-scale
interpolation method of [2] amounts to q operations per stencil entry when the poly-
nomial degree is chosen as q. When the coefficients are locally smooth, q = 2 delivers
good results in [2]. The cost of this method becomes 2\times 7 = 14 operations in 2D, and
2 \times 15 = 30 operations in 3D, respectively. This is slightly cheaper than the stencil
scaling of this paper, but it neglects the setup cost that is necessary to construct
the polynomials and completely ignores the fact that for a fixed macro-mesh-size no
asymptotic optimality can be achieved.

6.2. Cost of the on-the-fly computation for the classical FEM. Employ-
ing the bilinear form (3.4), we can write the stencil coefficients as

(6.1) \~sTij = \~ah(\phi j , \phi i) =
\sum 

t\in \scrT e;T
h

d+1\sum 
\ell =1

k(xt
\ell )

(d+ 1)
\nabla \phi jt \cdot \nabla \phi it | t| =

\sum 
t\in \scrT e;T

h

(Et)it,jt

d+1\sum 
\ell =1

k(xt
\ell ),
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j1 j2

j3

j4

j5

j6

Fig. 6.1. Neighborhood of node i and edges (dashed) selected for common subexpression elimi-
nation.

where

(Et)it,jt :=
1

(d+ 1)

\int 
t

\nabla \phi jt \cdot \nabla \phi it dx

denotes the local stiffness matrix including the volume averaging factor 1/(d+1). The
regularity of the mesh inside a macro-element implies that there exist only a fixed
number of differently shaped elements t. Thus, we can compute stencil entries on
the fly from one (2D) or three (3D) precomputed stiffness matrices and the node-
based coefficient values.2 In 2D, always six elements t are attached to an interior
node. Summing nodal values of k for each element first would require 12 operations.
Together with the fact that two elements are attached to each edge, computing all 6
noncentral stencil entries via (6.1) would then require a total of 30 operations. This
number can be reduced by eliminating common subexpressions. We precompute the
values

k(xi) + k(j2) , k(xi) + k(j4) , k(xi) + k(j6) ,

i.e., we sum k for the vertices at the ends of the edges marked as dashed in Figure 6.1.
Then we obtain

\sum 3
\ell =1 k(x

t
\ell ) by adding the value of k at the third vertex of t to the pre-

computed expression. In this fashion, we can compute all six sums with 9 operations
and obtain a total of 27 operations for the noncentral entries.

The situation in 3D is more complicated. This stems mainly from the fact that
the number of elements sharing the edge from node i to node j is no longer a single
value as in 2D. Instead we have in 3D that | \scrT e;T

h | = 4 for the gray-, blue-, and green-

type edges that emanate from node i, while | \scrT e;T
h | = 6 for the remaining 8 red-type

edges. Thus, for the computation of the noncentral stencil entries we obtain the cost

6(4 + 3) + 8(6 + 5) + 40 = 170 .

The summand 40 represents the operations required for summing the nodal k values
employing again elimination of common subexpressions; see [17] for details. Assem-
bling the central entry involves contributions from 6 elements in 2D and 24 in 3D.
Thus, executing this via (6.1) cannot require less operations than using the row sum
property.

2Note that in our HHG implementation, we use 6 element matrices as this is advantageous with
respect to local-to-global indexing; see [3] for details.
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6.3. Cost of stencil application. The cost of the application of the assem-
bled stencil is independent of the approach to compute the stencil. Using the first
expression in

sTi v =
\sum 

j\in \scrN T (i)

sTijv(xj) =
\sum 

j\in \scrN T (i)\setminus \{ i\} 

sTij(v(xj) - v(xi))

results in 13 operations in 2D and 29 in 3D. Exploiting the row sum property avoids
computing the central entry, but increases the cost for the stencil application (cf. sec-
ond expression), so that in total only a single operation is saved. Table 6.1 summarizes
the results of this section. We observe that assembling the stencil and applying it once
in the scaling approach requires in 2D only about 2/3 and in 3D about 1/3 of the op-
erations compared to a classical on-the-fly variant.

