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Simulation seismischer Wellenausbreitung 

Das Thema der vorliegenden Habilitation ist die Entwicklung und Anwendung einer 
neuen Simulationstechnik für die Generierung seismischer Wellen und die 
numerische Berechnung deren Ausbreitung.  

Eine in den vergangenen zwei Jahrzehnten immer wichtiger werdende Disziplin der 
Seismologie stellt die rechnergestützte Seismologie (Computational Seismology) dar, 
die sich vor allem durch die rapide Zunahme moderner Rechenressourcen zu einem 
äußerst aktiven und interdisziplinären Forschungszweig innerhalb der Geophysik 
entwickelt hat. Nur durch eine intensive Zusammenarbeit auf den Gebieten der 
Erdbeben-, Bohrloch- oder Explorationsseismologie, der Numerischen Mathematik 
und der Informatik wird es in Zukunft möglich sein, neue und wissenschaftlich 
weiterführende Erkenntnisse auf der Basis von rechentechnisch aufwendigen 
Simulationen zu gewinnen. Dies ist vor allem im Bereich der Erdbebenseismologie 
von besonderem Interesse, weil der klassische Versuchsaufbau und die durch 
gezielte Beobachtungen und aufgezeichnete Messwerte erhaltenen Ergebnisse 
schwierig zu erhalten und nicht zu reproduzieren ist.      

Um zuverlässige Aussagen durch Simulationsergebnisse zu treffen, ist es 
entscheidend, dass diese sogenannten synthetischen Ergebnisse – in der 
Seismologie im speziellen die synthetischen Seismogramme – mit möglichst kleinen 
Fehlern behaftet sind. Dies setzt mehrere Punkte voraus: 

• eine geeignete Beschreibung des physikalischen Vorgangs durch ein 
mathematisches Modell (z.B. partielle Differentialgleichungen) 

• eine möglichst realistische Parametrisierung des Modells (z.B. Geometrie und 
geophysikalische Eigenschaften des Computermodells) 

• eine ausreichend feine räumliche und zeitliche Auflösung des physikalischen 
Phänomens der seismischen Wellenausbreitung und die damit verbundenen 
Rechenressourcen 

• ein numerisches Simulationsverfahren, das geometrisch flexibel ist, hohe 
Approximationsgenauigkeit liefert und in der Lage ist, verschiedene 
Eigenschaften der realen Untergrundstruktur und der seismischen Quelle 
abzubilden 

Die Habilitation beschäftigt sich dabei vor allem mit dem letzten Punkt und umfasst 
die Entwicklung und Anwendung einer speziellen Art von Finite-Elemente Methode 
im Bereich der Computational Seismology. 
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Diskontinuierliches Galerkin Finite-Elemente Verfahren 

Es handelt sich dabei um ein numerisches Verfahren – ursprünglich entwickelt im 
Bereich der Simulation von Neutronentransport – , bei dem der dreidimensionale 
Raum in sogenannte Elemente unterteilt wird, innerhalb derer jeweils die Material-
eigenschaften, der Zustand des Drucks, die Schwinggeschwindigkeit eines Partikels 
oder dessen Spannungszustand durch eine numerische Approximation in Form eines 
Polynoms angenähert wird. Das Verfahren verfügt über eine enorme geometrische 
Flexibilität des Rechengitters, eine Eigenschaft, die schon seit Jahrzehnten vor allem 
in den Ingenieurwissenschaften sehr erfolgreich verwendet wird. 

Des Weiteren kann durch die Verwendung höherer Polynomgrade eine bessere und 
vor allem lokale Approximation erreicht werden. Im Gegensatz zu anderen 
numerischen Verfahren (z.B. Finite Differenzen, Finite Volumen) erhöht sich dadurch 
nur die Anzahl der Polynomkoeffizienten – oft auch als Freiheitsgrade bezeichnet – 
innerhalb eines Elements, ohne dass eine steigende Zahl von Nachbarelementen 
und deren Eigenschaften mit einbezogen werden müssen. Das Konzept des 
sogenannten stencil ist dadurch unnötig und die Implementierung auf großen 
parallelen Rechnern wird erheblich erleichtert. 

Eine zusätzliche Besonderheit des Verfahrens besteht in der Diskontinuität der 
Polynome an den Elementgrenzen, d.h. innerhalb eines Elements liegt eine glatte 
Polynomapproximation vor, die jedoch am Übergang zu den Nachbarelementen 
Sprünge aufweisen kann. Diese Diskontinuitäten werden bei besserer räumlicher 
Auflösung zwar infinitesimal klein, sind aber einer der entscheidendsten Bestandteile 
des Verfahrens, weil dadurch ein sogenanntes Riemann-Problem definiert wird. Ein 
Riemann-Problem setzt sich aus zwei Zustandswerten auf den jeweiligen Seiten 
einer Diskontinuität und einer hyperbolischen Differentialgleichung zusammen, die 
die räumliche und zeitliche Entwicklung dieser Zustände an der Diskontinuität 
beschreibt. Die Lösung des Riemann-Problems definiert schließlich den Zustand an 
den Elementgrenzen. Das Konzept und die Behandlung von Riemann-Problemen mit 
Riemann-Lösern ist ein eigenes Forschungsfeld der angewandten, numerischen 
Mathematik und wurde im Verlaufe der letzten 50 Jahre vor allem durch die 
Entwicklung der Finite-Volumen Methode vorangetrieben. Nach der Einführung der 
ADER-Methode (Arbitrarily high-order DERivatives) im Rahmen der Riemann-Löser 
für Finite-Volumen konnte dieser Ansatz auch für die Diskontinuierlichen Galerkin 
Finite-Elemente (DG) übernommen werden, was dem Verfahren nicht nur eine 
beliebig hohe Approximationsordnung im Raum, sondern auch in der Zeit verschafft, 
eine Eigenschaft, die vor allem für die hochgenaue Berechnung der Ausbreitung von 
Wellen über lange Distanzen von großer Bedeutung ist. Nicht nur die numerische 
Diffusion wird dadurch reduziert, um Amplitudeninformationen zu erhalten, sondern 
auch die numerische Dispersion, um Phaseninformationen korrekt zu transportieren. 
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Komplexe Geometrie und realistische Medien  

Ein Simulationsmodell erfordert immer eine Simplifikation der realen Gegebenheiten, 
da das Kontinuum diskret, d.h. in Form eines Gitters, dargestellt wird. Das 
Rechengitter kann beim DG-Verfahren aus verzerrten Hexaedern, Tetraedern, 
Prismen oder Pyramiden bestehen, wobei die Tetraedergitter bei der Anwendung klar 
im Vordergrund stehen. Zum einen bieten Tetraedergitter die größte geometrische 
Flexibilität und zum anderen stehen für diese Art von Diskretisierungsgitter mehrere 
leistungsfähige Software-Packete zur Gittererzeugung zur Verfügung. Komplexe 
geometrische Eigenschaften des geologischen Untergrunds, wie sie etwa in 
Lagerstätten (Falten, diskordante Schichtung, Einschlüsse, etc.) in Verwerfungs- und 
Subduktionszonen (diskordante Schichtung, Versatz von Gesteinseinheiten, 
Verschneidung von Bruch- und Schichtungsflächen) oder in Vulkanen (Sills, Dykes) 
stellen eine große Herausforderung bei der Berücksichtigung der Materialgrenzen im 
Prozess der Gittergenerierung dar. Insbesondere bei Anwendungen in der 
hochauflösenden Ingenieursseismik (Untersuchung Bauwerken, Baugrund, 
Deponien, etc.) spielt die genau Repräsentation dieser klein-skaligen geometrischen 
Gegebenheiten eine außerordentlich wichtige Rolle. Ähnlich schwierig ist die 
Einbeziehung der Topographie mit bewegtem Relief, wie es bei Gebirgsregionen 
oder tiefen Taleinschnitten (Canyons) vorliegt. Da seismische Wellen von den steilen 
Flanken und dem extremen Materialkontrast zwischen Gestein und Luft quasi 
totalreflektiert werden, finden starke Streuungs- bzw. Fokussierungseffekte statt, die 
die Bodenbewegung an der Oberfläche in hohem Maße beeinflussen.  

Des Weiteren müssen bei der Simulation seismischer Wellenausbreitung die 
Materialeigenschaften der Medien, die von den Wellen durchdrungen werden, so gut 
wie möglich durch die zugrundeliegenden physikalischen Modelle und deren 
mathematischer Formulierung in Form von Differentialgleichungen beschrieben 
werden. In erster Näherung verhalten sich viele Gesteinsarten elastisch, d.h. die 
Deformation des Gesteins beim Durchgang einer seismischen Welle ist reversibel 
und die Struktur des Gesteins geht in ihre Ausgangslage zurück und die Energie der  
seismischen Welle bleibt erhalten.  
Bei genauerer Betrachtung treten aber inelastische Eigenschaften auf, wodurch ein 
Teil der kinetischen Energie in Wärme umgewandelt wird. Dadurch nimmt die 
Wellenamplitude stärker ab und auch die Ausbreitungsgeschwindigkeit der Wellen 
wird stark frequenzabhängig. Die Beschreibung dieser inelastischen Eigenschaften 
konnte durch das Konzept der generalisierten Maxwell-Körper in das DG-Verfahren 
aufgenommen werden und lieferte ausgezeichnete Ergebnisse. Die 
Approximationsgenauigkeit der kann dabei nicht nur von der Wahl des 
Polynomgrades, sondern auch von der Anzahl der parallel geschalteten Maxwell-
Körper gesteuert werden, wobei sich eine Anzahl von drei bis fünf als guter 
Kompromiss zwischen Genauigkeit und Rechenaufwand herausgestellt hat.  
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Eine ebenso wichtige Eigenschaft ist die Anisotropie des Gesteins, die für die 
Richtungsabhängigkeit der Ausbreitungsgeschwindigkeit der Wellen verantwortlich 
ist. Durch die Einbeziehung aller 21 Koeffizienten der Hooke’s matrix im DG-Ansatz 
kann die Anisotropie aller kristallinen Symmetrieklassen (triklin, monoklin, 
orthorhombisch, tetragonal, hexagonal, rhombisch, kubisch) definiert und in die 
Berechnung der Wellenausbreitung integriert werden. 
Besonders für die Anwendung in Lagerstätten (z.B. Erdölexploration) oder 
oberflächennahen, flüssigkeitsgesättigten Medien (z.B. in der Hydrologie) spielen 
auch poroelastische Eigenschaften eine wichtige Rolle und sind im DG-Verfahren 
durch die theoretische Beschreibung von Biot implementiert. Da die Gesteinsmatrix 
und die Porenflüssigkeit unterschiedliche seismische Geschwindigkeiten aufweisen 
entsteht in poroelastischen Medien ein neuer Wellentyp, die langsame P-Welle, die 
sich bei niedrigen Frequenzen nur als Diffusionswelle äußert. Der theoretisch-
technische Rahmen ist also im Simulationsverfahren gegeben, allerdings ist es oft 
schwierig, die nötigen Parameter (z.B. Porosität, Permeabilität, Tortuosität und 
Viskosität) des Materials zu kennen. 
Eine für die Zukunft noch wichtige Materialeigenschaft, vor allem im Hinblick auf 
Effekte im Nahfeld von Erdbebenquellen, ist die Nichtlinearität bzw. Plastizität des 
Gesteins. Die Berücksichtigung nichtlinearer Effekte ist speziell bei der Berechnung 
von dynamischen Bruchprozessen von großem Interesse, da der Einfluss 
nichtlinearen Materialverhaltens in unmittelbarer Umgebung des Bruches auf die 
Bruchausbreitung Gegenstand aktueller Forschungsaktivitäten ist. 
Mit Bezug auf die Approximation der Materialeigenschaften innerhalb eines 
Elements, wurden beim diskontinuierlichen Galerkin Finite-Elemente Verfahren 
standardmäßig oft nur die Eigenschaften am Elementmittelpunkt verwendet und dann 
als repräsentativ und konstant für die Region des Elements angenommen. Diese 
Methodik konnte ersetzt werden durch die Approximation der Materialschwankungen 
innerhalb eines Elements durch Polynome (sub-cell resolution). Dabei handelt es 
sich um die gleiche Polynombasis wie bei der Approximation der physikalischen 
Zustandsvariablen, die die Wellenausbreitung beschreiben. Vor allem bei der 
Verwendung grober Gitter liefert diese neue Methodik einen deutlichen 
Genauigkeitsgewinn, der sich jedoch im Falle stark verfeinerter Gitter immer weniger  
auszahlt, wenn man das Verhältnis von Genauigkeit / Rechenzeit berücksichtigt. 
 

Regelmäßige, unstrukturierte, hybride, nicht-konforme und adaptive Gitter 

Auf dem Gebiet der numerischen Simulation stellt, wie oben erwähnt, die 
Gittererzeugung eine große Herausforderung dar. Zum einen muss der zu 
untersuchende, physikalische Raum mit allen geometrischen und geophysikalischen 
Parametern und deren Grenzschichten möglichst genau durch die Diskretisierung 
erfasst werden, zum anderen muss aber auch der Rechenaufwand in einem 
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vertretbaren Rahmen bleiben. Regelmäßige Gitter, die einer einfachen Logik bei der 
Nummerierung der Gitterelemente folgen, haben große Vorteile bei der 
Implementierung des numerischen Lösungsverfahrens. Im Hinblick auf 
Speicherbedarf muss nur ein einziger Index zur Identifikation des Elements im 
Speicher gehalten werden. Aufgrund der Regelmäßigkeit des Gitters können daraus 
Position und Geometrie einfach angeleitet werden. Außerdem liegt Information 
benachbarter Elemente in der Regel auch im Speicher an benachbarten Registern, 
sodass extrem schnell auf diese Information zugegriffen und zu Rechenoperationen 
benutzt werden kann. Einen entscheidenden Nachteil stellt jedoch die geringe 
geometrische Flexibilität dar, da  regelmäßige Gitter kaum, oder nur unter 
erheblichem Verlust der Rechengenauigkeit an komplizierte Geometrien angepasst 
werden können. 
Es wurde eine Studie durchgeführt, um zu klären, welche Auflösung bei 
regelmäßigen Gittern mindestens nötig ist, um noch Ergebnisse einer bestimmten 
Genauigkeit zu erhalten, wenn seismische Wellen klar definierte Materialgrenzen 
durchlaufen und dadurch Wellenreflexion, -transmission und -konversion auftritt. Die 
Untersuchung zeigt, wie die Wahl der regelmäßigen Gitterweite von der Frequenz 
der propagierten Wellen und der Stärke des Materialkontrasts abhängt, wenn das 
numerische Gitter nicht den geometrisch komplizierten Materialgrenzen angepasst 
werden kann.  
Vor allem aus diesem Grund wurden Verfahren entwickelt, die auch unstrukturierte 
Gitter – vor allem Dreiecksgitter in 2D oder Tetraedergitter in 3D – zur 
Modeldiskretisierung nutzen können. In der Regel handelt es sich dabei um Finite 
Elemente oder Finite Volumen Verfahren.  Gekrümmte Linien oder Flächen können 
dabei durch stückweise lineare Linien oder Flächenelemente repräsentiert werden, 
wobei die Approximationsgüte durch die räumliche Auflösung ∆x gesteuert werden 
kann. Außerdem lässt sich die räumliche Auflösung ∆x graduell variieren, sodass die 
Gitterweite adaptiv, also z.B. proportional zur seismischen Ausbreitungs-
geschwindigkeit cs gewählt werden kann. Dadurch wird die durch ein 
Stabilitätskriterium vorgegebene Zeitschrittlänge ∆t optimal ausgenutzt, da ∆t ~ ∆x/cs. 
Diese Gitteradaptivität kann auch benutzt werden, um den Rechenaufwand auf 
Modelregionen von besonderem Interesse zu konzentrieren, während andere 
Bereiche (z.B. Modelränder) gröber aufgelöst und damit rechentechnisch weniger 
aufwendig werden. Der Rechen- und Speicheraufwand pro Element bei 
unstrukturierten Gittern ist oft deutlich höher als bei regelmäßigen Gittern, da 
Koordinaten und Konnektivitätseigenschaften jedes Elements als Matrizen im 
Speicher gehalten werden müssen und der Zugriff auf Nachbarelemente nicht 
einfach durch die Erhöhung oder Erniedrigung eines Index möglich ist. 
Ein vielversprechender Kompromiss ist daher die Kombination beider Gittertypen zu 
hybriden Gittern, um die Vorteile beider Ansätze zu nutzen und Bereiche mit 
unstrukturierten Gittern begrenzt zu halten, dafür aber möglichst hohe Genauigkeit 
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bei möglichst geringem Rechenaufwand zu erhalten. Um die Ankopplung 
verschiedener Gittertypen (z.B. Dreiecks- und Rechtecksgitter oder Tetraeder- und 
Hexaedergitter) im DG-Verfahren zu ermöglichen, ist eine Methodik für nicht-
konforme Gitter entwickelt worden. Dabei müssen sich benachbarte Elemente keine 
gemeinsame Elementgrenze und Eckpunkte mehr teilen, sondern können entlang 
ihrer Begrenzung verschoben aneinander liegen. Nur so kann im dreidimensionalen 
Raum die Einführung von Übergangselementen wie Pyramiden oder Prismen 
vermieden werden. Das DG-Verfahren auf hybriden, nicht-konformen Gittern erhält 
auch seine Approximationsordnung, sodass die numerische Genauigkeit auch bei 
mehrmaligem Übergang von einem zu anderen Gittertyp erhalten bleibt. 

