Tests d'hypothèse

08/12/2010

* Principe du test d'hypothèse:

- On formule une hypothèse nulle \mathcal{H}_0 (représentant la situation où le hasard permet d'expliquer à lui seul les observations) et on cherche à rejeter cette hypothèse.
- On peut imaginer deux manières de se tromper :
 - ightharpoonup celle de rejeter à tort \mathcal{H}_0 : risque de première espèce noté α ;
 - ightharpoonup celle d'accepter à tort \mathcal{H}_0 : risque de deuxième espèce noté β.
- Comme on ne peut généralement pas contrôler à la fois α et β , on choisit dans la pratique de contrôler uniquement α car on cherche à rejeter \mathcal{H}_0 et pas à l'accepter.

* Déroulement du test d'hypothèse :

- On formule l'hypothèse nulle \mathcal{H}_0 ;
- On calcule une statistique *t* à partir des observations ;
- On fixe un niveau de confiance α et on calcule la valeur seuil t_C de la statistique (soit à partir d'une table, soit à partir d'une commande matlab);
- On conclut le test en comparant t et t_C :
 - \Rightarrow si $t > t_C$, on rejette \mathcal{H}_0 avec un risque d'erreur α ;
 - \Rightarrow si $t < t_C$, on conclut qu'il n'est pas possible de rejeter \mathcal{H}_0 .
- NB : A partir de la statistique t, on peut également rechercher à déterminer la probabilité critique p de rejeter à tort \mathcal{H}_0 :
 - ⇒ si $p < \alpha$, on rejette \mathcal{H}_0 avec un risque d'erreur α ;
 - ⇒ si $p > \alpha$, on conclut qu'il n'est pas possible de rejeter \mathcal{H}_0 .

* Commandes utiles sous matlab

- pour les distributions normales (gaussiennes) : normp(x) et normq(p)
- pour les distributions de Student à n degrés de liberté : tp(x,n) et tq(p,n)
- pour les distributions du χ^2 à *n* degrés de liberté : chisqp(x,n) et chisqq(p,n)
- pour les distributions de Fisher à $n \times m$ degrés de liberté : fp(x,n,m) et fq(p,n,m)
- \Rightarrow les commandes normp(x), tp(x,n), chisqp(x,n), fp(x,n,m) retournent la valeur de la fonction de distribution (une probabilité) pour une valeur d'abscisse x.
- \Rightarrow les commandes normq(p), tq(p,n), chisqq(p,n), fq(p,n,m) retournent l'inverse la fonction de répartition (une abscisse) pour une probabilité p.

* Test de Student : comparaison d'une moyenne expérimentale \bar{x} avec une valeur μ

- hypothèse nulle $\mathcal{H}_0: \overline{x} = \mu$
- statistique de Student : $ts = \frac{|\overline{x} \mu| \times \sqrt{n}}{\sigma} \sim t_{n-1}$
- valeur seuil de la statistique : tc = tq(1-alpha,n-1)
- (ou calcul de la probabilité critique de rejeter à tort \mathcal{H}_0 : p = 1-tp(ts,n-1))
- conclusion : rejet de \mathcal{H}_0 si $ts > t_C$ (ou $p < \alpha$)!

- **Test de Student :** comparaison de deux moyennes expérimentales $\overline{x_1}$ et $\overline{x_2}$
 - hypothèse nulle $\mathcal{H}_0: \overline{x_1} = \overline{x_2}$
 - statistique de Student : $ts = \frac{\left|\overline{x_1} \overline{x_2}\right|}{S \times \sqrt{1/nx_1 + 1/nx_2}} \sim t_{nx_1 + nx_2 2}$ $avec S = \sqrt{\frac{\sum_{i=1}^{nx_1} (x_1(i) \overline{x_1})^2 + \sum_{i=1}^{nx_2} (x_2(i) \overline{x_2})^2}{nx_1 + nx_2 2}}$

avec
$$S = \sqrt{\frac{\sum_{i=1}^{nx_1} (x_1(i) - \overline{x_1})^2 + \sum_{i=1}^{nx_2} (x_2(i) - \overline{x_2})^2}{nx_1 + nx_2 - 2}}$$

- valeur seuil de la statistique : tc = tq(1-alpha,nx1+nx2-2)
- (ou calcul de la probabilité critique de rejeter à tort \mathcal{H}_0 : p = 1-tp(ts,nx1+nx2-2))
- conclusion : rejet de \mathcal{H}_0 si $ts > t_C$ (ou $p < \alpha$)!

※ Intervalle de confiance sur la moyenne vraie

function [mumin,mumax]=confiance(x,alpha)

% [mumin,mumax]=confiance(x,alpha)

n=length(x); mu=mean(x); sigma=std(x);

tc=tq(1-alpha/2,n-1)*sigma/sqrt(n);

mumin=mu-tc; mumax=mu+tc;

- ⇒ Le nom du fichier de la fonction doit être nécessairement confiance.m.
- ⇒ La deuxième ligne est facultative et renseigne ce qui sort lorsqu'on tape help confiance.
- \Rightarrow Pour appeler la fonction, il faut taper [mumin,mumax]=confiance(x,alpha) en remplaçant les deux variables d'entrée et les deux variables de sortie par ce qu'on veut.

* Analyse de la variance avec l'ANOVA

- On teste si différents groupes sont issus d'une même population.
- On décompose pour cela la variance totale en deux contributions :
 - ➡ la variance inter-groupe (associée au fait qu'on a différents groupes)

$$MSG = \frac{SSG}{DFG} = \frac{\sum_{i=1}^{Ng} n_i (\overline{x_i} - \overline{x})^2}{Ng - 1}$$

➡ la variance intra-groupe (associée à la dispersion interne dans chaque groupe)

$$MSE = \frac{SSE}{DFE} = \frac{\sum_{i=1}^{Ng} (n_i - 1)s_i^2}{Ntot - Ng}$$

- On calcule la statistique de Fisher : $F = \frac{MSG}{MSE} = \frac{SSG/DFG}{SSE/DFE} \sim F_{DFG,DFE}$
- On teste l'hypothèse nulle \mathcal{H}_0 (égalité des variances) en fixant un niveau de confiance α et comparant la statistique F à sa valeur critique Fc=fq(1-alpha,DFG,DFE)...