Table 6.1
Comparison of operation count for assembling and applying the stencil using either stencil

scaling or on-the-fly assembly.

Approach Dimension Noncentral entries Central entry Assembly + Application

stencil scaling
2D 6 add / 6 mult 5 add / 0 mult 17 add / 12 mult
3D 14 add / 14 mult 13 add / 0 mult 41 add / 28 mult

on-the-fly FEM
2D 15 add / 12 mult 5 add / 0 mult 26 add / 18 mult
3D 98 add / 72 mult 13 add / 0 mult 125 add / 86 mult

In 3D, the stencil scaling approach results in a total of 69 operations per node
and is thus only 2.4 times more expensive than the constant-coefficient case treated
in, e.g., [3]. The 69 operations save a factor of 3 compared to the 211 operations per
node for the conventional, yet highly optimized, on-the-fly assembly and roughly an
order of magnitude when compared with nonoptimized variants of on-the-fly-assembly
techniques.

To which extent a factor of 3 savings in floating-point operations will be reflected
in run-time (or other practical cost metrics, such as, e.g., energy consumption) de-
pends on many details of the hardware and system software. For instance, we note
that in the above algorithms, the addition and multiplication operations are not ide-
ally balanced and do not always occur such that the fused multiply-add operations
of a modern processor architecture can be used. Furthermore, advanced optimizing
compilers will restructure the loops and will attempt to find a scheduling of the in-
struction stream that avoids dependencies. Thus, in effect, the number of operations
executed on the processor may not be identical to the number of operations calculated
from the abstract algorithm or the high-level source code. Nevertheless, though the
operation count does not permit a precise prediction of the run-times, we will see in
the following that our effort to reduce the number of operations pays off in terms of
accelerated execution.

6.4. Memory accesses. One other key aspect governing the performance of any
algorithm is the number of read and write operations it needs to perform and their
pattern with respect to spatial and temporal locality. The influence of these properties
results from the large disparity between peak floating-point performance of modern
CPUs and the latency and bandwidth limitation of memory access. All modern
architectures employ a hierarchy of caches [13, 21] that helps accelerate memory access
but that also make an a priori prediction of run-times quite difficult
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As in the previous subsections, for the number of operations we will perform
here a high-level analysis of memory traffic before presenting experimental results
in section 7.4. As a baseline we are including in our consideration not only the
on-the-fly and stencil scaling approaches, but also a stored stencil version. For the
latter we assume that in a setup phase the stencil for each node was assembled, by
whatever method, and then stored. For the stencil application the weights of the local
stencil are then loaded from main memory and applied to the associated degrees of
freedom. Since the stencil weights correspond to the nonzero matrix entries of the
corresponding row, this would be the HHG analogue of performing a sparse matrix-
vector multiplication with a matrix stored in a standard sparse storage format, such as,
e.g., compressed row storage (CRS). Note, however, that due to the structuredness of
the mesh inside a volume primitive, less organizational overhead and indirect memory
accesses are required than for a sparse matrix format. Most importantly we neither
need to store nor transfer over the memory system any information on the position
of the nonzero matrix entries.

For this article we do not study the full details of algorithmic optimization for
best usage of the memory subsystem. Instead, we are going to compare two idealized
cases. These are the optimistic version, in which we assume perfect reuse of each data
item loaded to the caches, and a pessimistic version, where there is no reuse at all.
Any actual implementation will lie somewhere in between these two cases, with the
closeness to one of them being determined by algorithmic properties and the quality
of its implementation. Furthermore, we will only consider the 3D problem.

Common to all three approaches under consideration is that, in order to apply the
local stencil and compute the residuum at a node, they need to load the DOFs at the
node and its 14 neighbors and the value of the right-hand side at the node only. After
the stencil application, the resulting nodal value must be written back. Thus, we are
not going to inspect these parts of the stencil application and also neglect questions
of write-back strategies for the caches.