 

Quantitativer Vergleich verschiedener numerischer Methoden 

Bei der Entwicklung neuer numerischer Methoden zur Simulation der seismischen 
Wellenausbreitung kommt dem Vergleich mit analytischen Lösungen und der 
Gegenüberstellung der numerischen Ergebnisse mit denen anderer Verfahren eine 
überaus große Bedeutung zu. Im Rahmen des SPICE-Projektes wurde dazu eine 
Reihe von Testszenarien erstellt, die für verschiedene Entwicklungsstufen einer neu 
entwickelten Methodik, zum benchmarking frei verfügbar sind. Die Ergebnisse 
können dann mit anderen, bereits publizierten Lösungen verglichen werden und die 
Unterschiede analysiert werden. Dazu werden klar definierte Fehlernormen 
verwendet, die den numerischen Fehler sowohl in Amplituden-  und Phasenfehler 
des synthetischen Seismogramms aufspalten und eine zeit-, distanz- und 
frequenzabhängige Analyse des Fehlers zulassen. Durch die Fehleranalysen des 
DG-Verfahrens konnte – in enger Zusammenarbeit mit anderen Gruppen innerhalb 
der SPICE-Projektes – die Wichtigkeit und die Gesamtheit einer gründlichen Fehler- 
und Genauigkeitsanalyse im Bereich der Computational Seismology deutlich stärker 
in den Vordergrund gestellt werden, als dies vorher oft der Fall war.   

Ein allerdings weiterhin bestehendes Problem ist die Anwendung verschiedener 
Rechenverfahren auf unterschiedlichen Rechenarchitekturen. Vor allem durch den 
starken Trend der Parallelisierung der Verfahren auf verschiedenen Supercomputern 
und der damit einhergehenden Optimierung erweist es sich oft als schwierig einen 
fairen Vergleich im Hinblick auf das Verhältnis von Genauigkeit / Rechenzeit 
anzustellen. 
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Software-Entwicklung, Optimierung und Hochleistungsrechnen  

Aktuell in der Seismologie verwendete Simulationsverfahren, wie auch das DG-
Verfahren, müssen in der Lage sein, unterschiedlichste Problemstellungen von 
seismologischem Interesse zu behandeln. Um auch die ausreichende Genauigkeit 
der erzeugten Ergebnisse und die dafür erforderliche Auflösung zu erhalten müssen 
Simulationsverfahren an die Hardware und Infrastruktur der modernen 
Hochleistungsrechenzentren angepasst werden, um diese Rechenressourcen 
effizient zu nutzen. 
Ein Problem, das in vielen Bereichen der Naturwissenschaften auftritt, ist die 
Vorgehensweise bei der Entwicklung neuer Simulationssoftware, da in der Regel 
problemorientiert vorgegangen wird, ohne allzu viel Zeit in das Design und die 
Strukturierung bei der eigentlichen Code-Entwicklung zu investieren. Bei der 
Entwicklung der DG-basierten Simulationssoftware „SeisSol“, der zum Teil bis zu fünf 
Entwickler gleichzeitig angehörten, wurden durch die Einführung eines Systems zur 
Code-Verwaltung und Versionskontrolle enorme Vorteile erzielt. Unabhängig 
voneinander weiterentwickelte Software-Teile konnten so immer zu einer neues 
Version des Simulationscodes ohne Mehraufwand zusammengeführt werden. Des 
Weiteren wurde durch die Erstellung einer neuen Version automatisch die 
Berechnung einer Reihe von Testszenarien ausgelöst, um die Korrektheit der 
erweiterten Software zu kontrollieren und so evtl. auftretende Fehler sofort zu 
identifizieren und zu beheben.  
Im weiteren Verlauf des Projekts sind auf Experten aus dem Bereich des Software-
design einbezogen worden, um die Strukturierung und Modularisierung der Software 
zu verbessern und die zukünftige Entwicklung bzw. Instandhaltung des codes zu 
erleichtern. Methodiken aus dem Software-design, wie requirement analysis und re-

factoring, wurden damit auch im Computational Seismology eingeführt und 
umgesetzt, um eine verbesserte Struktur ohne den Verlust der operativen 
Funktionalitäten zu erreichen. 
Da jedoch in vielen Fällen die Anwendung der Simulationssoftware auf dringende 
Fragen der Seismologie im Vordergrund steht, kommt der Effizienz eine 
außerordentlich hohe Bedeutung zu. Die Algorithmen müssen daher nicht nur 
verfahrenstechnisch sondern auch implementationstechnisch hochoptimiert sein, was 
in der Regel nur durch die Unterstützung aus der numerischen Mathematik und der 
Informatik zu bewerkstelligen ist. Da die Verwendung der Software im 
Poduktionsmodus nur auf Hochleistungsrechnern an großen Rechenzentren 
stattfindet, muss auch auf die Spezifika der verschiedenen Rechnerarchitekturen bei 
der Entwicklung – vor allem bei der Kompilierung – eingegangen werden. Außerdem 
stellen die neuesten Höchstleistungsrechner mit mehreren hunderttausend 
Rechenkernen eine enorme Herausforderung an eine effiziente 
Parallelisierungsstrategie dar. Die Rechenlast muss dabei möglichst gleichmäßig auf 
die einzelnen Rechenkerne verteilt werden (load-balancing), und der Austausch von 



 

 Zusammenfassung   8                                                                                                            

 

Information zwischen den Recheneinheiten muss minimiert werden, um die 
Rechenkapazität eines solchen Systems im Sinne von Rechenoperationen / Zeit 
auszunutzen. Des Weiteren müssen alle Teile des Simulationscodes skalierbar sein, 
d.h. auf einer zunehmenden Anzahl von Rechenkernen sollte die benötigte 
Rechenzeit möglichst proportional abnehmen. Durch mehrere Initiativen (z.B. mit 
dem LRZ oder DEISA) zwischen den Bereichen Computational Seismology und High 
Performance Computing (HPC) konnten enge Verbindungen und Kooperationen 
aufgebaut werden, die sich nicht nur positiv auf die Code-Entwicklung und 
Optimierung von „SeisSol“ auswirken sondern sich auch bei der Finanzierung von 
weiteren Forschungsvorhaben durch Fördermittel verschiedener Organisationen für 
den Bereich Supercomputing Applications als entscheidend erwiesen haben. Selbst 
direkte und andauernde Kooperationen mit Herstellern massiv-paralleler 
Rechnerarchitekturen (z.B. IBM) konnten dadurch realisiert werden. Hervorzuheben 
ist dabei, dass immer spezielle Anwendungen in diesen Projekten im Vordergrund 
stehen, um nicht nur theoretische Aspekte der Parallelisierung oder algorithmische 
Verfahren zu verbessern, sondern auch einen klaren Nutzen für die Anwender – in 
diesem Fall die Seismologie – zu erzielen. 

  

Anwendungen in der Seismologie 

Aufgrund der vielseitigen Anwendungsmöglichkeiten des DG-Verfahrens zur 
Simulation seismischer Wellen sind im Folgenden exemplarisch einige Beispiele aus 
der Explorations- und Erdbebenseismologie herausgegriffen und zusammenfassend 
erläutert. Detaillierte Informationen finden sich in den publizierten Arbeiten im 
Anschluss an diese Zusammenfassung. 

Ground motions considering non-planar rupture models and topography 

Die Untersuchung deterministisch modellierter starker Bodenbewegungen bis zu 1Hz 
basierend auf dem Bruchmodel des M6 Parkfield-Bebens 2004 zeigt, dass 
theoretisch die vertikale und strike-parallele Bewegungskomponente bei perfekt-
planarer Bruchfläche jeweils Null sein sollte. Da dies jedoch in der Realität nicht 
beobachtet wurde, sind die Auswirkungen dreier Effekte – nämlich eine nicht-planare 
Bruchfläche, eine 3D Geschwindigkeitsverteilung und die Topographie – analysiert 
worden, um die in etwa gleichstarken Amplituden auf den einzelnen Komponenten zu 
erklären. Dabei ergab sich, dass die Berücksichtigung komplexer 
Bruchflächengeometrie oder Topographie nicht ausreichen, sondern die 
Einbeziehung eines möglichst genauen 3D Geschwindigkeitsfeldes in der Region um 
Parkfield von entscheidender Bedeutung ist, um realistischere Bodenbewegungen zu 
erhalten. Für eine umfassende Studie sollten aber noch die Eigenschaften der 
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Störungszone, site-effects, Anisotropie sowie nicht-lineares Bodenverhalten 
berücksichtigt werden.  

 

Simulation Dynamischer Bruchausbreitung 

Die Beantwortung fundamentaler Fragen der Erdbebendynamik verlangt einen 
genauen und effizienten Simulationscode, der nicht nur die Wellenausbreitung, 
sondern auch den Ablauf des Bruchvorgangs modellieren kann. Aufbauend auf einer 
Formulierung des DG-Verfahrens in 2D konnte auch eine Erweiterung auf 3D erreicht 
werden. Die Vorteile der diskontinuierlichen Approximation an Elementgrenzen und 
der damit verbundenen Lösung des Riemann-Problems (siehe oben) unter 
Einbeziehung der nicht-linearen Reibungsgesetze ergeben sich dabei vor allem in 
der Glattheit der simulierten, zeitabhängigen Lösungen. Die bei anderen 
numerischen Verfahren auftretenden starken Oszillationen in den Scherspannungen 
und den Verschiebungsraten werden im DG-Verfahren vermieden und erfordern 
deshalb keine künstliche Dämpfung. Durch die Verwendung unstrukturierter 
Dreiecksgitter kann der Rechenaufwand mithilfe von Gitteradaptivität auf die Region 
nahe und an der Bruchfläche konzentriert und das Simulationsgitter an komplexe 
Bruchgeometrien (z.B. Krümmungen, Verzweigungen, Neigung zur Oberfläche, …)  
angepasst werden. 

Bohrloch- und Explorationsseismologie 

Seismische und akustische Messungen spielen in der Erdöl- und Erdgasexploration 
eine wichtige Rolle, um ein besseres Verständnis der geophysikalischen 
Bedingungen, der Struktur und den Veränderungen im Porenraum der Lagerstätten 
zu erhalten. Die Anwendung des DG-Verfahrens auf HPC-Architekturen erlaubt es, 
auch in komplexen Lagerstättenmodellen hochgenaue synthetische Seismogramme 
zu berechnen, die mit Observationsdaten aus dem Feld oder aus einem Bohrloch 
verglichen werden können. Welleneffekte von Salzdomen, oder zerscherten 
Sedimentschichten, Ausbrüchen an der Bohrlochwand oder der Einfluss des 
Bohrloch-casings können damit untersucht werden. Unter anderem wurden auch die 
Unterschiede der akustischen Wellenausbreitung im Bohrloch bei der Verwendung 
verschiedener Anregungsmethoden analysiert. Die Fragestellung war, welche 
akustische Quelle bzw. welche Anordnung der Geophone zur Bestimmung der S-
Wellengeschwindigkeit im umgebenden Gestein am besten geeignet ist. Die 
Konfiguration der akustischen Quellen wurde dabei zwischen Monopol, Dipol und 
Quadrupol variiert. Auch die nötige Auflösung der Bohrlochgeometrie durch 
Tetraeder-Elemente war von Interesse, um bei möglichst geringem Rechenaufwand, 
d.h. bei möglichst groben Elementen, die Ergebnisse nicht in einer inakzeptablen 
Weise zu beeinflussen.  
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Komponenten Seismischer Rotationsbewegungen 

Die Rotationsbewegungen, die an Gesteinspartikeln durch die Propagation 
seismischer Wellen erzeugt werden, fanden in der Vergangenheit im Gegensatz zu 
den Translationskomponenten der Bewegungsgeschwindigkeit oder -beschleunigung 
entlang der drei Raumrichtungen wenig Beachtung. Mit der Installation von Ring-
Lasern und anderen Instrumenten zur genauen Messung der Rotation kommt seit 
wenigen Jahren auch diesen Bewegungskomponenten eine immer wichtigere 
Bedeutung zu. Das DG-Verfahren wurde in diesem Zusammenhang zur 
Untersuchung von registrierten und simulierten Rotationen in der P-Wellencoda 
teleseismischer Wellen herangezogen. Dabei konnte gezeigt werden, dass 
Rotationsbewegungen durch die Streuung von P in SH Wellen in heterogenem 
Material – wie etwa der Erdkruste – erklärt werden können. Aus dem Verhältnis der  
Energien der vertikalen Rotations- und Translationskomponenten konnte sogar auf 
die Stärke der Geschwindigkeitsperturbation geschlossen werden. Außerdem konnte 
ausgeschlossen werden, dass bei teleseismischen Events die Anisotropie des 
Mediums signifikante Rotationsbewegungen verursachen. Bei großen, lokalen 
Erdbebenevents oder unter stark anisotropen Lagerstättenbedingungen können aber 
durchaus Rotationskomponenten gemessen werden, die als zusätzliche 
Nebenbedingungen zur Lösung von Inversionsproblemen verwendet werden 
könnten.   
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[1] We introduce the application of an arbitrary high-order derivative (ADER)
discontinuous Galerkin (DG) method to simulate earthquake rupture dynamics. The
ADER-DG method uses triangles as computational cells which simplifies the process of
discretization of very complex surfaces and volumes by using external automated tools.
Discontinuous Galerkin methods are well suited for solving dynamic rupture problems in
the velocity-stress formulation as the variables are naturally discontinuous at the interface
between two elements. Therefore, the fault has to be honored by the computational
mesh. The so-called Riemann problem can be solved to obtain well defined values of the
variables at the discontinuity itself. Fault geometries of high complexity can be modeled
thanks to the flexibility of unstructured meshes, which solves a major bottleneck of
other high-order numerical methods. Additionally, element refinement and coarsening are
easily controlled in the meshing process to better resolve the near-fault area of the model.
The fundamental properties of the method are shown, as well as a series of validating
exercises with reference solutions and a comparison with the well-established finite
difference, boundary integral, and spectral element methods, in order to test the accuracy
of our formulation. An example of dynamic rupture on a nonplanar fault based upon the
Landers 1992 earthquake fault system is presented to illustrate the main potentials
of the new method.

Citation: de la Puente, J., J.-P. Ampuero, and M. Käser (2009), Dynamic rupture modeling on unstructured meshes using a

discontinuous Galerkin method, J. Geophys. Res., 114, B10302, doi:10.1029/2008JB006271.

1. Introduction

[2] Computational earthquake dynamics is emerging as a
key component in physics-based approaches to strong
motion prediction for seismic hazard assessment, and in
physically constrained inversion approaches to earthquake
source imaging from seismological and geodetic observa-
tions. Typical applications in both areas require the ability to
deal with rupture surfaces of complicated, realistic geome-
tries with high computational efficiency. A variety of
numerical methods have been used in the past decades to
simulate the dynamics of earthquake rupture, as finite differ-
ences (FD) [e.g., Andrews, 1973; Day, 1982; Madariaga et
al., 1998; Andrews, 1999; Dalguer and Day, 2007;Moczo et
al., 2007; Ely et al., 2009], finite elements (FE) [e.g.,
Oglesby et al., 1998, 2000; Aagaard et al., 2001], boundary
integral (BI) [e.g., Das, 1980; Andrews, 1985; Cochard and
Madariaga, 1994; Geubelle and Rice, 1995; Lapusta et al.,
2000], spectral element (SE) [Ampuero, 2002; Vilotte et al.,

2006; Kaneko et al., 2008], or finite volume (FV) [Benjemaa
et al., 2007] methods.
[3] These techniques offer different advantages and draw-

backs. The BI method offers very high accuracy and
efficiency, but is not well suited for handling heterogeneous
media and nonlinear materials. The FD method is very
accurate but is difficult to apply to nonplanar faults, with
some remarkable exceptions [e.g., Cruz-Atienza and Virieux,
2004]. The FE and FV methods are very flexible geomet-
rically but are often implemented as first- to second-order
operators that are very dispersive for wave propagation
problems. The hexahedra-based SE method is both accurate
and flexible, but designing good quality hexahedral meshes
for complicated geometries in three dimensions, such as
faults with branching, and adapting smoothly the element
sizes to different material properties are still very challeng-
ing tasks [Igel et al., 2008] and a major bottleneck.
[4] Here, we present an alternative for the computation of

the dynamics of two-dimensional in-plane rupture phenom-
ena, based upon a discontinuous Galerkin (DG) method
combined with an arbitrary high-order derivatives (ADER)
time integration. The DG methods can be thought of as a
high-order version of FV methods, where a polynomial
basis is used inside each element to represent the unknowns.
In our implementation, triangular elements are used which
allows for a better fit of the geometrical constraints of the
problem, i.e., the fault shape, and for an easy control of the
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variation of element sizes using smooth refining and coars-
ening strategies.
[5] The ADER-DG method has been applied to continu-

ous wave propagation problems [Käser and Dumbser, 2006;
Dumbser and Käser, 2006], including viscoelastic [Käser et
al., 2007a], anisotropic [de la Puente et al., 2007] and
poroelastic [de la Puente et al., 2008] rheologies. Also the
kinematic description of nonplanar irregular faults has been
successfully implemented [Käser et al., 2007b].
[6] A particular feature of DG methods, inherited from

FV methods, is the usage of numerical fluxes at element
interfaces. Between any two elements the variables of the
elastic equations are allowed to be discontinuous, even
when no faults are present. This is enabled by the avail-
ability of the exact solution to the elastic wave equation at a
discontinuity, obtained by the solution of the well-known
Riemann problem [Toro, 1999; LeVeque, 2002]. In the case
of faults, the solution of the Riemann problem has to be
modified to incorporate frictional boundary conditions.
Once the Riemann problem is solved, numerical fluxes
are used to exchange information between elements.