With respect to the stencil weights the situation is, of course, a different one.
Let us start with the stored stencil approach. We denote by N the number of DOFs
inside a single volume primitive. In 3D a scalar operator using our discretization
is represented by a 15-point stencil. This structure is invariant inside the volume
primitive due to the regular mesh structure. Hence, we obtain for the total number
of data items to be loaded from memory \scrN stored = 15N .

In the on-the-fly assembly we start by loading the 6 precomputed element matri-
ces, which are in \BbbR 4\times 4 for the 3D case. Note that these are loaded only once when the
first node of the volume primitive is treated and can stay in the L1 cache during the
complete loop over the volume primitive as they only occupy 768 bytes. Assembling
the local stencil from these matrices requires information on the coefficient function
k. Assuming perfect reuse of the nodal k information, i.e., each nodal value needs to
be loaded only once, we obtain \scrN opt

fly = 6\times (4\times 4) +N = 96 +N . In the pessimistic
case, where we assume absolutely no cache effects, we need to reload neighboring k
values each time we update another node. This gives us 15N load operations per
node, resulting in \scrN pes

fly = 96 + 15N .
Finally we consider the stencil scaling approach. Here it is sufficient to load

once the 14 noncentral weights of the reference stencil \^s for the volume primitive.3

3The current HHG implementation for technical reasons assembles the stencil from the precom-
puted element matrices also in this case, so the constant term in the memory access is the same 768
bytes as for the on-the-fly approach.
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Table 6.2
Cost of the three different approaches measured in total bytes loaded for computation of stencil

weights, assuming the use of the IEEE binary64 data type.

Approach Optimistic Pessimistic

stored stencils 120N 120N
on-the-fly FEM 768 + 8N 768 + 120N
stencil scaling 112 + 8N 112 + 120N

These are 112 bytes, and the values can, as in the on-the-fly approach, remain in the
L1 cache. The noncentral weights are then scaled depending on the neighboring k
values, while its central weight is derived using the zero sum property. This gives us
\scrN opt

scale = 14 +N and \scrN pes
scale = 14 + 15N .

Table 6.2 sums up our results. Comparing the entries for the stored stencil ap-
proach to the pessimistic bounds for the other two approaches, we find the same
prefactors for N plus small constant terms. One should note, however, that in the
case of the stored stencils approach there will be no temporal cache effects when we
proceed from one node to the next, since the stencil values/row entries cannot be
reused. In the two other approaches, we expect to see positive cache effects due to
temporal and spatial reuse of some values of the coefficient function k, i.e., results
closer to \scrN opt. This can be seen in the comparisons in section 7.4.

7. Numerical accuracy study and run-time comparison. In this section,
we provide different numerical results which illustrate the accuracy and run-time of
the new scaling approach in comparison to the elementwise finite element assembling
based on nodal integration within a matrix-free framework. We consider different cases
such as scalar and tensorial coefficient functions k and the scenario of a geometry
mapping. Throughout this section, we denote the time-to-solution by tts and, by
relative tts we always mean the ratio of the time-to-solution of the stencil scaling
approach with respect to the nodal integration. From our theoretical considerations
for one stencil application from Table 6.1, we expect a relative tts of roughly one-third.
Further, we denote the estimated order of convergence by eoc and the asymptotic

convergence rates of the multigrid solver by \rho defined as \rho =
\bigl( 
r(i

\ast )/r(5)
\bigr) 1/i\ast  - 5

, where

r(i) is the L2 residual at iteration i, and i\ast is the final iteration of the solver. Each of
the following 3D computations was conducted on SuperMUC Phase 2 using the Intel
17.0 compiler together with the Intel 2017 MPI library. For all runs, we specify the
compiler flags -O3 -march=native -xHost. Note that the serial runs using only a
single compute core are not limited to run on large machines like SuperMUC but can
also be run on typical modern desktop workstations with enough memory. The peak
memory usage by our largest serial run was at about 4.46GiB.

7.1. A quantitative comparison in 2D for a scalar permeability. In this
example, we consider as domain the unit-square \Omega = (0, 1)2 and use a nonpolynomial
manufactured solution

u(x, y) =
x4y

xy + 1
.

We employ as coefficient function k(x, y;m) = 2 + sin(m\pi x) sin(m\pi y) with m \in 
\{ 2, 4, 8\} . The right-hand side is computed by inserting the above definitions into the
equation. This construction has the advantage that we can study the effect of the
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Table 7.1
Results for a regular triangular mesh. Here, L denotes the (uniform) refinement level and eoc

the estimated order of convergence.

Midpoint integration Nodal integration Stencil approach

L \| u - ub
h\| 0 eoc | u - ub

h| 1 eoc \| u - un
h\| 0 eoc | u - un

h| 1 eoc \| u - us
h\| 0 eoc | u - us

h| 1 eoc

m = 2

0 3.75e-03 0.00 9.13e-02 0.00 3.25e-03 0.00 9.15e-02 0.00 3.34e-03 0.00 9.14e-02 0.00

1 9.61e-04 1.96 4.60e-02 0.99 8.59e-04 1.92 4.61e-02 0.99 8.65e-04 1.95 4.61e-02 0.99

2 2.42e-04 1.99 2.31e-02 1.00 2.18e-04 1.97 2.31e-02 1.00 2.18e-04 1.98 2.31e-02 1.00

3 6.06e-05 2.00 1.15e-02 1.00 5.50e-05 1.99 1.15e-02 1.00 5.48e-05 2.00 1.15e-02 1.00

4 1.51e-05 2.00 5.77e-03 1.00 1.37e-05 2.00 5.78e-03 1.00 1.37e-05 2.00 5.78e-03 1.00

m = 4

0 3.61e-03 0.00 9.25e-02 0.00 3.64e-03 0.00 9.32e-02 0.00 3.54e-03 0.00 9.36e-02 0.00

1 9.14e-04 1.98 4.62e-02 1.00 1.02e-03 1.83 4.70e-02 0.99 9.40e-04 1.91 4.67e-02 1.00

2 2.30e-04 1.99 2.31e-02 1.00 2.81e-04 1.87 2.33e-02 1.02 2.43e-04 1.95 2.31e-02 1.01

3 5.77e-05 2.00 1.15e-02 1.00 7.27e-05 1.95 1.15e-02 1.01 6.13e-05 1.98 1.15e-02 1.00

4 1.44e-05 2.00 5.78e-03 1.00 1.83e-05 1.99 5.78e-03 1.00 1.53e-05 2.00 5.78e-03 1.00

m = 8

0 4.06e-03 0.00 1.01e-01 0.00 4.71e-03 0.00 1.07e-01 0.00 4.47e-03 0.00 1.03e-01 0.00

1 9.16e-04 2.15 4.87e-02 1.06 1.14e-03 2.04 5.09e-02 1.08 1.09e-03 2.04 5.23e-02 0.98

2 2.32e-04 1.98 2.35e-02 1.05 4.02e-04 1.51 2.55e-02 1.00 3.29e-04 1.73 2.44e-02 1.10

3 5.97e-05 1.96 1.16e-02 1.02 1.21e-04 1.73 1.20e-02 1.08 8.80e-05 1.90 1.17e-02 1.06

4 1.50e-05 1.99 5.78e-03 1.01 3.20e-05 1.92 5.84e-03 1.04 2.24e-05 1.97 5.80e-03 1.02

magnitude of \nabla k in a systematic fashion by adjusting m. We perform a study on a
regular triangular mesh comparing errors of the discrete solutions obtained by two
standard Galerkin finite element approaches and our proposed scaling approach. The
error norms are approximated using a fifth order quadrature rule, while we use a sec-
ond order scheme to evaluate the weak right-hand side. Results are listed in Table 7.1.
Here, un

h denotes the approximation obtained by employing a nodal quadrature rule,
resulting in bilinear form (3.4), while ub

h uses a quadrature rule that evaluates k at
the triangle's barycenter.