2. Dynamics of Fault Rupture

[7] Faults are classically described as surfaces (or curves
in two dimensions) of tangential displacement discontinuity
(slip) on which traction and slip are related by friction [e.g.,
Andrews, 1976a, 1976b]. In our description of the rupture
process, the material surrounding the fault is assumed
elastic, so all nonlinearities of the problem are contained
in the fault boundary conditions. We confine the presenta-
tion to the 2-D in-plane case. Following usual conventions,
we call the sides of the fault the positive and negative sides,
and define the fault normal vector pointing from the positive
toward the negative side. The kinematics of the sliding
process can be described by the slip rateDv = vt

+� vt
�, where

where vt is the velocity parallel to the fault, and the slip Dd,
so that Dv = D _d. We denote t and s the absolute shear and
normal stresses on the fault, respectively.
[8] Slip starts when the shear stress on the fault over-

comes a certain threshold, the fault strength. In the Coulomb
friction model adopted here the strength is proportional to
the normal stress. During active slip, the slip rate and the
shear traction have opposite directions. These three phe-
nomena are accounted for in the following expressions:

tj j � mf s;
ð tj j � mf sÞDv ¼ 0;
Dv tj j þ Dvj jt ¼ 0;

ð1Þ

where mf is the friction coefficient, which generally depends
on slip, slip rate and fault state variables. We adopt the
linear slip weakening (LSW) friction law [Ida, 1972;
Palmer and Rice, 1973]

mf ¼
ms �

ms � md

Dc

Dd if Dd < Dc;

md if Dd � Dc:

(
ð2Þ

In this expression ms, md and Dc are all friction parameters,
namely the static friction coefficient, dynamic friction

coefficient and critical slip distance, respectively. This
friction law, although simple, is sufficient to describe the
initial rupture, arrest of sliding and reactivation of slip.
Because of its simplicity, it is commonly used in numerical
modeling of earthquake dynamics and in related validation
problems. Notice that this friction law has discontinuous
derivatives with respect to slip. As a consequence,
numerical methods which achieve high-order accuracy
using smooth polynomial expansions of the variables might
fail to describe with sufficient accuracy those rupture
phenomena described with the aforementioned LSW
friction.

3. The Riemann Problem for Elastodynamics

[9] Considering two-dimensional elasticity for an isotro-
pic medium in velocity-stress formulation and omitting
external sources (e.g., moments or body forces) leads to
the elastic wave equation, a linear hyperbolic system of the
form

@

@t
sxx � lþ 2mð Þ @

@x
u� l

@

@y
v ¼ 0;

@

@t
syy � l

@

@x
u� lþ 2mð Þ @

@y
v ¼ 0;

@

@t
sxy � m

@

@x
vþ @

@y
u

� �
¼ 0;

r
@

@t
u� @

@x
sxx �

@

@y
sxy ¼ 0;

r
@

@t
v� @

@x
sxy �

@

@y
syy ¼ 0;

ð3Þ

where l is the first Lamé constant, m is the shear modulus,
not to be confused with the friction coefficient mf mentioned
earlier, and r is the mass density of the material. The
components of the stress tensor are sxx, syy and sxy. The
components of the particle velocities in x and y direction are
denoted by u and v, respectively.
[10] The elastic wave equation requires continuity of the

involved variables, i.e., particle velocities and stresses.
However, the partial differential equations of (3) can be
solved also at variable discontinuities and material disconti-
nuities. An evolution problem with initial values that are
piecewise constant, discontinuous across an interface, is
called a Riemann problem [Toro, 1999; LeVeque, 2002].
Riemann problems are local, involving only the points
immediately contiguous to the discontinuity interface.
[11] Following LeVeque [2002], we group the stress and

velocity variables into a vector Q = (sxx, syy, sxy, u, v)
T and

write the equations (3) in matrix form as

@Qp

@t
þ Apq

@Qq

@x
þ Bpq

@Qq

@y
¼ 0: ð4Þ

The classical tensor notation is adopted, which implies
summation over repeated indices. The matrices Apq and Bpq

are the space-dependent Jacobian matrices, which are given
explicitly by Käser and Dumbser [2006].
[12] To illustrate the solution of the Riemann problem for

the system (4), we consider an element interface S with a
normal that is aligned with the x axis. The corresponding
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Riemann problem is purely one-dimensional and depends
exclusively on the Jacobian matrix A. We suppose two
discontinuous initial states at both sides of the interface,
Q+ and Q�, and assume that the material properties are the
same on both sides of the interface. The Jacobian matrix A
is diagonalized as

Apq ¼ RpmLmlR
�1
lq ; ð5Þ

where L is a diagonal matrix containing the eigenvalues
{li}i=1,. . .,5 of A and R a matrix containing the corresponding
right eigenvectors of A. The boundary values on the positive
side, Q(S+), are obtained as a linear combination of the right
eigenvectors associated to the positive eigenvalues, l1 and
l2, corresponding to P and S waves traveling from the
negative side to the positive side:

Qp Sþð Þ ¼ Qþp þ
X2
i¼1

aiRpi: ð6Þ

The so-called wave strengths ai are given by

ai ¼ R�1ij Q�j � Qþj

� �
: ð7Þ

Similarly, the boundary values on the negative side, Q(S�),
are obtained from the eigenvectors associated to the
negative eigenvalues, l4 and l5:

Qp S�ð Þ ¼ Q�p �
X5
i¼4

aiRpi: ð8Þ

In the absence of additional forces both expressions (6) and
(8) give the same value, coined the Godunov state:

QG
p ¼ Qp S�ð Þ ¼ Qp Sþð Þ: ð9Þ

The explicit values of all variables in the Godunov state are

2sG
xx ¼ s�xx þ sþxx

� �
þ lþ 2m

cp
u� � uþð Þ;

2sG
yy ¼ l

cp
u� � uþð Þ þ l

lþ 2m
s�xx þ sþxx
� �

þ 2sþyy;

2sG
xy ¼ s�xy þ sþxy

� �
þ m
cs

v� � vþð Þ;

2uG ¼ u� þ uþð Þ þ cp

lþ 2m
s�xx � sþxx
� �

;

2vG ¼ v� þ vþð Þ þ cs

m
s�xy � sþxy
� �

;

ð10Þ

where cp and cs are the P and S wave velocities,
respectively. Equations (10) show that the Godunov state
is the result of applying a bilinear operator to Q+ and Q�, so
we define

QG � kQþ;Q�k : ð11Þ

The computation of the Godunov state makes it possible to
use discontinuous approximations of the unknowns to solve
accurately a physically continuous problem, such as the
linear elastic wave equation. This is in fact the main
ingredient of FV and DG methods. As an example, we can
compute the Godunov state at a boundary for the one-
dimensional boundary of length unity that connects two
triangular cells. Figure 1 shows a polynomial representation
of the shear stress sxy which is continuous inside each of the
triangular domains but discontinuous at the interface.
Assuming also a discontinuous state of the perpendicular
velocity v, we can compute the Godunov state along the
interface by applying the third and fifth equations in (10).
The result is shown in Figure 1, where we have assumed
r = 1, m = 1. The two interface values of the discontinuous
variables produce one single Godunov state which is
pointwise a linear combination of the values at both sides.
As a consequence, the Godunov state is smooth if the values
of the variables at both sides of the interface are smooth as
well.

Figure 1. (a) Two triangle-based polynomial representations of the sxy variable which are discontinuous
at their interface situated at y = 0.5. (b) The Godunov state of variables sxy and v at that same interface.
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[13] In order to impose boundary conditions we must
perturb the boundary variables out of their Godunov state.
Obtaining the perturbed wave strengths in (6) and (8) that
enforce a perturbed boundary variable is referred by Käser
and Dumbser [2006] as solving the inverse Riemann
problem. In our case, in order to impose a perturbed value
of fault traction, ~sxy = sxy

G + dsxy, that satisfies a certain
friction law, we need to apply

Q3 S�ð Þ ¼ Q3 Sþð Þ ¼ ~sxy: ð12Þ

We find that the perturbed values of the wave strengths that
ensure (12) are

a02 ¼ a2 þ
dsxy

m
;

a04 ¼ a4 �
dsxy

m
: ð13Þ

Substituting these values into (6) and (8) leads to

~Q Sþð Þ ¼ QG þ 0; 0; dsxy; 0;
cs

m
dsxy

� �T

;

~Q S�ð Þ ¼ QG þ 0; 0; dsxy; 0;�
cs

m
dsxy

� �T

: ð14Þ

Notice that (12) is fulfilled by (14) by design, but a side
effect of the perturbation is that ~Q5(S

+) 6¼ ~Q5(S
�), hence two

different values for the boundary velocity are obtained:

~vþ ¼ vG þ cs

m
~sxy � sG

xy

� �
;

~v� ¼ vG � cs

m
~sxy � sG

xy

� �
: ð15Þ

Making use of the definitions of the Godunov variables sxy
G

and vG given in (10), we infer

~vþ ¼ vþ þ cs

m
~sxy � sþxy
� �

ð16Þ

and

~v� ¼ v� � cs

m
~sxy � s�xy
� �

: ð17Þ

These expressions are crucial for the understanding of fault
dynamics using fluxes, as they state that a certain imposed
traction value instantly and locally generates an imposed
velocity parallel to the fault. Further, subtracting the
equations in (15), we find the slip rate as

D~v ¼ 2cs

m
~sxy � sG

xy

� �
: ð18Þ

This shows that slip (D~v 6¼ 0) occurs only if ~sxy 6¼ sxy
G .

[14] Expression (18) is clearly different from the Dv =
v+ � v� commonly used in continuous methods such as FD
or FE. Discontinuous methods as FV or DG display in
general discontinuities between stresses and velocities at

any interface, but this does not represent a discontinuity of
the physical variables themselves, which are uniquely
determined by the Godunov state. The classical slip rate
definition Dv = v+ � v� is recovered if sxy

+ = sxy
� = ~sxy; that

is, prescribing the traction states at both sides and at the
interface to be identical. Only in this context do the classic
and the discontinuous expressions for the slip rate fully
agree.
[15] The rest of Godunov’s variables, normal velocity and

bulk stresses, can be all computed using (10) as they are
independent of ~sxy, thus resulting in a physically continuous
problem, although still with a discontinuous mathematical
representation.

4. The Numerical Method

[16] In the ADER-DG approach a two-dimensional com-
putational domain W is divided into conforming triangular
elements T (m) addressed by a unique index (m). The
numerical solution of equation (4) is approximated inside
each element T (m) by a linear combination of space-
dependent polynomial basis functions Fl(x) of degree N,
where x = (x, h) are the coordinates in a canonical reference
element T E [Käser and Dumbser, 2006], and time-dependent
degrees of freedom Q̂pl

(m)(t)

Q mð Þ
p x; tð Þ ¼ Q̂

mð Þ
pl tð ÞFl xð Þ: ð19Þ

The index p is associated with the unknowns in the vector Q.
The index l indicates the lth basis function and ranges from
0 to L � 1, where L = (N + 1)(N + 2)/2 is the number of
required basis functions in two dimensions for a polynomial
degree N, leading to a numerical approximation of order
O = N + 1.
[17] Let us assume that the state of the variables Qp is

known at a certain time level t. Then, multiplying (4) by a
test function Fk and integrating over an element T (m) and
over a time interval of size Dt gives

ZtþDt

t

Z
T mð Þ

Fk

@Qp

@t
dVdt

þ
ZtþDt

t

Z
T mð Þ

Fk Apq

@Qq

@x
þ Bpq

@Qq

@y

� �
dVdt ¼ 0: ð20Þ

Integration of equation (20) by parts yields

ZtþDt

t

Z
T mð Þ

Fk

@Qp

@t
dVdt þ

X3
j¼1
F j

pk

�
ZtþDt

t

Z
T mð Þ

@Fk

@x
Apq þ

@Fk

@y
Bpq

� �
QqdVdt ¼ 0: ð21Þ

Equation (21) can then be used to obtain the values of Qp at
the following time level t + Dt, as explained in the
introductory papers by Käser and Dumbser [2006] and
Dumbser and Käser [2006]. In these seminal studies the
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integration of the first and third terms in (21) are fully
detailed. The second term is the sum of numerical fluxes
F pk

j across the three edges, j = 1, 2, 3, of the triangular
element, accounting for the possible discontinuity of Q.
Although its resolution for interfaces with no faults is
described in the aforementioned papers, for the case of faults
we require a different strategy, explained in section 4.1.

4.1. Fluxes at Faults

[18] We consider for simplicity a single edge of a trian-
gular element with its normal aligned with the x axis and
drop the j indices. The flux term in (21) can be expressed as

F pk ¼ Apr

Z tþDt

t

Z
S

Fk
~QrdSdt: ð22Þ

The integral covers the whole edge S and a time interval of
size Dt. For standard interfaces without faults we have ~Q =
QG = kQ+, Q�k, where QG is the Godunov state created
from the variable states Q+ and Q� at both sides of the fault.
When faults are present, however, some of the values of ~Q
must be imposed using, for example, the expressions
derived in section 3 for LSW friction. In this particular
case, for Q1 = sxx, Q2 = syy and Q4 = u, expression (22) is
exactly the same as that described in the flux formulation of
Käser and Dumbser [2006]. In contrast, for Q3 = sxy and
Q5 = v a different approach must be followed.
[19] A suitable temporal expansion of the variables at

both sides is obtained via a Taylor expansion near the time
instant t. At time t + t, with t � Dt, the expansion reads

Qp x; t þ tð Þ ¼
XN
k¼0

tk

k!

@kQq x; tð Þ
@tk

: ð23Þ

The high-order time derivatives in (23) are substituted by
spatial derivatives using the expression (4) in an iterative
way

@kQp x; tð Þ
@tk

¼ �1ð Þk Apq

@

@x
þ Bpq

@

@y

� �k

Qq x; tð Þ: ð24Þ

This yields

Qp x; t þ tð Þ ¼
XN
k¼0

tk

k!
�1ð Þk Apq

@

@x
þ Bpq

@

@y

� �k

Qq x; tð Þ: ð25Þ

The expansion (25) is performed separately for the unknown
states Q+(x, t) and Q�(x, t) and then linearly combined
according to (10) to obtain the temporal polynomial expan-
sion of the Godunov state QG(x, t) = kQ+(x, t), Q�(x, t)k.
[20] In preparation for the numerical integration of the

flux (22), we evaluate QG(x, t) at a set of space-time
Gaussian integration points along the triangle’s edge at
space locations xi = (xi, hi), with i = 1, . . ., 2N + 1, and
along the time axis at time levels tl 2 [t, t + Dt], with l = 1,
. . ., N + 1. We write

QG
p;il ¼ QG

p xi; tlð Þ ¼ Q̂
G

ps tlð ÞFs xið Þ: ð26Þ

Notice that we are using more integration points than are
sufficient for exact Gauss integration given the polynomial
degree of the integrand in (22). Such large number of
integration points can allow future, more general formula-
tions where, for example, the material properties are
variable inside one element.
[21] We solve for the fault physics locally, at each space-

time integration point, in three steps. First, we evaluate the
failure criterion (1) so that

~sxy;il ¼ min sG
xy;il;mf ;il sG

xx;il þ s0
xx

� �
� s0

xy

n o
; ð27Þ

where mf,il is the local value of the dynamic friction
coefficient and sxx

0 and sxy
0 are the initial normal and shear

stress values, respectively. Once we have solved (27) for the
point (xi, tl) we can compute the slip rate using (18) locally
such that

D~vil ¼
2cs

m
~sxy;il � sG

xy;il

� �
: ð28Þ

The slip D~dil is obtained by integrating (28). Finally, we
apply the LSW friction law (2) to obtain the time-updated
value of mf,il+1 as

mf ;ilþ1 ¼ max md ;ms �
ms � md

Dc

D~dil

� 	
: ð29Þ

Equations (27), (28), and (29) are solved for each space-
time integration point while ensuring causality by updating
the time levels in a sequential way, i.e., from l = 1 to l =
N + 1.
[22] The values of the velocities at each side of the fault

can be retrieved from (16) and (17) as

~vþil ¼ vþil þ
cs

m
~sxy;il � sþxy;il
� �

;

~v�il ¼ v�il �
cs

m
~sxy;il � s�xy;il
� �

:
ð30Þ

Using the shear stress from (27) and the velocities from
(27), all values of ~Q at the interface are then known and the
flux (22) can be integrated numerically as

F pk ¼ Apr

X2Nþ1
i¼1

XNþ1
l¼1

wS
i w

T
l Fk xið Þ~Qr;il : ð31Þ

where wi
S and wl

T are the weights of the spatial and temporal
Gaussian integration, respectively. The appropriate value of
the fault-parallel velocity, ~v+ or ~v� from equation (27), is
employed depending on which side of the fault the element
under consideration lies on.
[23] Although so far we have considered an edge that has

its normal vector aligned with the x axis, we can generalize
(31) to an arbitrary orientation of the normal vector n as

F pk ¼ TpqAqr

X2Nþ1
i¼1

XNþ1
l¼1

wS
i w

T
l Fk xið Þ~qr;il; ð32Þ
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where T is a rotation matrix, given explicitly by Käser and
Dumbser [2006] and Dumbser and Käser [2006], and ~q are
the variables transformed to the local edge coordinate
system from the global xy-aligned one by

~qp ¼ T�1pq
~Qq: ð33Þ

The fault equations (27) to (27) are readily applied to ~q.

4.2. Stability Criterion

[24] In order to guarantee the numerical stability of our
explicit time advancement scheme, we constrain the size of
the time step following the Courant-Friedrichs-Lewy (CFL)
criterion of Courant et al. [1928], thus having

Dt � C

2N þ 1
min

2rin

cp

� �
; ð34Þ

where C is an empirically determined constant (in the
following we will use C = 0.5) and rin is the radius of the in
circle of the triangle. The minimum is taken among all
elements in the domain. Note that this is the same stability
criterion as that used for the ADER-DG method in the
absence of faults.

5. Self-Similar Crack Validation Problem

[25] We test the performance of the ADER-DG scheme
for the case of a self-similar crack. In this case the traction at
the fault is imposed beforehand as a function of space and
time, similarly to the case proposed by Kostrov [1964]. This
problem and variations of it have been used in previous
works on dynamic rupture modeling [e.g., Andrews, 1985;
Cruz-Atienza and Virieux, 2004; Rojas et al., 2008;
Benjemaa et al., 2007]. We remark that the problem is not
really reproducing the dynamic behavior of a fault because
the traction is imposed externally. However, in our case it is
advantageous because it allows us to validate the relation
between traction and slip rate (18) without having to solve
any friction laws or failure criteria, which would add further
errors in the final solutions. Furthermore it is easy to model
it with the spectral boundary integral equation (SBIE)
method in its BIMAT implementation [Cochard and Rice,
2000; Rubin and Ampuero, 2007]. The acknowledged
accuracy of this last method makes it usable as a reference

solution for our purposes. In our case, the friction coeffi-
cient follows the expression

mf x; tð Þ ¼ max md ;ms � ms � mdð Þ Vt � xj jð Þ=Lf g; ð35Þ

where we choose to take the values L = 250 m, V = 2000 m/s,
ms = 0.5 and md = 0.25. The value of mf is depicted in
Figure 2. The problem is further characterized by an initial
normal stress of 40.0 MPa and shear stress of 20.0 MPa. We
represent a straight fault 20 km long centered at the
coordinates origin and surrounded by a homogeneous
material with density r = 2500 kg/m3, P wave velocity cp =
4000 m/s and S wave velocity cs = cp/

ffiffiffi
3
p

, so the same
material properties as those used by Benjemaa et al. [2007].
The simulation is performed on a rectangular domain of
40 km per 20 km, meshed with elements of 100 m edge
length at the fault itself, as shown in Figure 2. The mesh is
then smoothly coarsened toward the boundaries of the
domain, thus having elements of a maximum of 1000 m
edge length. In total the mesh contains 11850 elements. As a
comparison, a regular triangular mesh containing equilateral
triangles with resolution of 100 m everywhere would
contain 13 times more elements. Figure 3 shows the
solution obtained with a sixth-order ADER-DG scheme
(ADER-DG O6) recorded at five different receivers,
separated 2000 m from each other, and compared to the
reference solution. No large differences between the
numerical and the reference solutions can be observed in
the slip, slip rate or traction. Furthermore, we have plotted
the root-mean-square (RMS) of the time histories of slip rate
for the same receivers for the whole 5 s of simulation
obtained with schemes O3 to O6. For distances 2000 m to
8000 m the high-order schemes produce both smaller errors
and a slower decrease of accuracy at longer distances. At
2000 m, the schemes O4 to O6 produce roughly identical
results. At longer distances the usage of the highest orders
produces more precise results. It is worth noticing that no
significant effects from the artificial absorbing boundaries
or spurious oscillations are observed. We remark that no
artificial damping has been used in any of the simulations.

6. Spontaneous Rupture Validation Problem

[26] We test the performance of the ADER-DG method
on a 2-D version of the benchmark problem for spontaneous

Figure 2. (left) Assumed friction along the fault in the self-similar crack case. The low-friction patch
expands at constant velocity V. (right) Mesh used for this case. The red line depicts the fault and the
triangles receiver locations.
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rupture propagation of the Southern California Earthquake
Center (SCEC). The original 3-D SCEC test (Version 3) is
detailed by Harris et al. [2004]. The 2-D analog of this
benchmark problem, considered here, was presented by
Rojas et al. [2008] and used in further publications in order
to asses the accuracy of numerical methods [e.g., Kaneko et
al., 2008]. The setup is a straight fault, represented by a 2-D
line, embedded in a homogeneous elastic body. The fault is
30 km long, and the medium has a density of r = 2670 kg/m3,
P wave velocity cp = 6000 m/s, and S wave velocity cs =
3464 m/s. A nucleation zone of 3 km is defined at the center
of the fault. The fault is governed by a LSW friction law
with the parameters given in Table 1.
[27] The problem has been tested in eight different

meshes, comprising computational domains of size 72 �
72 km, with edge lengths h ranging from 100 m to 1500 m.
All meshes are completely unstructured, with regular mesh
spacing forced along the fault plane. The mesh is gradually
coarsened toward the external boundaries, up to an edge
spacing 10 times larger than that at the fault. We have
employed different orders, from O2 to O6. The equivalent

mesh spacing, accounting for the polynomial subcell reso-
lution, is Dx = h/(N + 1).

6.1. Comparison to Other Methods

[28] We first study the similarities between existing
numerical methods and the ADER-DG method developed
here. We solved the 2-D analog of the SCEC test problem
with the following methods: (1) the ADER-DG O6 method
using an edge length h = 150 m, which leads to an
equivalent mesh spacing of Dx = 25 m, (2) the spectral
boundary integral equation (SBIE) method of Geubelle and

Table 1. Parameters Describing the Fault for the SCEC Test Case

Parameter
Nucleation

Zone
Outside

Nucleation Zone

Initial shear traction (MPa) 81.6 70.0
Initial normal traction (MPa) 120.0 120.0
Static friction coefficient 0.677 0.677
Dynamic friction coefficient 0.525 0.525
Critical slip distance (m) 0.4 0.4

Figure 3. Results of the self-similar crack test obtained with the ADER-DG O6 method (blue) and the
SBIE method (red). (a) Slip, (b) slip rate, and (c) traction errors are measured on the fault at five points
with hypocentral distance 0, 2, 4, 6 and 8 km. (d) RMS difference of the slip rate time histories as a
function of hypocentral distance for orders O3 to O6.
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Rice [1995] in the multidimensional spectral boundary
integral (MDSBI) implementation (E. Dunham, MDSBI:
Multidimensional spectral boundary integral, version 3.9.10,
2008, available at http://pangea.stanford.edu/�edunham/
codes/codes.html) and a node spacing of Dx = 12.5 m,
(3) the traction-at-split-node (TSN) FD method described
by Andrews [1973], (4) the staggered-grid split node
(SGSN) FD method developed by Dalguer and Day
[2007], in particular, the 2-D second-order implementation
of Brietzke et al. [2009]. Both FD methods use similar
representations of the fault zone and a node spacing ofDx =
12.5 m with no artificial damping, (5) the spectral element
(SE) method (J.-P. Ampuero, SEM2DPACK: A spectral
element method for 2-D wave propagation and earthquake
source dynamics, version 2.3.3, 2008, available at http://
sourceforge.net/projects/sem2d/), with a much finer resolu-
tion Dx = 6.25 m and with no artificial damping, and (6) the
same SE method but with Kelvin-Voigt damping (SE-KV)
as described by Day and Ely [2002], restricted here to a
two-element wide layer around the fault, with artificial
viscosity g = 0.1Dt.
[29] Figure 4 shows slip rate and shear stress for all

methods on the fault point located at x = 12.5 km. All
computed solutions agree in their main features. A first
issue apparent from the slip rate plots in Figures 4a and 4b
is that both FD and SE undamped simulations produce high-
frequency oscillations of amplitudes around 3% of the peak
slip rate value. These oscillations are strongly reduced by
adding artificial damping terms to the governing equations,
as illustrated in Figure 4c by the SE-KV simulation,
although the oscillations do not vanish completely with
our choice of g. Increasing further the artificial viscosity can
eliminate the oscillations but has also negative side effects
such as a decrease in the peak slip rate and a delay in the
rupture times [see, e.g., Dalguer and Day, 2007]. The
ADER-DG solutions are remarkably smooth, similar to
SBIE solutions, despite containing no additional damping.
In fact, the ADER-DG and the SBIE solutions in Figures 4b
and 4e are virtually identical, except for a small oscillation
of frequency around 30 Hz.
[30] To further explore the frequency dependence of all

solutions, we plot in Figure 5 the slip rate spectra, evaluated
over a Gaussian-tapered time window containing the rup-
ture front but not the healing fronts, thus avoiding further
high-frequency contributions not coming from the rupture
front itself. Good agreement between all methods is
obtained at low and intermediate frequencies, up to 20 or
30 Hz. Moreover, the spectral decay exponents are consis-
tent with theoretical expectations. Recall that if slip rate
behaves as ta, where t is time after the rupture front, then its
spectrum behaves as f �1�a. At low frequencies (below
10 Hz in this example) slip rate spectra decay as f �1/2,
consistent with the 1/

ffiffi
t
p

behavior of singular crack models.
At intermediate frequencies (above 10 Hz in this example)
the f �3/2 decay is consistent with the

ffiffi
t
p

onset predicted
analytically for slip-weakening crack models under the
assumption of a steady state process zone [Ida, 1973]. At
very high frequencies the FD and SE methods develop
numerical artifacts due to the dispersion relation of the
discrete lattice. Artificial damping reduces significantly the
amplitude of these artifacts. Comparing the undamped and
damped SE simulations reveals that numerical artifacts

(spectral peaks) are excited beyond 100 Hz in this example.
In contrast, the ADER-DG results have a smooth spectral
decay without sign of spuriously amplified modes.

6.2. Convergence of the ADER-DG Method

[31] Since analytical solutions do not exist for the spon-
taneous rupture problem, one cannot determine with abso-
lute certainty which numerical solutions solve the proposed
test better. We measure the error of the ADER-DG method
by the RMS difference of rupture time, peak slip rate and
final slip between our finest grid solution (O6, 100 m edge
length) and the solutions for coarser grids. This particular
error norm choice will further allow us to compare the
accuracy of our method with other numerical solutions. For
a justification of the usage of fine-grid solutions for con-
vergence analysis we refer the reader to the appendix of
Goto and Bielak [2008]. The RMS are evaluated on fault
points spaced every 62.5 m from the nucleation point, and
are expressed as a percentage of the RMS value along the
whole fault obtained with our finest solution. The RMS
values for the rupture time, peak slip rate and final slip are
2.92 s, 6.78 m/s and 5.90 m, respectively. Receivers located
at vertices of triangles are ignored, as they show unrepre-
sentative errors due to the undefined Riemann problem
solution at points that are common to more than two
elements. The amount of points involved in the RMS
computation range from 144 to 207. The difference in
rupture time is measured as the first time sample at which
the slip rate exceeds the value of 1 mm/s. The peak slip rate
value has been obtained by finding the maximum of an
interpolating cubic polynomial around the maximum of the
slip rate time histories.
[32] The results of the simulations are compiled in Table 2

and plotted in Figure 6. We observe that lower-order
schemes can only achieve equivalent errors as higher-order
schemes when using a smaller equivalent mesh spacing.
Similarly, a better accuracy is obtained for higher-order
schemes for the same equivalent node spacing. From Figure
6a it is clear that, when reaching rupture time difference
values close to Dt, the accuracy of all solutions collapse to
values on the order of the transit time of the rupture front
across a nodal spacing Dx, which is proportional to Dt, as
has been previously observed for other numerical methods
[Day et al., 2005; Dalguer and Day, 2007]. Considering
only simulations with RMS above this / Dt asymptote, the
rupture time differences as a function of average grid size
Dx behave as a power law with convergence exponents (the
slopes of the log-log convergence plots) ranging from 1.54
to 2.26, as shown in Table 3. On the other hand, taking only
those points obtained with O6 simulations which lie at Dt
accuracy we obtain a slope of 1.15, similar to the theoretical
power law exponent 1 followed by the time step, as in
general the time step (34) is linearly proportional to the
minimum mesh spacing. For all cases the scattering around
the least squares values is noticeable, due to the use of
completely unstructured meshes.
[33] An indicator of the resolution required to model the

rupture process with sufficient accuracy is the number of
points per median cohesive zone size, Nc = L/Dx. The value
of the median cohesive zone size L = 258 m was obtained
by Rojas et al. [2008] for the 2-D analog of the SCEC test.
Figure 6a shows that ADER-DG O6 yields RMS errors in
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rupture times below 0.3% with Nc � 1.5, corresponding to a
mesh spacing h � 1000 m. This performance is superior to
that of the mimetic operator split node (MOSN) scheme and
the DFM studied by Rojas et al. [2008], which achieved
0.3% RMS rupture time error at Nc � 3.2 and Nc � 4.3,
respectively. We note though that these convergence studies

must be compared with caution because their respective
error norms are based on different reference solutions.
[34] The computational time was measured in all simu-

lations, performed on a single Pentium 4 2.8 GHz processor.
Figure 6b shows cost efficiency curves for the ADER-DG
method of different orders, defined as the computational

Figure 4. (a) Slip rate and (d) traction recorded at a receiver situated at x = 12.5 km. One SE, two FD,
and a SBIE implementations are compared to the ADER-DG solution. Zoom of (b) the slip rate and
(e) traction for SBIE close to the rupture front. (c) Slip rate and (f) traction compared to the SE method
solution with and without Kelvin-Voigt damping.
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time required to achieve a given accuracy. The schemes of
orders O4 to O6 have a similar efficiency which is superior
to orders O2 and O3, for coarser meshes. After the Dt limit
is reached, the trade-off rate drops to a smaller value.
[35] The final slip error, shown in Figure 6c, has a

behavior similar to the rupture time error, although with
smaller convergence exponents ranging from 0.87 to 1.27,
as shown in Table 3. The RMS slip error is however not
representative of the whole fault: the maximum slip misfits
accumulate on elements containing the fault tips. The
fraction of the total RMS accumulated on fault tip elements
is higher than 60% in all but three simulations of order
higher than O2, averaging a value of 70.8% through all
simulations performed. These errors most likely reflect
problems capturing sudden, and probably unrealistic, rup-
ture stopping conditions and can be reduced by smoother
transitions to larger strength excess or larger fracture energy.
These errors do not visibly propagate across the fault, as the
stopping phases are accurately captured in our slip rate time
histories elsewhere (see, e.g., Figure 4a). The errors in slip
ignoring the fault tip elements are around two thirds of the
values shown in Figure 6c.
[36] The peak slip rate differences are plotted in Figure 6d.

For the coarser Dx values, the order of the ADER-DG
scheme has little impact on the peak slip error. However,
for resolutions finer than Dx = 100 m the different
convergence exponents produce significant differences in

the RMS obtained with different schemes for the same
spatial sampling.

7. Mesh Coarsening and Absorbing Boundaries

[37] Throughout sections 4 and 5 we have used meshes
with high ratios of coarsening toward the exterior domain
boundaries. No strong reflecting phase appears to affect our
results on the fault. However we wish to explore the effect
of the coarsening on the propagating waves generated by
the fault rupture.
[38] We record the fault-parallel velocity, u, at 35

receivers located at coordinates (0, i) km with i = 1, . . ., 35.
We perform two new simulations with an O4 scheme, using
a mesh spacing at the fault of h = 375 m, which corresponds
to Dx = 93.75 m. The first simulation is performed in the
coarsened mesh used in section 6, with 5862 elements of
size up to h = 3750 m. The second simulation uses a
uniform mesh with constant element size h = 375 m, with
83,220 elements, roughly 14 times more elements than in
the coarsened mesh.

Figure 5. Spectra of the a window of slip rate at x =
12.5 km tapered near the rupture front for the SCEC test
problem solved with several methods. Dashed lines indicate
theoretical expectations, f �1/2 at frequencies lower than
10 Hz and f �3/2 at higher frequencies. The SBIE line has
the correct offset, whereas all others have been shifted by a
factor 10 in amplitude.