7.2. A quantitative comparison in 3D for a scalar permeability. As a
second test, we consider a nonlinear solution similar to the 2D tests in the previous
section,

u =
x3y + z2

xyz + 1
,

with a parameter-dependent scalar coefficient function k(x, y, z;m) = cos(m\pi xyz)+2
on the unit-cube \Omega = (0, 1)3 discretized by six tetrahedra. Here, and in the second 3D
example below, the weak right-hand side is computed by interpolating the right-hand
side associated with our manufactured solution into our finite element ansatz space
and subsequent multiplication with the mass matrix. The L2 error is approximated by
a discrete version, i.e., an appropriately scaled nodal L2 error. While more advanced
approaches could be used here, the ones chosen are completely sufficient for our pur-
pose, which is to demonstrate that our stencil scaling approach behaves analogously
to a classical finite element approach. We employ a multigrid solver with a V(3,3) cy-
cle on a single compute core and stop after 10 multigrid iterations, i.e., i\ast = 10, which
is enough to reach the asymptotic regime. In Table 7.2, we report convergence of the
discretization error for the three approaches, i.e., classical finite element with nodal
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Table 7.2
3D results in the case of a scalar coefficient function with errors measured in the discrete

L2-norm.

Nodal integration Scale Vol+Face Scale all

L DOF Error eoc \rho Error eoc \rho Rel.
tts

error eoc \rho Rel.
tts

m = 3

1 3.43e+02 2.46e-03 -- 0.07 2.42e-03 -- 0.06 1.13 2.51e-03 -- 0.07 0.70

2 3.38e+03 7.06e-04 1.80 0.13 5.97e-04 2.02 0.12 0.45 6.05e-04 2.05 0.12 0.45

3 2.98e+04 1.80e-04 1.97 0.16 1.46e-04 2.03 0.15 0.34 1.47e-04 2.05 0.15 0.28

4 2.50e+05 4.46e-05 2.01 0.18 3.59e-05 2.02 0.15 0.30 3.59e-05 2.03 0.15 0.29

5 2.05e+06 1.11e-05 2.01 0.17 8.88e-06 2.01 0.14 0.31 8.88e-06 2.02 0.14 0.32

6 1.66e+07 2.75e-06 2.01 0.16 2.21e-06 2.01 0.13 0.32 2.21e-06 2.01 0.13 0.32

m = 8

1 3.43e+02 3.17e-03 -- 0.07 5.43e-03 -- 0.09 1.33 5.21e-03 -- 0.08 0.70

2 3.38e+03 1.50e-03 1.08 0.15 1.54e-03 1.82 0.15 0.53 1.56e-03 1.74 0.15 0.45

3 2.98e+04 4.83e-04 1.63 0.19 4.04e-04 1.93 0.17 0.31 4.06e-04 1.94 0.16 0.36

4 2.50e+05 1.31e-04 1.89 0.19 1.01e-04 1.99 0.16 0.30 1.02e-04 2.00 0.17 0.29

5 2.05e+06 3.32e-05 1.98 0.20 2.52e-05 2.01 0.16 0.31 2.53e-05 2.01 0.17 0.32

6 1.66e+07 8.30e-06 2.00 0.21 6.29e-06 2.01 0.16 0.33 6.29e-06 2.01 0.16 0.32

integration, stencil scaling on volumes and faces, but classical finite element assembly
on edges and vertices, and stencil scaling on all primitives. The refinement is given
by L, where L =  - 2 denotes the macro-mesh. We observe quadratic convergence of
the discrete L2 error for all three approaches and a relative tts of about 32\% on level
L = 6.

7.3. A quantitative comparison in 3D for a permeability tensor. As a
third test, we consider a full symmetric and positive definite permeability tensor K
with nonlinear components. The off-diagonal components are negative or zero:

K =

\left(  x2 + 2y2 + 3z2 + 1  - y2  - z2

 - y2 2x2 + 3y2 + z2 + 1  - x2

 - z2  - x2 3x2 + y2 + 2z2 + 1

\right)  .