Table 2. Results of the Simulations Realized for the SCEC Test

h (m) O
Dx
(m)

RMS Rupture
Time (%)

RMS Final
Slip (%)

RMS Peak
Slip Rate (%)

CPU
(s)

1500 4 375 2.20 � 100 2.85 � 100 4.11 � 101 68
5 300 1.16 � 100 1.88 � 100 3.52 � 101 122
6 250 5.97 � 10�1 1.30 � 100 3.00 � 101 216

750 2 375 4.81 � 100 7.95 � 100 5.06 � 101 74
3 250 2.11 � 100 2.15 � 100 3.82 � 101 133
4 187.5 6.09 � 10�1 1.23 � 100 2.74 � 101 286
5 150 2.30 � 10�1 7.74 � 10�1 2.10 � 101 589
6 125 1.25 � 10�1 5.25 � 10�1 1.51 � 101 1,051

500 2 250 2.04 � 100 6.12 � 100 4.56 � 101 129
3 166.6 6.14 � 10�1 1.52 � 100 3.06 � 101 272
4 125 1.86 � 10�1 8.73 � 10�1 1.98 � 101 535
5 100 1.03 � 10�1 5.48 � 10�1 1.29 � 101 1,080
6 83.3 8.46 � 10�2 3.70 � 10�1 7.55 � 100 2,082

375 2 187.5 1.39 � 100 4.42 � 100 4.12 � 101 388
3 125 3.63 � 10�1 1.15 � 100 2.35 � 101 805
4 93.7 1.11 � 10�1 6.40 � 10�1 1.25 � 101 1,561
5 75 8.10 � 10�2 3.91 � 10�1 6.99 � 100 3,056
6 62.5 5.88 � 10�2 2.52 � 10�1 3.75 � 100 6,021

300 2 150 1.24 � 100 3.62 � 100 3.58 � 101 538
3 100 2.49 � 10�1 8.39 � 10�1 1.90 � 101 1,298
4 75 8.60 � 10�2 4.78 � 10�1 9.41 � 100 2,685
5 60 6.11 � 10�2 2.89 � 10�1 4.45 � 100 5,669
6 50 4.47 � 10�2 1.72 � 10�1 2.65 � 100 11,822

250 2 125 7.83 � 10�1 2.59 � 100 3.38 � 101 821
3 83.3 1.41 � 10�1 7.87 � 10�1 1.68 � 101 1,851
4 62.5 6.27 � 10�2 4.18 � 10�1 6.80 � 100 4,116
5 50 6.51 � 10�2 2.33 � 10�1 3.24 � 100 8,432
6 41.7 3.87 � 10�2 1.89 � 10�1 2.33 � 100 17,296

187.5 2 93.5 6.57 � 10�1 1.96 � 100 2.57 � 101 1,287
3 62.3 1.40 � 10�1 5.89 � 10�1 9.20 � 100 3,072
4 46.7 8.12 � 10�2 2.82 � 10�1 3.72 � 100 6,638
5 37.4 5.48 � 10�2 1.79 � 10�1 3.62 � 100 14,078
6 31.7 3.66 � 10�2 1.41 � 10�1 2.21 � 100 28,110

150 2 75 3.84 � 10�1 1.97 � 100 2.30 � 101 1,948
3 50 7.89 � 10�2 5.05 � 10�1 8.31 � 100 4,067
4 37.5 3.96 � 10�2 3.15 � 10�1 2.68 � 100 8,249
5 30 2.79 � 10�2 9.23 � 10�2 2.23 � 100 16,604
6 25 1.70 � 10�2 6.32 � 10�2 1.33 � 100 33,110

100 2 50 1.75 � 10�1 1.58 � 100 1.67 � 101 4,598
3 33.3 3.79 � 10�2 2.79 � 10�1 3.98 � 100 9,596
4 25 1.81 � 10�2 1.27 � 10�1 1.98 � 100 19,578
5 20 7.07 � 10�3 5.54 � 10�2 5.50 � 10�1 39,593
6 16.7 0 0 0 80,000
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[39] The results obtained with both meshes, plotted in
Figure 7, show two clear behaviors. First, no main reflection
phase is observed in any of the seismograms. This is to be
expected because, on the receiver line, the main reflected
energy has normal incidence to our absorbing boundaries
(see Käser and Dumbser [2006] for details on the absorbing
boundary condition) which have a much better performance
for this case than for incidence at grazing angles. In
addition, we observe that the seismograms lose high-
frequency content as we move away from the fault toward
larger elements.
[40] To quantify the latter effect, we study some receivers

situated at elements of known size and analyze their
velocity amplitude spectra (Figure 8). The low frequencies
are identical for both meshes. The high frequencies begin to
differ from a certain corner frequency which becomes lower
as the size of the elements increases. This frequency is

found to be approximately fm = 0.69cs/h Hz in the present
case. Figure 8 shows seismograms obtained with the coars-
ened mesh, unfiltered, and seismograms obtained with the
uniform mesh, low-pass filtered with corner frequencies
fm
h=500 = 5 Hz, fm

h=1000 = 2.5 Hz and fm
h=1300 = 1.9 Hz.

The minimum wavelength resolvable with our scheme is
lmin = 1.45h, so that we can resolve wavelengths down
to approximately 1.45 times the size of our elements.

Figure 6. Convergence results for the 2-D analog SCEC test. Dots are simulation results. Colored thick
lines of different steep slopes show least squares fits of these dots obtained by different orders of
accuracy. To this end, we used only dots which have not reached the Dt uncertainty levels, whereas the
thick black line has been obtained by fitting the remaining points. The thin lines of smaller slope
represent the uncertainty levels determined by the Dt values. Misfits are shown for (a) rupture time,
(c) final slip, and (d) peak slip rate. (c) The convergence of the rupture time misfit as a function of its
computational cost.

Table 3. Error Convergence Exponents for Schemes of Different

Order

Error Metric O2 O3 O4 O5 O6
Rupture time 1.54 1.88 2.04 2.19 2.26
Final slip 0.87 0.98 1.07 1.27 1.19
Peak slip rate 0.56 1.13 1.23 1.45 1.40
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For a more thorough study on numerical accuracy of the
ADER-DG scheme related to mesh size and propagated
wavelengths, see Käser et al. [2008].

8. Dynamic Rupture on a Branched Fault System

[41] To show the potential of unstructured triangular
meshes to represent complex fault systems, we simulate
an earthquake occurring on the fault system that ruptured
during the 28 June 1992 Landers earthquake (Mw = 7.3).
This earthquake has been previously studied through 3-D
dynamic rupture modeling using the boundary integral
equation (BIE) method [Aochi and Fukuyama, 2002; Aochi
et al., 2002]. The fault system consists of six subfaults. The
hypocenter is situated on its southernmost segment, the
Johnson Valley fault, at a point which is the coordinate
origin of our model.
[42] We assume a homogeneous initial stress field with

principal stresses s1 = 300 MPa and s3 = 100 MPa and
principal direction N22�E. This creates a heterogeneous
stress state along the fault due to the orientation of
the strike relative to the principal stresses. The fault has
the homogeneous frictional parameters given in Table 4. The
nucleation is forced by imposing a lower principal stress
value of s3 = 70 MPa over a radius of 1.5 km around the
hypocenter. The fault is allowed to rupture spontaneously
for 10 s.
[43] We have used a circular domain of 120 km radius,

using a mesh spacing of h = 600 m at the fault and
coarsened up to h = 6 km for a total of 9605 elements.
The mesh details can be seen in Figure 9. The simulation
has been performed using an ADER-DG O5 scheme,
reaching the desired simulation time in 2.3 h in a single
Pentium 4 2.8 GHz processor.
[44] Figure 10 shows snapshots of particle velocity

generated by the earthquake. The rupture initially propa-

gates bilaterally (Figure 10a). After approximately 2 s the
northern rupture front faces the choice of following the
Johnson Valley fault or breaking the eastern Kickapoo fault
(Figure 10b). This second option seems to be favored as the
energy concentrates on the eastern side of the Kickapoo
fault. Later on the rupture propagates all along the Kickapoo
fault and extends to the Homestead Valley fault. The rupture
reaches a relatively sudden end at a kink situated approx-
imately at (�2, 17) km and radiates a circular wavefront
(Figure 10c). After 6 s most of the rupture has already
stopped (Figure 10d).
[45] Aochi et al. [2002] showed that using a homoge-

neous initial stress the Kickapoo fault does not break, and
rupture is confined to the Johnson Valley fault. In order to
successfully reproduce the rupture pattern of the Landers
earthquake, the authors used heterogeneous initial stress
fields. In our 2-D simulation, in order to keep the setup as
simple as possible, we kept the initial stress field homoge-
neous. However, this requires a large nucleation strength
excess to break the Kickapoo and Homestead Valley faults,
and produces unrealistically large slip at the Johnson Valley
fault, of up to 12.3 m. Moreover, the northern branch of the
Johnson Valley fault breaks with slip values of around 4 m,
compared to the up to 6 m of slip recorded at the Kickapoo
fault, and certain locations of the northernmost segments
also break eventually with final slip values of up to 1 m in
very small patches. These differences between our 2-D
results and previous 3-D results are expected, and the only
purpose of this exercise is to illustrate the potential of our
new method.

9. Discussion

[46] The convergence test quantifies the accuracy of the
ADER-DG method for the 2-D analog of the SCEC
benchmark problem. To put these results in context, we
compare them to the performance of the following four
methods for the same problem: an FV method developed by
Benjemaa et al. [2007], the SE method described by Kaneko
et al. [2008], and two FD implementations (MOSN and
DFM) presented by Rojas et al. [2008]. For the first two
methods there is published information only on rupture time
errors, whereas for the other two there is also information on
peak slip rate and final slip errors. For each method, the
reported errors are relative to the highest resolution simu-
lation computed with that given method. Two attributes are
summarized in Table 5: the convergence order before Dt
saturation and the error obtained with average grid spacing
Dx = 100 m.
[47] The second attribute has some bias due to the use of

different reference solutions for each method. Whereas
Rojas et al. [2008] noted that convergence rates and misfit
at Dx = 100 m for the original 3-D version of the SCEC
problem are systematically better than for the 2-D version,
we expect the overall differences in accuracy between
methods to be independent of the dimensionality of the
problem.
[48] In terms of rupture time, ADER-DG O6 compares

favorably to all other 2-D methods studied. In terms of final
slip DFM has better convergence rate than both ADER-DG
and MOSN, but ADER-DG has lower error at Dx = 100 m.
For peak slip rates the situation reverts: ADER-DG shows a

Figure 7. Fault-parallel velocity seismograms registered
with 1 km spacing from the hypocenter, along the x = 0 axis,
obtained with (black) a homogeneous mesh and (red) a
graded mesh with a factor 10 coarsening toward the domain
boundaries.
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better convergence rate whereas both MOSN and DFM are
more accurate at Dx = 100 m. Overall, ADER-DG yields
results of similar or better accuracy than other existing
methods for the 2-D analog of the SCEC test.

[49] The most remarkable outcome of the code compar-
ison exercise in section 6.1 is the relative smoothness of
the ADER-DG solution, which is free of spurious high-
frequency oscillations. One possible reason for this feature

Figure 8. (left) Amplitude spectra for the uniform (black) and the coarsened mesh (red), for receivers
situated at 2, 10, and 13 km, respectively. For the coarse mesh this corresponds to element sizes of 500,
750, and 1300 m, respectively. (right) Seismograms obtained with the coarsened mesh (red) and uniform
mesh (black), low-passed filtered below 5, 2.5, and 1.9 Hz, respectively.
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is that ADER-DG captures the analytical form of the fault
stress response at very high frequencies. In fact, (18) can be
rewritten as

~sxy ¼
m
2cs

D~vþ sG
xy: ð36Þ

This is analogous to the analytical formulation of the
problem as a boundary integral equation problem, the basis
of the BI method [e.g., Cochard and Madariaga, 1994], in
which the fault tractions are expressed as the sum of a
radiation damping term (mDv/2cs) and tractions induced by
the previous slip history. The radiation damping term is the
instantaneous (high frequency) response of the fault stress
to slip rate fluctuations. In contrast, FD, FE and SE methods
implemented with the natural TSN approach lead to a
discrete equation of the form

sxy ¼ MDaþ st
xy: ð37Þ

where M is an effective mass, Da is slip acceleration and
sxy
t is a trial stress evaluated from previous values under the

assumption of no further slip [see, e.g., Andrews, 1999,
equation 3]. We refer here to a primordial relation between
traction and slip that depends on the spatial discretization but
not on the time discretization scheme. At high frequencies the
fault stress fluctuations in both equations (36) and (37) are
dominated by the first term of their right hand side, the second
term fluctuates more slowly. In FD, FE and SE the second-
order, inertial term of equation (37) naturally leads to
oscillatory behavior, whereas in ADER-DG and BI the first-
order nature of this term in equation (36) leads to the expected
radiation-damped behavior.
[50] The practical implication of the absence of amplifi-

cation of spurious modes is that ADER-DG simulations do
not require artificial handling of high frequencies, such as
artificial viscous damping or postprocessing filtering. Spu-
rious oscillations pose no serious problem for linear sys-
tems, as they can be eliminated by low-pass filtering in a
postprocessing stage without compromising the low fre-
quencies. However, for strongly nonlinear problems the
spurious oscillations can lead to instabilities or inaccurate
results, and are typically damped by artificial viscous terms,
like the Kelvin-Voigt mechanism described by Day and Ely
[2002]. Artificial viscosity introduces additional dissipation
that can affect the solution; for instance, it tends to reduce
the rupture speed. Not requiring artificial viscosity in
ADER-DG clearly poses a benefit in terms of not introduc-
ing accuracy losses due to additional dissipation. Moreover,
a proper control on numerical dissipation is particularly
important in ill-posed dynamic rupture problems that re-
quire regularization, for instance, in some bimaterial rupture

problems [e.g., Cochard and Rice, 2000]. As the non-
linearities in dynamic rupture problems are strictly related
to the choice of the friction law, one might expect insta-
bilities to show up more strongly for certain laws. In LSW
simulations the oscillations do not lead to propagating
instabilities, but a stronger feedback would be expected
with velocity-dependent friction laws. Fortunately, usual
regularizations of velocity-weakening friction by a state
variable reduce the order of the rupture front singularity
and the amplitude of the associated spurious oscillations,
which in practice yields accurate results without artificial
damping [Kaneko et al., 2008].
[51] Some aspects of the current formulation of the

ADER-DG method for dynamic rupture can be further
improved. The first and perhaps more obvious is the
linearization approximation assumed when adopting expres-
sion (25). Basically, for the time sub levels between two
time steps we use predictions of the elastic unknowns
obtained with continuous elastic theory, i.e., without faults,
based on the so-called Cauchy-Kovalewski procedure
[Käser and Dumbser, 2006]. This is clearly inappropriate
and a correct study should use a Taylor expansion of the
variables which already includes the rupture criterion (27) to
recover better convergence rates, for example following
what is shown by Castro and Toro [2008] for other
nonlinear systems. Nevertheless, using the linearized ver-
sion of the problem is already producing results which we
consider satisfactory.
[52] The ADER-DG scheme, for linear seismic wave

propagation problems, is a relatively expensive method in
terms of computing time required per element. The addition
of fault dynamics in the simulations has little impact on its
performance. For the 2-D analog of the SCEC test case, we
observe an increase of the CPU time of about 4.5% in the
worst case with respect to a simulation on the continuous
elastic case with the same mesh and with an identical order
and number of iterations. We regard this percentage as
negligible.

Table 4. Frictional Parameters for the Landers Fault System

Parameter
Nucleation

Zone
Outside

Nucleation Zone

Principal stress s1 (MPa) 300.0 300.0
Principal stress s3 (MPa) 70.0 100.0
Static friction coefficient 0.6 0.6
Dynamic friction coefficient 0.4 0.4
Critical slip distance (m) 0.8 0.8

Figure 9. Mesh used for simulation of the dynamic
rupture of the Landers fault system. The red line depicts the
fault traces.
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[53] The method is currently limited to linear element
boundaries, so curved faults can be represented only by
piecewise linear segments, and to constant material proper-
ties within each element. On the other hand, the ADER-DG
method, unlike the SBIE approach, models the whole
wavefield and each element can be considered viscoelastic,
anisotropic and/or poroelastic (see de la Puente [2008] for a
review of these cases). Using unstructured meshes can
further help to reduce the amount of elements required to
mesh very complex structures while its high accuracy could
allow the use of coarser spatial samplings than that of other
methods and therefore could help ADER-DG to become a
competitive tool for dynamic rupture simulations in com-
plicated setups.
[54] The potential of mesh coarsening is twofold. First of

all, as has been shown in all cases studied in this paper,
coarsening can work as a very effective way to mimic
unbounded problems as the domains can be largely extend-
ed at the cost of adding a relatively small amount of

elements. This is however largely irrelevant, as other
approaches can be used for a similar effect (e.g., perfectly
matched layers [Collino and Tsogka, 2001; Komatitsch and
Martin, 2007]). The other potential use, far more unique and

Figure 10. Snapshots of absolute particle velocity for the Landers fault system taken at (a) 1, (b) 2, (c) 4,
and (d) 6 s. The direction of the principal stress s1, N22�E, is shown as a green arrow.

Table 5. Summary of Error Metrics in the 2-D SCEC Benchmark

Problem for Different Methodsa

Method

Rupture Time Peak Slip Rate Final Slip

Order RMS Order RMS Order RMS

ADER-DG O6 2.26 0.1% 1.40 9.0% 1.19 0.4%
FV 1.78 5.0% NA NA NA NA
SE 1.88 1.0% NA NA NA NA
DFM 1.53 0.8% 0.68 6.5% 1.28 1.3%
MOSN 0.97 0.4% 0.85 7.0% 1.14 1.2%

aAll RMS values correspond to resolutions of Dx = 100 m. The FV
convergence value has been inferred from Figure 11 of Benjemaa et al.
[2007] and is lower than their reported value (1.8 to 2.1). The SE values
have been obtained in a subset of integration points and not along the whole
fault line. NA, not applicable.
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interesting, is the adaptation of the mesh size to the
resolution required by the problem locally. Dynamic rupture
simulations require a fine sampling of the fault in order
to capture the cohesive zone. Applying this fine sampling to
the whole wave propagation medium would imply to
resolve frequencies much higher than what is typically
regarded as useful in strong ground motion records. This
warrants a different mesh resolution for the rupture process
and for the propagation of the waves. Most mesh-based
methods (FD, FE and SE) provide some kind of mesh
coarsening strategy. However, a smooth or abrupt transition
from a fine to a coarser mesh has to be implemented with
care in order to avoid spurious numerical noise or reflec-
tions due to the transition [e.g., Moczo et al., 2007]. In
contrast, in the presented ADER-DG method using unstruc-
tured triangular meshes the mesh coarsening is a pure mesh
generation issue and no particular implementation is neces-
sary. The coarsening of the mesh then acts as a filter on the
outward propagating wave which leaves the lower frequen-
cies unaffected and does not produce noticeable spurious
reflections. We believe this is a remarkable property which
rounds up the great potential of the ADER-DG method as a
tool to simulate earthquake scenarios with a correct repre-
sentation of the fault and accurate propagation of the waves
through very heterogeneous media.
[55] The obvious next step in the development of the

method is to extend the implementation to three dimensions,
where the simplicity of tetrahedral meshing will prove more
useful for many scenarios and realistic applications. This is
especially promising if combined with the so-called local
time stepping (LTS) algorithm, that relaxes the CFL stability
condition to make it local instead of global [Dumbser et al.,
2007]. The reduction of iterations required can considerably
speed up the simulations, especially in meshes including
elements of very dissimilar sizes. Further improvements will
aim at introducing more complex friction laws as well as the
heterogeneous Riemann problem, in order to simulate
bimaterial ruptures.