The manufactured solution is set to

u =
x4y + 2z

xyz + 1
,

and we consider as domain the unit-cube discretized by twelve tetrahedra. We employ
the same multigrid solver as in the previous subsection on a single compute core, but
stop the iterations if the residual is reduced by a factor of 10 - 9. We denote the
final iteration by i\ast . The results for the classical finite element approach and the
stencil scaling approach on volumes and faces with classical finite element assembly
on edges and vertices are reported in Table 7.3. We observe quadratic convergence of
the discrete L2 error for both approaches and a relative tts of 31\% on our finest level,
L = 6.

Note that, as in Table 7.2, the relative tts exhibits a slightly nonmonotonic be-
havior. This stems from the fact that different types of primitives (e.g., faces and
volume) have a different tts behavior for increasing L and profit differently from the
scaling approach. For large L, tts is dominated by the work performed on the volume
DOFs, as is the relative tts between two approaches. A test with a single macro
tetrahedron showed a monotonic behavior for the relative tts.
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Table 7.3
3D results in the case of a tensorial permeability with discretization errors measured in the

discrete L2-norm.

Nodal integration Scale Vol+Face Rel.
L DOF Error eoc \rho Error eoc \rho tts
1 8.55e+02 1.92e-03 -- 0.07 2.21e-03 -- 0.07 0.60
2 7.47e+03 4.40e-04 2.13 0.16 5.19e-04 2.09 0.16 0.35
3 6.26e+04 1.06e-04 2.05 0.24 1.27e-04 2.03 0.24 0.25
4 5.12e+05 2.60e-05 2.02 0.30 3.15e-05 2.01 0.30 0.26
5 4.15e+06 6.47e-06 2.01 0.35 7.86e-06 2.00 0.35 0.30
6 3.34e+07 1.61e-06 2.00 0.37 1.96e-06 2.00 0.37 0.31

7.4. Memory traffic and roofline analysis. In section 6.4 a theoretic assess-
ment of memory accesses was presented. In order to verify these results we devised
a benchmark to run on a single compute node of SuperMUC Phase 2. We compare
our proposed scaling approach against the on-the-fly assembly and the stored stencil
variant, described in section 6.4. Floating-point performance and memory traffic are
measured using the Intel Advisor 2018 tool [23].

We start by giving a brief summary of the SuperMUC Phase 2 hardware details.
Values were taken from [30]. One compute node consists of two Haswell Xeon E5-
2697 v3 processors clocked at 2.6GHz. Each CPU is equipped with 14 physical cores.
Each core has a dedicated L1 (data) cache of size 32 kB and a dedicated L2 cache of
size 256 kB. The theoretical bandwidths are 343GB/s and 92GB/s, respectively. The
CPUs are running in cluster-on-die mode. Thus, each node represents four NUMA
domains each consisting of 7 cores with a separate L3 cache of size 18MB and a
theoretical bandwidth of 39GB/s. Note that the cache bandwidth scales linearly
with the number of cores. Furthermore, each node provides 64GB of shared memory
with a theoretical bandwidth of 6.7GB/s.

The benchmark computes the residual r = f  - A(k)u for a scalar operator A(k).
We only consider volume primitives and their associated DOFs in the benchmark.
The residual computation is iterated 200 times to improve signal-to-noise ratio. The
program is executed using 28 MPI processes, pinned to the 28 physical cores of a single
node. This is essential to avoid overly optimistic bandwidth values when only a single
core executes memory accesses. Measurements with the Intel Advisor are carried
out solely on rank 0. Moreover, all measurements are restricted to the innermost
loop, i.e., where the actual nodal updates take place, to obtain a clear picture. This
restriction does not influence the results as the outer loops are identical in all three
variants. We choose L = 6 as refinement level, which gives us 2.7 \cdot 106 DOFs per MPI
rank. The computation involves three scalar fields u, k, and f , which each require
\sim 22MB of storage. In Figure 7.1 (left) we present a roofline analysis (see [22, 38])
based on the measurements. The abscissa shows the arithmetic intensity, i.e., the
number of FLOPs performed divided by the number of bytes loaded into CPU registers
per nodal update. The ordinate gives the measured performance as FLOPs performed
per second. The diagonal lines give the measured DRAM and cache bandwidths. The
values for the caches are those reported by the Intel Advisor. Naturally these measured
values are smaller than the theoretical ones given in the hardware description above.
In order to assess the practical DRAM bandwidth of the complete node we used
the LIKWID tool (see [35]) and performed a memcopy benchmark with nontemporal
stores. We found that the system can sustain a bandwidth of about 104GB/s, which
for perfect load-balancing on the nodes, as is the case in our benchmark, results in
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Fig. 7.1. Roofline model (left) and nodal updates per unit time (right) for the three different
approaches.

about 3.7GB/s per core. The maximum performance for double precision vectorized
fused multiply-add operations is also reported by the Advisor tool (35.7GFLOPs/s).

For all three kernels we observe a quite similar arithmetic intensity. The value
for the stored stencil variant is close to what one would expect theoretically. In this
case one needs to load 31 values of size 8 bytes (15 u values, 1 f value, and 15 stencil
weights), write back one residual value of 8 bytes, and perform 30 FLOPs, which
results in an intensity of around 0.12 FLOPs/Byte. Both the stencil scaling approach
and the on-the-fly assembly show a slightly higher intensity, but the difference seems
negligible.

Using FLOPs/s as a performance criterion, we see that the stored stencil approach
achieves significantly smaller values than the two other approaches, which perform
about a factor of 4 better. The limiting resource for both the on-the-fly assembly
and the stencil scaling is the L3 bandwidth. This confirms our expectations from
section 6.4 showing that values of k are not evicted from the L3 cache and can be
reused.

For the stored stencil approach the performance is somewhere in between the
limits given by the L3 and DRAM bandwidths. Here, all stencil values have to be
loaded from main memory, while values of u may still be kept in the cache, as with
the two other approaches. Due to overlapping of computation and load operations,
the performance is still above the DRAM bandwidth limit, but clearly below what
the L3 bandwidth would allow.

Further assessment requires a more detailed analysis like the execution-cache-
memory model [20], which goes beyond the scope of this article.

From an application point of view, FLOPs/s is not the most relevant criterion,
however. Of main importance to a user is overall run-time. In this respect the
interesting measure is the number of stencil applications per second, or equivalently
the number of DOFs updated per second (DOFs/s). The latter can be derived from
the FLOPs/s value based on the number of operations required to (assemble and)
apply a local stencil for the three different methods. These values and the derived
DOFs/s are shown in the right part of Figure 7.1. The number of FLOPs required
per update was computed from the number of performed FLOPs, as reported by the
Intel Advisor, and the number of DOFs inside a volume primitive. Note that these
values match very well our theoretical considerations from Table 6.1.

As the FLOPs/s value attained by the on-the-fly and stencil scaling approaches



STENCIL SCALING FOR FINITE ELEMENTS C775

are almost identical, it is the reduced number of operations required in the stencil
scaling variant which directly pays off. The three times lower FLOP count directly
translates to a threefold increase in the DOFs/s and, thus, a similar reduction in
run-time.

Furthermore, we observe that our stencil scaling version also gives a higher num-
ber of DOFs/s than the stored stencil approach. While this increase is not as dramatic
compared to the on-the-fly assembly, we emphasize that the stored stencil approach
within HHG does not require additional memory traffic for information on the ma-
trix's sparsity pattern or involve indirect accesses as in a classical CRS format. More
importantly, for the largest simulation with L = 6, carried out in section 7.5 below,
the stored stencil approach over all levels of the mesh hierarchy would require about
22TB of storage. Together with the scalar fields u, f and the tensor K this would
exceed the memory available on SuperMUC. Per core typically 2.1GB are available
to an application [30], which sums up to around 30TB for the 14 310 cores used. The
stencil scaling approach, on the other hand, only requires the storage of 120 bytes,
i.e., a single 15-point stencil per primitive and level, for the operator construction.
This results in less than 165MB over all cores for the complete simulation. This
value could even be further reduced to 26MB by exploiting similarities of stencils on
different levels and the zero sum property. However, this does not seem worth the
effort.