10. Conclusion

[56] The ADER-DG method has been successfully adap-
ted to the simulation of dynamic rupture under linear slip
weakening friction. We have solved the Riemann problem
for elastodynamics to find a linear relation between slip rate
and traction at any fault point. This relation is not dependent
on the actual choice of the friction law and might be the
reason for the remarkably smooth solutions obtained, sim-
ilar to those obtained with the SBIE method. Such smooth-
ness makes it unnecessary to apply any sort of viscous
damping mechanisms in the model. The results obtained for
a simple test case show that a scheme of sixth order, i.e.,
using polynomials of degree five in space and time to
represent the unknowns, reaches an error smaller than
0.3% with 1.5 equivalent nodes per cohesive zone size.
All orders investigated produce converging solutions for all
error measures used: RMS of rupture time, peak slip rate
and final slip. The ADER-DG O6 method displays power
law exponent on the convergence experiment for the 2-D
analog of the SCEC test of 2.26 for rupture time, 1.40 for
peak slip rate and 1.19 for final slip. Additionally we have

shown with an application example that the method is very
well suited for the simulation of earthquake scenarios
involving fault systems which include variations in strike
and multiple branches. The method has also been proved to
have a very good behavior for meshes with varying element
size. The overall effect of a mesh coarsening is the reduction
of the amplitude spectra at high frequencies while the low
frequencies are preserved. No increase of amplitude in the
form of spikes in the spectra is observed for any frequency
when comparing results obtained with a coarsened mesh to
those obtained on meshes with regular element size. For the
2-D analog of the SCEC test case and for O4 we find the
relation between minimum wavelength resolved and ele-
ment spacing to be lmin = 1.45 h. We conclude that the
combination of meshing flexibility and high-order accuracy
of the ADER-DG method makes it a very interesting tool to
study earthquake dynamics on complex fault systems.
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Three-dimensional modeling of near-fault ground motions

with nonplanar rupture models and topography:

Case of the 2004 Parkfield earthquake
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[1] We study the applicability of deterministic strong ground motion simulations at very
near fault distances for a subvertical strike-slip fault model corresponding to the 2004 M6
Parkfield, California, earthquake in the frequency range up to 1 Hz. Theoretical
modeling under the assumptions of a planar rupture and 1-D medium shows that as a
consequence of the S wave radiation pattern, the particle motion for such close stations
should be almost linear in the fault-normal (FN) direction, having fault-parallel (FP)
and vertical (V) components of almost zero. However, as shown on the Parkfield
earthquake recordings, observed particle motions are rather circular with peak velocities
at FP and V components comparable to those at FN components. We investigate several
realistic features that could explain this controversy, namely, nonplanar fault,
realistic three-dimensional (3-D) medium, and the topography of the area. We test and
quantify these hypotheses using discrete wave number and discontinuous Galerkin
modeling methods applying 1-D and 3-D velocity structures, respectively, and two
nonplanar rupture models. We compare the synthetic and observed particle motions and
peak velocity ratios and conclude that deviations from a planar rupture geometry in
reasonable bounds for the Parkfield fault and the influence of topography only partially
explain the behavior of the observed seismograms. On the contrary, the heterogeneous
3-D velocity structure significantly reduces the synthetic peak ratios to values closer to
1 and provides rather circular particle motions. Therefore, the 3-D velocity model is
crucial to obtain realistic estimates of ground motions at near-fault distances and is more
important than the detailed fault geometry or topography in the Parkfield area.

Citation: Gallovič, F., M. Käser, J. Burjánek, and C. Papaioannou (2010), Three-dimensional modeling of near-fault ground

motions with nonplanar rupture models and topography: Case of the 2004 Parkfield earthquake, J. Geophys. Res., 115, B03308,

doi:10.1029/2008JB006171.

1. Introduction

[2] Studies concerned with the potential earthquake hazard
and damage need realistic estimates of ground motion in a
broad frequency band and in a broad range of distances at
all three components. In particular, for the low-frequency
band (<1–2 Hz) very close to the earthquake rupture,
deterministic models [Pitarka et al., 2000; Mai and Beroza,
2003; Hartzell et al., 2005; Gallovič and Brokešová, 2007;
Wang et al., 2008] are preferable to stochastic methods
[Boore, 1983] because they can capture near-fault effects.
These models, being usually based on simple assumptions
(planar fault, 1-D or relatively smoothly varying 3-D

medium with no topography) are able to explain three
component groundmotions observed during real earthquakes
at stations lying typically at distances larger than several
kilometers from the fault. Nevertheless, as we demonstrate
in this paper, problems may arise when simulating ground
motions for stations lying very close to the earthquake fault.
In particular, we take advantage of the well-studied 2004
M6 Parkfield, California, earthquake, which was recorded at
stations lying basically above the fault rupture. On the basis
of these recording, we show to what extent the deterministic
methods are able to explain amplitudes at all the three
ground motion components for such station locations in a
low-frequency band. We discuss the ability of several
modeling features to improve near-fault ground motion
estimates.
[3] The earthquake of M6 struck the central coast of Cal-

ifornia at 1015:24 LT (Pacific Standard Time) (1715:24 UTC)
on 28 September 2004. The hypocenter was 11 km south-
east of Parkfield at a depth of approximately 8 km; the
earthquake had a strike-slip mechanism on an almost vertical
fault. The analysis of the aftershocks and the proposed
rupture models indicate that the rupture occurred along the
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same section of the San Andreas fault as those of the similar
magnitude Parkfield earthquake series in 1881, 1901, 1922,
1934, and 1966 [Nadeau et al., 1995; Bakun and McEvilly,
1979; Toppozada et al., 2002]. The earthquake and its
rupture propagation have been studied by many authors
and even led to a special issue of the Bulletin of the
Seismological Society of America [Harris and Arrowsmith,
2006], where most of the work was collected. A consensus
was reached suggesting a rupture direction predominantly
toward the northwest, opposite to the rupture propagation
direction of the previous 1966 Parkfield earthquake. To
date, the 2004 Parkfield earthquake has been a subject of
a number of slip inversion studies using various kinds of data
[Hartzell et al., 2007; Liu et al., 2006; Dreger et al., 2005;
Kim and Dreger, 2008].
[4] In particular, Liu et al. [2006] performed a slip

inversion using strong motion data in the frequency band
0.16–1 Hz assuming a planar fault geometry and two
different one-dimensional (1-D) velocity models separated
by the fault plane to take into account different crustal
properties northeast (NE) and southwest (SW) of the fault.
This slip inversion suggested two main asperities located
northwest (NW) and southeast (SE) of the epicenter. How-
ever, in their inversion, Liu et al. [2006] down-weighted
vertical (V) components for all stations and deliberately
omitted fault parallel (FP) components of three stations
located almost above the earthquake fault plane or its
prolongation in the strike direction. For these two compo-
nents forward modeling produces synthetics with almost

zero amplitudes, while the faut normal (FN) component
show a strong signal, having linear particle motion perpen-
dicular to the fault strike. This is due to the radiation pattern
of a predominantly strike-slip rupture along a perfectly
planar fault in a 1-D medium. On the contrary, the observed
data are characterized by peak amplitudes of similar mag-
nitude for all three components and rather circular particle
motions. We claim that this inconsistency between modeled
and observed particle motions (and FN/FP and FN/V peak
velocity ratios) can be attributed to the simplifying assump-
tions usually made in the modeling process, namely, a fault
model that is perfectly planar, a 1-D medium with no lateral
variations of the material properties and the negligence of
relevant free-surface topography.
[5] Note that the small peak velocity ratios represent a

more general issue as they are observed in similar settings.
For example, relatively large ratio was observed during the
Kobe earthquake. Irikura [1996] shows that one of the near-
fault stations was characterized by large ratio between FN
and V components of 8.5, while the ratio between FN and
FP components was lower, 2.5.
[6] There could be many explanations for the inconsis-

tency described above, such as presence of the fault zone,
anisotropy, nonlinear soil effect, etc. In our study, which is
not intended to cover a complete set of possible physical
models, we rather propose and quantitatively test only three
hypotheses. In particular, the first one is based on nonplanar
faults. Käser and Gallovič [2008] performed a numerical
study on the radiation of seismic waves from kinematic
nonplanar rupture models. They showed that an increasing
geometrical complexity of a rupture surface can introduce
relatively strong signals at FP and V components for
stations lying above a vertical strike-slip fault, which would
be of zero amplitude for a perfectly planar model. As
mentioned above, this is mainly a consequence of the
properties of the S wave radiation pattern. In the case of
the nonplanar fault, both local strike and dip angles vary
along the fault and thus the seismic radiation pattern is more
distorted. Let us emphasize that the 2004 M6 Parkfield
earthquake represents a unique opportunity to test such
effects of nonplanar ruptures to explain the observed FP
and V components because of a large amount of very near
fault (<1–2 km) strong motion records (see Figure 1).
[7] The second hypothesis is that in the real Earth the

seismic waves propagate in a complex 3-D medium that
distorts the source radiation pattern. We do not attribute
such effects to scattering due to stochastic properties of the
medium since the study is performed in a relatively low
frequency band up to 1 Hz in which the seismic waves are
rather affected by deterministic larger-scale 3-D variations
in the crustal structure. A number of 3-D tomographical
crustal models exist for the Parkfield area [Michelini and
McEvilly, 1991; Eberhart-Phillips and Michael, 1993;
Thurber et al., 2006], which further favors this region for
this kind of study.
[8] As a third hypothesis the free surface topography in the

Parkfield area could cause signals on the theoretically zero FP
and V components. The influence of free surface topography
has been studied by many authors, [e.g., Bouchon, 1973;
Zahradnı́k and Urban, 1984; Geli et al., 1988; Bouchon et
al., 1996]. Typically, its effect has to be analyzed for each
region separately and, moreover, usually depends strongly on

Figure 1. Map of the Parkfield area. Stations (small and
large triangles), aftershocks (points), faults (thin lines),
projection of the Parkfield rupture (bold line rectangle),
projection of the cross sections of Figure 3 (dashed lines), and
the main shock epicenter (star) are shown. In this paper we
consider only stations displayed by large triangles together
with their names. The elevation of the area under considera-
tion ranges from 138 to 1335 m height.
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the frequency band of interest. Therefore, we will compare
our results for the 3-D heterogeneous material including or
omitting the free surface topography.
[9] To summarize, assuming frequency range up to 1 Hz

we quantitatively study the effects of rupture nonplanarity,
3-D heterogeneous material and topography in terms of
their ability to decrease synthetic FN/FP and FN/V peak
amplitude ratios at stations lying above a vertical strike-slip
fault closer to unity as observed in the Parkfield earthquake
data. We start with the planar source model inverted by Liu
et al. [2006]. Then, two speculative nonplanar rupture
models are introduced. The slip distribution and rupture
propagation of Liu et al. [2006] is transcribed on these
nonplanar faults in order to have all rupture models consis-
tent. The ground motions generated by these nonplanar
earthquake source models are computed in both the 1-D
medium adopted by Liu et al. [2006] and 3-D medium
obtained by Thurber et al. [2006]. Finally, we show the
influence of real surface topography.
[10] We compare the changes of the particle motions,

synthetic seismograms, their Fourier spectra and peak
velocity ratios with the real data observed during the 2004
Parkfield earthquake as a reference. We point out that we
are not particularly interested in improving the fit with the
observed waveforms. We rather study to what extent non-
planar fault geometries, the 3-D medium and the topography
effects can distort the linear particle motions and improve
FN/FP and FN/V amplitude ratios in terms of reducing them
close to unity as observed in real data. In this respect, we
discuss which of the model features are advisable to be
taken into account in the slip inversions and strong ground
motion simulations to provide realistic estimates for similar
problems.

2. Stations and Recorded Data

[11] The 2004 M6 Parkfield earthquake was recorded by
analog recorders operated by the California Geological
Survey (CGS) network and digital recorders maintained
by the U.S. Geological Survey (USGS) (Figure 1). In our
study we consider only stations in a very close vicinity
(<1.5 km) of the fault, which were also used in the slip
inversion by Liu et al. [2006]. Thus the results are presented
for 13 stations which exhibit typical features as described in
the introduction and later in the text. Liu et al. [2006] used
their recordings in the slip inversions after determining
approximative correction to the site effects. The exceptions
are stations MFU, FZ14 and COAL for which the site effect
correction was not determined. Nevertheless, they were
successfully used in the slip inversion. Note that some of
the station components were not used in the inversion or not
fitted. In particular, although FP and V components of
COAL station were used in the inversion, the synthetic
amplitudes are more than 20 times lower than the observed
ones. FP components for stations C2W, GH1W, and FZ1
were completely omitted in the inversion for questionable
polarities [Liu et al., 2006]. We note that the fit is also poor
due to the station position with respect to the rupture as
explained in the introduction.
[12] Processed data (velocity records) were downloaded

from the US National Center for Engineering Strong Motion

Data (http://www.strongmotioncenter.org/). We applied a
band-pass filter in the frequency band from 0.16 to 1 Hz
following the work of Liu et al. [2006]. The lower and
upper limits of the filter are dictated by inaccurate instru-
ment performance below 0.16 Hz and the inability to model
deterministically the Green’s functions at high frequencies,
respectively.

3. Crustal Models and Wave Propagation Codes

[13] The Parkfield area is geologically very complex. One
of its most evident features is the substantial change of
material properties across the San Andreas Fault (SAF)
separating different geological units, namely, sedimentary
Franciscan terrain in the NE and granitic Salinian block in
the SW [Brocher, 2005]. This is not surprising as the SAF
has undergone several hundreds of kilometers of cumulative
slip, which brings together geological units originally
developed far away from each other. The SAF has been
subject to intensive research. For example, the studies of the
fault zone head waves treated the fault as an abrupt material
interface [Ben-Zion and Malin, 1991; Ben-Zion, 1990],
while others considered the fault as a narrow (100–150 m)
transition zone capable of producing fault zone trapped
waves [Li et al., 1990]. This damaged core layer (or fault
zone) surrounding the fault is a low-velocity zone character-
ized by velocity reductions up to 40% and low Q values of
�30 [Li et al., 2004]. Other investigations revealed that the
structure at the SAF area is characterized by a wider (�1 km)
damaged zone [Unsworth et al., 1997] containing different
fault branches that are visible on the surface. This zone
spreads from the main fault trace in the northeast to the
southwestern fracture zone.
[14] The crustal model of the Parkfield area has been

subject to a number of 3-D tomographic studies [Michelini
and McEvilly, 1991; Eberhart-Phillips and Michael, 1993].
In the present paper we use the most recent model by
Thurber et al. [2006]. Starting from the model of Eberhart-
Phillips and Michael [1993], Thurber et al. [2006] include a
large number of earthquake events and active shots and
present a new compressional wave speed (vp) model with a
locally increased resolution along the SAF (up to 1–2 km in
the Parkfield area), particularly imaging the strong material
contrast and its depth variation. As such, the model does not
include the observed fault zone [Li et al., 2004] as a distinct
waveguide feature which is supposedly only 100–200 m
wide. The 3-D velocity model by Thurber et al. [2006] only
perhaps partly images the wider damaged zone as pointed
out by Lewis et al. [2007]. Nevertheless, as the lowest S wave
velocity in the damaged zone can by as low as 500 m s�1,
which corresponds to wavelengths of 500 m for our largest
frequency of 1 Hz, such details are a few times below the
resolution of Thurber et al.’s [2006] model (see section 3.2).
With this respect, we emphasize that our study does not
intend to cover an exhaustive set of all features possibly
influencing the ground motions. Rather, it concentrates on
distinct effects of nonplanar source models and 3-D velocity
medium typically used in the ground motion modeling
studies on the simulated three-component ground motions.
Nevertheless, other features of the Parkfield area are pre-
sumably important and will be subject of our further
study.
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[15] For comparison purposes, in accordance with Liu et
al. [2006], we use also two 1-D velocity models approxi-
mating the bimaterial structure NE and SW of the fault
separately. More details on the modeling are explained
below.

3.1. One-Dimensional Crustal Models

[16] We adopt the two 1-D crustal models from Liu et al.
[2006] shown in Table 1 to take into account the presence of
different materials on the two sides of the fault. The models
are derived from the 3-D models of Eberhart-Phillips and
Michael [1993] and Thurber et al. [2006].
[17] The kinematic fault model is numerically approxi-

mated by 128 � 64 rectangular elements represented by
double-couple point sources. For each source-receiver pair
the Green’s functions are calculated using the DWN method
of Bouchon [1981]. The ground motion at a given station is
then obtained by summing up contributions from all the
point sources taking into account the prescribed slip history,
which corresponds to the numerical evaluation of the fault
surface integral in the representation theorem [Aki and
Richards, 2002]. For details on the source model properties,
see section 4. Note that we downsample the source model
provided by Liu et al. [2006] in the electronic supplement
with 260 � 95 samples. We have tested that our resolution
is sufficient and results in decreased numerical expense due
to a lower number of needed Green’s functions.
[18] Liu et al. [2006] determined correction amplitude

factors at the Parkfield array from the 1983 M6.5 Coalinga
earthquake spectra in the frequency range of 0.16–1 Hz to
approximate the site effects. Their corrected values are
presented in the erratum. In order to validate our 1-D media
simulations against their synthetic data we apply the same
amplification factors.

3.2. Three-Dimensional Crustal Model

[19] For the simulations based on a 3-D velocity structure
we use the model proposed by Thurber et al. [2006]. It is
defined by values at nodes with spacing ranging from 2 to
5 km in the vicinity of the SAF. We interpolate this vp model
using cubic splines and derive the shear wave speeds (vs) and

densities (r) using the empirical relations of Brocher [2005]
as suggested by Thurber et al. [2006]. Explicitly, we use

vs ¼ 0:7858� 1:2344 vp þ 0:7949 v2p � 0:1238 v3p

þ 0:0064 v4p ð1Þ

r ¼ 1:6612 vp � 0:4721 v2p þ 0:0671 v3p � 0:0043 v4p
þ 0:000106 v5p; ð2Þ

where the unit of vp, vs and r are given in km s�1 and
g cm�3, respectively. We have near-surface minimum wave
speeds of vp = 1.224 km s�1 and vs = 0.253 km s�1 at very
localized parts of the model. Note that the rules given by
Brocher [2005] have been derived only for vp > 1.5 km s�1

sowe simply extrapolate the rules to lower velocities obtaining
a reasonable decrease of vs velocities. Assuming our highest
frequency of 1 Hz, the corresponding wavelength is of about
0.25 km. This is several times smaller than the resolution of
the model by Thurber et al. [2006]. Nevertheless, we point
out that this is a typical situation in the ground motion
estimations. Assuming that we can at least partially
approximate the site effects by using the interpolated 3-D
model, we do not use the amplification factors determined
by Liu et al. [2006]. Let us emphasize that the accurate
knowledge of near-surface material properties is only crucial
for the absolute amplitude values [Olsen et al., 2003]. This
means that this effect would influence all components rather
equally, so it is not a critical point for the peak amplitude
ratios we are mainly interested in.
[20] The simulation of the seismic wavefield in the 3-D

crustal model was carried out by the ADER-DG method
[Käser and Dumbser, 2006; Dumbser and Käser, 2006]. To
this end, the computational domain of the Parkfield area
was discretized by an unstructured tetrahedral mesh using
roughly 1.5 million elements. The computational domain is
bounded by absorbing boundaries along a prolate ellipsoid
of length 100 km, width 60 km in the lateral extend and a
depth of 28 km as shown in Figure 2.
[21] In the calculations when the topography is taken into

account, the top of the mesh is bounded by the free surface
given by the digital elevation model of the Parkfield area.
The mesh spacing is variable and ranges from 300 m at the
surface in the vicinity of the source projection to the surface
and the receivers locations to 4000 m toward the remaining
boundaries of the computational domain. The elastic param-
eters inside each element are determined by the velocity
model described above. Cross sections through the 3-D
heterogeneous vp and vs velocity model are shown in Figure 3.
In particular, the cross sections in Figures 3a and 3c have the
same along-strike location and fault-normal orientation as
the one shown in Figure 3f of Thurber et al. [2006].
Similarly, the cross sections in Figures 3b and 3d have the
same fault-normal location and along-strike orientation as
the one shown in Figure 4b of Thurber et al. [2006]. This
way, the body of high P wave velocity, as reported by
Eberhart-Phillips and Michael [1993] and analyzed with
respect to its importance for fault behavior by Michael and
Eberhart-Phillips [1991], is nicely visible.
[22] The approximation order of the applied ADER-DG

scheme is set to 5 in time and space providing sufficient

Table 1. Parameters of NE and SW Crustal Models Describing

the Bimaterial Character of the Parkfield Areaa

Depth (km) vp (km s�1) vs (km s�1) r (g cm�3) QP QS

NE Crustal Model
0.0 2.0 1.1 2.0 70 35
0.7 3.8 2.2 2.3 300 180
1.4 4.3 2.4 2.3 340 190
2.0 4.8 2.7 2.3 450 250
3.6 5.3 3.1 2.5 500 300
7.6 5.8 3.3 2.7 550 300
14.3 6.2 3.8 2.8 600 350
20.5 6.8 3.8 2.8 650 350
24.6 7.0 4.0 2.8 700 400

SW Crustal Model
0.0 1.9 1.0 2.0 70 35
1.0 3.4 1.7 2.3 270 160
2.0 4.6 2.4 2.3 450 260
3.0 5.1 3.1 2.7 500 300
4.0 5.6 3.6 2.7 550 350
5.4 6.3 3.6 2.8 600 350
18.7 6.8 3.6 2.8 680 360

aAfter Liu et al. [2006].
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accuracy of the numerical scheme as validated by the DWN
method for a simplified, layered 1-D medium (not presented
here [see, e.g., Käser and Gallovič, 2008]).

4. Source Models

[23] Here we introduce the geometrical fault models of
the 2004 Parkfield earthquake considered in this paper.
They are all based on the relocated aftershock distribution
[Thurber et al., 2006]. In a first-order approximation the
aftershocks delineate a planar fault as used by Liu et al.
[2006] that we denote as the planar fault (PF) model.
However, when looking at the cross sections of the after-
shock distribution in SW–NE direction apparent trends can
be seen, such as the opposite dipping directions of the NW
and SE part of the fault [see Thurber et al., 2006, Figure 6b].
Moreover, an apparent variability of the aftershock distribu-
tion, especially in the upper part of the 2004 Parkfield
rupture associated with the southwest fraction (SWF) zone
[Harris and Arrowsmith, 2006; Simpson et al., 2006], might
suggest possibly even more complicated geometrical prop-
erties. Therefore, we introduce two nonplanar models,
referred to as the aftershock-constrained nonplanar fault
(ACNF) and the aftershock-constrained nonplanar fault with
stochastic component (ACNFS), as shown in Figure 4. In
order to emphasize the effects of rupture nonplanarity on the
groundmotion, especially the ACNFSmodel is considered as
maybe an extreme case just allowed by the maximum lateral
extent of the aftershock distribution.We keep all threemodels
easily comparable by keeping their kinematic properties and
scalar seismic moments the same as those for the inverted
PF model (see further).

4.1. Planar Fault Model

[24] In accordance with the work of Liu et al. [2006], the
geometry of the PF model is determined by fitting a plane

through the Parkfield earthquake aftershocks [Thurber et
al., 2006], obtaining strike 8 = 140� and dip d = 87�. The
hypocenter is located at 35.8185 N, 120.3706 W, and at a
depth of 8.26 km. The fault has a length of L = 40 km and a
width of W = 15 km and is buried 500 m below the surface
as the surface breaks observed in the Parkfield area are
considered to be secondary cracks, not direct coseismic
surface rupture [Rymer et al., 2006; Simpson et al., 2006].
The RMS distance of the relocated aftershocks from this
planar fault is 343 m.
[25] All the kinematic source parameters come from the

inversion of strong motion records done for the same fault
geometry by Liu et al. [2006], namely, the slip values, rake
angles, rise times and rupture time distributions. Figure 4a
shows the PF model geometry together with the distribution
of scalar seismic moment. The scalar moment distribution is
determined by the inverted slip values and a depth-dependent
effective rigidity m given by the formula for a source lying
within a bimaterial interface [Wu and Chen, 2003]

m zð Þ ¼ 2mNE zð ÞmSW zð Þ= mNE zð Þ þ mSW zð Þ
� �

; ð3Þ

where mNE(z) and mSW(z) are the rigidities of the NE and SW
crustal models at depth z, respectively (see Table 1). Note
that the same scalar seismic moment distribution including
the effective rigidity factors for the two separate 1-D models
is used even when the 3-D model is considered. Conse-
quently, all the models in our paper are characterized by the
same scalar moment distribution. The total scalar seismic
moment for the planar rupture model is 1.20 � 1018 N m as
shown in Table 2. This table also shows source moment tensor
parameters obtained by waveform inversions of teleseismic
recordings carried out in Berkeley (0.98 � 1018 N m) and
Harvard (1.13 � 1018 N m), which are in good agreement
with the value used in this paper.

Figure 2. Discretization of the computational domain with an unstructured tetrahedral mesh with
variable mesh spacing and smooth elliptic model boundaries to optimize the resolution of the simulation
and avoid boundary effects.
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4.2. Aftershock-Constrained Nonplanar Fault Model

[26] We group the aftershocks into 10 bins along the
40 km distance in the strike direction. Then we represent the
local fault geometry by subplanes using a linear least
squares approximation that leads to 10 subfaults of 4 km
length and 15 km depth. We then connect the midpoints in
strike direction of all subfaults at five equidistant depth
levels together to a 10 � 5 grid. On the basis of this coarse
mesh of the fault geometry, we construct a fine mesh of
128 � 64 point sources by cubic spline interpolation. The
resulting fault model is shown in Figure 4b. The ACNF
model accounts for the apparent trend in the aftershock
locations; that is, the NW part seems to be characterized by
an opposite dipping direction than the SE part. The RMS
distance between the fault and the aftershocks is 282 m,
which is lower with respect to the PF model. The strike and
dip variations are determined by the fault geometry.
[27] The other kinematic parameters of the rupture process

are kept the same as in the PF case. However, since the
complex fault geometrical properties determine variations of
strike and dip along the fault, the final seismic moment
tensor of the whole ACNF model is not the same as that of

the PF model. We analyze it in Table 2, showing that it is
characterized by 1.4% of a compensated linear vector dipole
(CLVD) component as described by Frohlich [1994]. Also
we obtain a slightly lower seismic moment. In order to keep
the scalar seismic moment of the planar and nonplanar
model the same, we simply multiply the results obtained
for the ACNF model by the ratio of scalar seismic moments
for planar and ACNF models.

4.3. Aftershock-Constrained Nonplanar Fault With
Stochastic Component Model

[28] As already mentioned above, the perhaps highly
damaged shallow (<5 km depth) zone at the SAF area
between the San Andreas Fault trace in the east and the
southwest fracture zone is only poorly known [Unsworth et
al., 1997]. It presumably contains fault branches that extent
to the surface, but the upper 5 km of the fault surface are
very poorly constrained by aftershock distribution [see, e.g.,
Thurber et al., 2006]. As the aim is to investigate whether
variation of strike and dip angles is able to explain the
observed peak velocity ratios, we introduce another specu-
lative model that is even more nonplanar in its upper part

Figure 3. Cross sections of the 3-D velocity model. (a) and (c) Cuts through the vp and vs structure from
SW to NE in the fault normal direction (xfn) seen from the SE. (b) and (d) Cuts from NW to SE in the
fault parallel direction (xfp) seen from the SW. We also show the projection of the rupture surface
dimension as a black line in Figures 3a and 3c or a rectangle in Figures 3b and 3d. Locations of the cross
sections are shown in Figure 1.
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than the ACNF model. The ACNFS fault surface model has
to be considered only as ‘‘exploratory and suggestive,’’
representing the uncertainty at shallow depth where strike
and dip of SAF are poorly constrained. Note that the larger
the variations of strike and dip, the more pronounced effect
on ground motions.
[29] Following the work by Käser and Gallovič [2008],

we generate random geometrical deflections of the rupture
surface from the ACNF model. The deflections, i.e., dis-
tances from the ACNF rupture surface, are created using a
random field generator: First, random numbers are pre-
scribed to each of the rupture elements. Then, this white
noise is transformed to the spatial Fourier domain. Here the
amplitude spectrum is modified by a k�3 function

P kx; kzð Þ ¼ 1þ kxLxð Þ2 þ kzLzð Þ2
� �3=2� ��1

ð4Þ

where kx and kz are wave numbers in the strike and dip
directions, respectively, and Lx and Lz are correlation lengths
in the corresponding directions. The modified spectrum is
then high-cut filtered just below the Nyquist wave number
and Fourier transformed back to the spatial domain. Finally,
the random field root mean square (RMS) responsible for
the strength of the deflections is imposed.
[30] We set Lx = 10 km and Lz = 3.5 km and the RMS

values equal to 350 m. These stochastic deflections are
modified by a linear function 1-z/W, where z goes from 0
(top of the fault) to W = 15 km (bottom of the fault). In this
way, the variations are less severe in the lower part of the
fault, where the aftershocks tend to delineate a smoother
rupture surface. The spatial variations of strike and dip due
to the source geometry are computed for each rupture
element by the spatial derivative of the deflection field in
the strike and dip directions, respectively.
[31] Figure 4c shows the generated ACNFS model used

in our modeling. Its RMS deflections, i.e., RMS of distances
of the ACNFS model from the PF model, is 382 m, which
roughly corresponds to RMS distance between the PF
model and the relocated aftershock distribution (343 m).
This means that in a loose statistical sense the deflections of
ACNFS model reflect the variability of aftershock locations
with respect to a mean plane. As in the previous case of the
ACNF model, we keep all the remaining kinematic param-
eters the same as for the PF case.
[32] Table 2 shows parameters of the moment tensor of

this rupture model, being again different from those of the
PF and ACNF models. The CLVD component represents
about 2.9% of the seismic moment and the scalar seismic
moment is again slightly lower than that for the PF model.
We again multiply all the synthetics obtained by this source
model by the moment correction factor given by the ratio
between scalar moments of the ACNFS and the PF model in
order to have all three fault models consistent.

5. Modeling Results

[33] We simulate ground velocities with both 1-D and
3-D subsurface velocity structures and all the fault surface
models. Figure 5 shows observed and synthetic horizontal

Figure 4. Scalar seismic moment distribution and geome-
tries of the Parkfield source models considered in this work:
(a) planar fault, (b) aftershock-constrained nonplanar fault
(ACNF), and (c) aftershock-constrained nonplanar fault
with stochastic component (ACNFS).
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particle motions for all the models considered. Figures 6
and 7 show the synthetic seismograms in the time domain
for the 1-D and 3-D models, respectively. Examples of
corresponding Fourier amplitude spectra are shown in
Figures 8 and 9. Note that the considered stations are
ordered in Figures 8 and 9 according to their fault distance,
the first and the last station lying at approximately 1.5 km to
the NE and SW, respectively.
[34] We emphasize that our aim is not obtaining better fit

with the observed data. The observed data, when compared
to the inverted model (1-D medium, PF model), serves only
for illustration of the best fit that can be obtained in the
current setting. This ‘‘reference misfit’’ helps when evalu-
ating the strong or weak influence of the individual model
complexities (fault nonplanarity, 3-D medium, and topog-
raphy), i.e., whether the change in particle motions, wave-

forms, and Fourier spectra when introducing, for example, a
nonplanar fault is comparable to the misfit between the
observed data and the synthetics for the best fitting model
or not.

5.1. Effect of the Rupture Geometry in 1-D Media

[35] Figures 5 and 6 show the modeling results in the 1-D
crustal models characterizing the bimaterial Parkfield area
for all the three source models in terms of the horizontal
particle motion and waveforms. Note that the results for the
PF model, in fact, replicate the calculations of Liu et al.
[2006] for their best fitting Parkfield model that we use in
this study. Therefore, the fit to the observed data is the best
achievable with our actual setup.
[36] The particle motions of the observed data (Figure 5)

exhibit complex behavior at all distances, even very close to

Table 2. Observed and Modeled Moment Tensor Parameters of the 2004 Parkfield Earthquakea

Parameter

Moment Inversion PF
Model

ACNF
Model

ACNFS
ModelBerkeley Harvard

Source composition
Scalar moment (N m) 0.98 � 1018 1.13 � 1018 1.20 � 1018 1.19 � 1018 1.08 � 1018

DC 98.8% 82.6% 100.0% 98.6% 97.1%
CLVD 1.2% 17.4% 0.0% 1.4% 2.9%
Iso 0.0% 0.0% 0.0% 0.0% 0.0%

Best DC parameters
Strike 147.0� 321.0� 140.0� 139.7� 138.9�
Dip 83.0� 72.0� 87.0� 86.9� 87.4�
Rake �175.0� �177.9� 150.6� 150.6� 150.6�

Moment correction factors – – 1.00 1.01 1.11
aNote that in order to have all the models the same, we introduce the moment correction factor (ratio between the scalar moment of the planar and

nonplanar rupture).

Figure 5. Horizontal particle motions for 13 stations closest to the rupture for all the models taken into
account in this study and for the observed data. The vertical line illustrates the relative position of the fault.
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the earthquake rupture. On the contrary, the synthetic
particle motions have strongly linear character (perpendic-
ular to the fault strike) especially for the very close stations.
Figure 5 further shows particle motions for both the

nonplanar models ACNF and ACNFS. Generally, the most
geometrically complex model ACNFS provides the most
nonlinear polarization, for example, at stations FZ14,
COAL, GH1W or FZ15. More distant stations do not

Figure 6. Synthetic velocity seismograms obtained for the three source models for the 1-D bimaterial
medium. The values are the maxima from all the waveforms under comparison. The time axis
corresponds to 18 s.
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change their particle motions much when adding the fault
geometrical complexity. Interestingly, only for station FZ3
the ACNF model provides more linear particle motion than
the PF model. Note that only in the case of the station

GH1W the nonplanar rupture causes the particle motion to
have similar complex shape as what is observed in real data.
[37] Regarding the waveform comparison for the PF

model (Figure 6), the fit is better for the FN components

Figure 7. Synthetic velocity seismograms obtained for the three source models for the 3-D
heterogeneous medium. The values are the maxima from all the waveforms under comparison. The
time axis corresponds to 18 s.

B03308 GALLOVIČ ET AL.: 3-D MODELING OF NEAR-FAULT GROUND MOTIONS

10 of 17

B03308



than for the other two. In fact, some of the FP components
of particular stations (FZ1, C2W and GH1W) were not used
in the slip inversion by Liu et al. [2006]. The synthetics for
the stations closest to the fault, e.g., FZ14, COAL, GH1W,
and FZ1 are systematically characterized by very low
amplitudes at FP and V components with respect to the
FN components and, especially, to the observed data. The
strong amplitude differences are related to the linear polar-
ization explained above as a consequence of radiation
pattern of a planar strike-slip rupture in a 1-D medium.
[38] Figure 6 also shows the synthetics for the nonplanar

source models ACNF (dashed) and ACNFS (dotted). The
FN components are almost insensitive to the variations of

the fault geometry, which is in agreement with the results
found by Käser and Gallovič [2008]. Note that this is due to
the moment correction factor that scales the synthetics to the
same scalar seismic moment. On the contrary, the FP and V
components are generally more sensitive to the variations of
the fault geometry, however, the variations need to be
relatively strong as those associated with the ACNFS
model. In general, the amplitudes of the FP and V compo-
nents tend to increase with an increasing complexity of the
fault geometry [Käser and Gallovič, 2008]. For example,
while at COAL station the synthetics for the PF and the
ACNF model are almost the same, those for the ACNFS
model deviate much more. Only the stations FZ14, GH1W

Figure 8. Fourier amplitude spectra of three selected seismograms shown in Figure 6 for the 1-D
bimaterial medium.