7.5. Application to a blending setting and large scale results. To demon-
strate the advantages of our novel scaling approach also for a more realistic scenario,
we consider an example using a blending function, as mentioned in section 2. To
this end, we consider a half cylinder mantle with inner radius r1 = 0.8 and outer
radius r2 = 1.0, height z1 = 4.0, and with an angular coordinate between 0 and \pi 
as our physical domain \Omega phy. The cylinder mantle is additionally warped inwards by
w(z) = 0.2 sin (z\pi /z1) in an axial direction. The mapping \Phi : \Omega phy \rightarrow \Omega is given by

\Phi (x, y, z) =

\left(  \sqrt{} x2 + y2 + w(z)
arccos (x/

\surd 
x2+y2)

z

\right)  ,

with the reference domain \Omega = (r1, r2)\times (0, \pi )\times (0, z1). Using (2.1), it follows for the
mapping tensor K,

K =
(D\Phi )(D\Phi )\top 

| det D\Phi | 
=
\sqrt{} 
x2 + y2

\left(  w\prime (z)2 + 1 0 w\prime (z)
0 1/x2+y2 0

w\prime (z) 0 1

\right)  .

Obviously, this tensor is symmetric and positive definite. In addition to the geometry
blending, we use a variable material parameter a(x, y, z) = 1 + z. On the reference
domain \Omega this yields the PDE  - div aK\nabla u = f . As the analytic solution on the
reference domain, we set

u(\^x, \^y, \^z) = sin

\biggl( 
\^x - r1
r2  - r1

\pi 

\biggr) 
cos (4\^y) exp (\^z/2) .

The analytic solution mapped to the physical domain is illustrated in the right part
of Figure 7.2.

For our numerical experiments, we employ a macro-mesh composed of 9540 hexa-
hedral blocks, where each block is further split into six tetrahedral elements; see



C776 BAUER, DRZISGA, MOHR, R\"UDE, WALUGA, AND WOHLMUTH

Fig. 7.2. Macro-mesh of the reference domain \Omega (left) and analytic solution u (right) mapped
to the physical domain \Omega phy.

Table 7.4
Results for large scale 3D application with errors measured in the discrete L2-norm.

Nodal integration Scale Vol+Face Rel.
L DOF Error eoc \rho tts Error eoc \rho tts tts
1 4.7e+06 2.43e-04 - 0.522 2.5 2.38e-04 - 0.522 2.0 0.80
2 3.8e+07 6.00e-05 2.02 0.536 4.2 5.86e-05 2.02 0.536 2.6 0.61
3 3.1e+08 1.49e-05 2.01 0.539 12.0 1.46e-05 2.01 0.539 4.5 0.37
4 2.5e+09 3.72e-06 2.00 0.538 53.9 3.63e-06 2.00 0.538 15.3 0.28
5 2.0e+10 9.28e-07 2.00 0.536 307.2 9.06e-07 2.00 0.536 88.9 0.29
6 1.6e+11 2.32e-07 2.00 0.534 1822.2 2.26e-07 2.00 0.534 589.6 0.32

Figure 7.2 (left). The resulting system is solved using 14 310 compute cores; i.e., we
assign four macro-elements per core. For the largest run we have a system with
\scrO 
\bigl( 
1011

\bigr) 
DOF. We employ a multigrid solver with a V(3,3) cycle. The iteration is

stopped when the residual has been reduced by a factor of 10 - 8. In Table 7.4, we
report the resulting discretization error, the asymptotic multigrid convergence order
\rho , and the time-to-solution.

These results demonstrate that the new scaling approach maintains the discretiza-
tion error, as is expected on structured grids from our variational crime analysis, as
well as the multigrid convergence rate. For small L we observe that the improvement
in time-to-solution is only modest as here the influence of vertex and edge primitives
is more pronounced. But for increasing L this influence decreases and for L \geqslant 4 the
run-time as compared to the nodal integration approach is reduced to about 30\%.
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