Figure 9. Fourier amplitude spectra of three selected seismograms shown in Figure 7 for the 3-D
heterogeneous medium.
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and FZ15 are characterized by a strong sensitivity even to
the relatively small geometrical variations of the ACNF
model. Nevertheless, the peak amplitude values still do not
reach the observed ones.
[39] We point out that, generally, the nonplanar source

models do not provide a better fit with the observed data on
the FP and Z components. Station GH1W is the only
exception, for which the nonplanar models, especially
ACNF, lead to a better fit of the observed data at FP and
V components. Nevertheless, the sensitivity of the stations
to the geometrical variations of the fault is predominantly
determined by the proximity of the station to strong local
changes in the fault geometry. Let us emphasize that our
aim was not to optimize the fault geometry to obtain a better
fit of the observed waveforms. We rather recognize that at
most of the stations the geometrical variations are not even
strong enough to increase the synthesized amplitudes in
such a way that their peaks would be more balanced among
all station components as it is seen in observed data (see
further). This is due to the fact that the particle motions are
still too linear (see Figure 5).
[40] Figure 8 displays examples of the amplitude Fourier

spectra for three closest stations for the 1-D velocity
structure and the three source models. As before, the fit
for the PF model (solid black) with observed data (solid
gray) is the same as obtained by Liu et al. [2006]. The fit of
the FN components is relatively good, while for the other
components the synthetic amplitudes are much lower than
the observed ones. Regarding the effect of fault nonplanarity on
the spectra, we can see almost no difference at FN component
with respect to the PF model, which is in agreement with our
observation in the time domain. On the contrary, the other
components are affected in the whole frequency range, which
agrees with the finding by Käser and Gallovič [2008].
[41] Generally speaking, larger geometrical variations,

i.e., the ACNFS (dotted line) with respect to the ACNF
(dashed line) model, produce higher amplitudes in the
Fourier domain. Nevertheless, the fault nonplanarity does
not amplify the amplitudes sufficiently to fit the observed
ones.

5.2. Effect of the Rupture Geometry in the 3-D
Heterogeneous Medium

[42] Figure 5 shows the resulting particle motions for all
the three source models computed assuming a heterogeneous
3-D velocity model. Only for stations FZ14 and C2W the
PF model provides a linear particle motion. For the other
stations (especially when compared with the results for the
1-D medium), the particle motions are relatively complex,
being more similar to the observed ones. When adding the
geometrical complexity by assuming source models ACNF
and ACNFS, one can see that, contrarily to the modeling in
the 1-D media, the basic character of the particle motions
does not change much. Only at stations MFU, COAL,
GH1Wand FZ4 the particle motions become more elliptical.
[43] Figure 7 shows, similar to Figure 6, the synthetics for

all the source models in the 3-D medium and the recorded
data as a reference. As already observed for the particle
motions, the synthetics are less sensitive to the variations of
the fault geometry. Perhaps the only exception are the FP
components at stations MFU, GH1Wand FZ4. Therefore, in
the following we will discuss mainly the results for the PF

model since the statements also (or even more) hold for the
nonplanar models ACNF and ACNFS.
[44] One can see that the fit between the simulated data

and the observed data for the 3-D medium is generally
worse than in Figure 6 for the 1-D media. Almost all the
synthetics are characterized by smaller amplitudes and
similar duration on the FN components. However, the
amplitudes at the FP and V components are generally larger,
which results in a better balance between the three compo-
nents. The fact that the 3-D medium provides smaller
amplitudes than the 1-D model can be surprising because
typically including a 3-D crustal structure with low veloc-
ities under the surface results in amplified synthetic ground
motion [e.g., Frankel, 1993; Yomogida and Etgen, 1993].
However, such crustal models contain basin-like structures,
in which the ground motions are amplified by soft sediments
and by constructive interference of waves trapped inside the
basin. Our 3-D velocity model does not represent a basin-
like structure but is characterized by strong velocity gra-
dients in both vertical and horizontal directions. There are
also near-surface low-velocity zones that can trap the energy
and enhance the ground shaking. Our 3-D structural model
also does not contain any discontinuities in wave velocities
so that there are only weak refractions from the velocity
gradients. Nevertheless, the 3-D structure seems to distrib-
ute the radiated energy more equally among the three
components of motion, not preserving the linear polariza-
tion at the near-fault stations.
[45] Although the peak amplitudes at the FN components

are smaller than those obtained for the 1-D medium, the
waveforms themselves are similar to the observed ones.
This amplitude difference cannot be simply explained by
the small seismic moment of our source model (being
linearly related to the synthetics), because it is already very
close to that published by world agencies (see Table 2). The
slip model would be quite different if the slip inversion was
done assuming a more realistic 3-D velocity structure.
[46] As an example, Figure 9 shows for three stations the

Fourier spectra corresponding to the time histories displayed
in Figure 7. Generally, all the velocity components are not
affected much by the fault nonplanarity. If we compare the
overall shape of these spectra with respect to the spectra
obtained for the 1-D media (Figure 8), they are character-
ized by very similar shapes especially for the FN compo-
nent. However, the absolute level is smaller for the 3-D
case.

5.3. Effect of Surface Topography

[47] Similar to the 3-D medium, the surface topography
could produce the strong signals on the FP and V compo-
nents which are not obtained by simplified models that do
not incorporate the surface topography. Therefore, we
compute synthetic ground motion taking into account the
surface topography as given by a high-resolution digital
elevation model [Farr et al., 2007]. Because of the tetrahe-
dral discretization of the computational domain, the mesh
can be adapted to the topography using a surface triangu-
lation with linear triangular element faces. We use again the
velocity structure of Thurber et al. [2006]. However, as it is
given only for a flat model surface we modify it in a way
that the depth does not refer to an absolute depth but to a
depth below the surface. Different approaches to combine
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heterogeneous 3-D velocity models with real topography
have been studied by Ma et al. [2007] or Aagaard et al.
[2008].
[48] The results including the topography show only very

small differences compared to the flat model, suggesting
that the topography in the Parkfield area has little influence
on the signals, at least in the frequency band 0.16–1 Hz
used in our study. The most obvious effects are phase shifts
due to the differences in station elevations when using the
topographic model. However, the waveforms, amplitudes
and spectra remain almost unchanged (not shown here).
Therefore, in the following, we discuss only the influence of
the topography on the peak amplitudes and its effects on the
ratio between the FN, FP and V components.

5.4. Ratios of Peak Velocity Amplitudes

[49] As stated before, modeling in 1-D media with the PF
model provides reasonable good fits at the FN components,
while for some stations we are not able to explain the large
amplitudes in the observed data at the FP and V components
(C1E, FZ14, COAL, GH1W and FZ1).
[50] Peak velocity ratios of FN to FP and FN to V

components are shown in Figure 10 for all the selected
13 stations. Note that these amplitude ratios correspond to
the ratios between maximum heights and widths of the
horizontal or vertical particle motions. Note that the observed
data give typically ratios around 1–2 for the FN/FP ratio
and about 4 for the FN/V ratio. Table 3 shows mean root-
mean-square (RMS) errors between the observed and syn-
thetic peak velocity ratios (computed from the logarithmic
values) over all 13 selected stations for all the considered
models.
[51] As already discussed above, there is a clearly visible

large discrepancy between observed and synthetic ratios for
the combination of the 1-D medium and the PF model
(Figure 10, top). For example, at FZ14, COAL and FZ1
stations the FN/FP or FN/V ratio values are close to 30 or
40, respectively. For other stations this discrepancy is less
but typically exceeds by far the observed ratios. The mean
RMS error (from logarithmic values) is 1.54 and 1.29 for
FN/FP and FN/V ratios, respectively (see Table 3).
[52] Figure 10 (top) further shows results for both the

nonplanar faults in the 1-D medium. In general, introducing
a larger degree of geometrical complexity of the source
decreases the ratios and brings them closer to the observed
values. This can be also seen from the decreased RMS
values for the nonplanar models with respect to the PF
model (Table 3). This general tendency is violated for
station FZ3, for which the use of nonplanar models results
in even larger ratio than the PF model. Although the ratios
decrease for the nonplanar models, for stations such as
COAL and FZ1 even the strongly deformed ACNFS model
does not provide ratios as low as the observed ones.
[53] In the case of the 3-D medium (Figure 10, middle),

synthetic ratios hold generally lower values than for the 1-D
medium for all stations. This is manifested also by lower
mean RMS values in Table 3, 0.88 and 0.82 for FN/FP and
FN/V ratios, respectively. Nevertheless, stations FZ14 and
FZ1 are still characterized by a strong discrepancy with the
observed ratios.
[54] The increasing complexity of the fault geometry in

the 3-D medium has only a minor influence on the peak

ratios with respect to the PF model (see also velocity
seismograms in Figure 7). Only for the above mentioned
stations FZ14 and FZ1 the ratios considerably decrease
when considering nonplanar faults. Thus the mean RMS
decreases also even more with respect to the PF model for
the 3-D medium.
[55] Let us recall that the results for the 3-D medium

provide generally a worse fit with the observed data than
that for the 1-D medium for which the source model with its
particular slip distribution was originally determined. In
particular, the FN component waveforms obtained for the
3-D medium are characterized by smaller absolute ampli-
tudes with respect to those obtained for 1-D medium
(compare Figures 6 and 7). On the other hand, the FP and
V components are larger or at least similar, which causes
that the FN/FP and FN/V ratios are reduced to values closer
to the observed peak ratios, and the particle motions are
more circular as observed for the real data (Figure 5).
[56] Finally, the introduction of the free surface topogra-

phy and its effect on the peak velocity ratios is shown in
Figure 10 (bottom). It leads to only little change of the FN/FP
and FN/V ratios as can be seen also from the mean RMS
values in Table 3. In particular, the topography effect slightly
reduces ratios of the problematic stations FZ14 and FZ1.
However, it is clear from Figure 10 (bottom) that the
topography has a much weaker effect on the amplitudes
than the variation of the fault surface geometry or especially
the choice of velocity structure (see also Table 3).

6. Discussion

[57] Observed near-fault ground motions are character-
ized by features, which can hardly be explained by simpli-
fied models. Here, we study in particular the distribution of
ground motions on horizontal and vertical components in a
relatively low-frequency range (<1 Hz) for stations lying
basically above the earthquake rupture. As we show on the
example of the 2004 Parkfield earthquake recordings, the
amplitudes observed at fault-normal (FN), fault-parallel
(FP), and vertical (V) components are almost the same with
complex (nonlinear) particle motions. On the other hand,
simulations utilizing a planar source model (although with
complex rupture evolution) and 1-D medium result in
synthetics having typically a linear polarization perpendic-
ular to the fault. Theoretically, this can be explained as a
consequence of the properties of the radiation pattern. As
simulations of near-fault ground motions are of interest for
seismic engineers, we study certain model features that have
to be considered in the modeling to provide more realistic
ground motion estimates. In particular, we pay attention to
the use of nonplanar rupture geometry, 3-D crustal model
and free surface topography. Amongst others, as mentioned
later, these three factors are capable of generating signals at
the FP and V components but with different significance.
[58] We introduce three speculative fault models of

increasing geometrical complexity, approximating the relo-
cated aftershock distribution [Thurber et al., 2006]: one is a
perfectly planar fault (PF) as proposed by Liu et al. [2006],
whereas the others are obtained by a piecewise interpolation of
aftershock hypocenter locations; the aftershock-constrained
nonplanar fault (ACNF) and the aftershock-constrained
nonplanar fault with stochastic component (ACNFS). As
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regards the crustal model, we use both 1-D models and a
3-D velocity structure based on the model proposed by
Thurber et al. [2006]. In both velocity structures we apply
the different rupture models that all obey the same kinematic
properties obtained from the slip inversion by Liu et al.

[2006]. Finally, we incorporate the surface topography of
the Parkfield region given by a digital elevation model.
[59] The effect of the kinematic nonplanar faults on the

seismograms is rather small compared to the influence of
the different velocity models. Interestingly, the effect of the

Figure 10. Results in terms of peak ground velocity (PGV) ratios for (top) the 1-D medium without
topography, (middle) the 3-D medium excluding topography, and (bottom) the 3-D medium including
topography.
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rupture plane geometry is even smaller for the 3-D structure
than for the 1-D one. The generally small effect of the
rupture nonplanarity is due to the fact that the geometrical
complexity of the fault models stays in reasonable limits
given by the relatively small diffusion of the aftershocks
that are assumed to delineate the rupture surface. The
Parkfield area is a part of the San Andreas Fault, which,
being seismically active for perhaps millions of years, has
accommodated very long slip and is, therefore, relatively
smooth especially in the strike direction. If a geometrically
more complex rupture plane was taken into account, its sole
geometry effect on the ground motion could be more severe
[Käser and Gallovič, 2008]. However, in our opinion this
would not be justifiable for the Parkfield fault.
[60] In general, mainly the fault parallel (FP) and vertical

(V) components are affected by the nonplanarity of the
fault. This supports the possibility to use only the FN
components of stations lying almost above the fault in a
slip inversion since they are less affected by the fault
geometry.
[61] Figure 10 shows that for the 2004 Parkfield earth-

quake the 3-D velocity structure reduces the large amplitude
differences obtained for a perfectly planar fault in a 1-D
medium more than the increase of the fault nonplanarity.
Therefore, we claim that highly accurate 3-D velocity
structures are always crucial when modeling the ground
motions close to the fault, especially on the FP and V
components. In particular, local low-velocity structures near
the surface and right below a station as well as local fault
zone properties can strongly influence the wave amplitudes
[see, e.g., Jahnke et al., 2002; Olsen et al., 2003; Peng et
al., 2000; Li et al., 2004].
[62] Finally, we find that the effect of the free surface

topography for the 2004 Parkfield earthquake is insignifi-
cant, regarding the stations of interest right above the fault
and a frequency band of 0.16–1 Hz.
[63] Note that none of the models is successful in explain-

ing the long duration of the observed records. This suggests
that the Thurber et al.’s [2006] 3-D velocity model is
missing a distinct fault zone that might generate resonant
oscillation giving rise to the late arrivals [see, e.g., Igel et
al., 1997; Hough et al., 1994; Ben-Zion, 1998]. However,
the fault zones are usually associated with a very low Q
factor that might suppress large amplitudes in coda of the
synthetics. Another possible interpretation for the high
amplitudes of late arrivals in some of the observed seismo-
grams could be a strong back-scattering from other hetero-
geneities that are not resolved in Thurber et al.’s 3-D model.
Therefore, we emphasize the importance of an additional
study that will include a refined 3D model including the
fault zone effects and/or the scatterers in detail to resolve
this issue. Note also that such a model has to be very

inhomogeneous since not all stations exhibit the strong late
arrivals.

7. Conclusions

[64] In summary, our results show that a more realistic
balance of the peak velocity amplitudes in the FN, FP and V
components for near-fault stations are obtained when a 3-D
heterogeneous velocity structure is taken into account
although the 3-D model is still relatively smooth and does
not include the fault zone. The effect of an increasing
geometrical complexity of the rupture geometry is less
important in our setting. However, its use can still lead to
more realistic peak velocity ratios especially when consid-
ered together with a simple 1-D medium. The influence of
the topography (in addition to a 3-D structural model) is of
less significance, for the considered low-frequency band (up
to 1 Hz).
[65] Our study suggests the FN components would be

used in the slip inversion as they show stable features.
Generally, amplitudes of our synthetic FN components in
3-D velocity structure are smaller than the other compo-
nents, but their waveforms (in time and frequency domain)
remain similar in the case of the 3-D or 1-D velocity model.
The FP and V components seem to be more affected by the
3-D model, and, therefore, show a higher sensitivity to the
quality of the 3-D model. Thus, features in the FP and V
components are less robust when used in the inversion
process where the velocity structure is uncertain. Further-
more, all components show a higher sensitivity to the
velocity structure than to the fault geometry variations.
Therefore, we support the suggestion by Kim and Dreger
[2008] to exclude at least the FP and V components of the
closest stations in the slip inversion due to their strong
sensitivity to the quality of the Green’s functions. To avoid
the unrealistic linear polarization of the particle motions
obtained from 1-D velocity models in combination with the
planar fault, we strongly suggest using a well-constrained
3-D velocity model if available as it seems to be more
important than the fault geometry.
[66] We emphasize that we used only a limited frequency

range (up to 1 Hz). Some of the conclusions could also be
true for high-frequency motion but they would have to be
appropriately tested. Moreover, this is also not a complete
study of all possible effects that could influence the ground
motions. The existence of a fault zone structure is one of the
most important effects to consider in further investigations.
Furthermore, directional site effects [Bonamassa and Vidale,
1991], medium anisotropy [Cochran et al., 2006], or non-
linear behavior [Bataille and Calisto, 2008; Karabulut and
Bouchon, 2007; Wu and Chen, 2009] might also contribute
to better explain the observed data.

Table 3. RMS Errors of Peak Velocity Ratios for All the Models Considered in This Study

Crustal model

FN/FP FN/V

PF ACNF ACNFS PF ACNF ACNFS

1-D media without topography 1.54 1.39 0.75 1.29 1.09 0.88
3-D medium without topography 0.88 0.76 0.60 0.82 0.70 0.57
3-D medium with topography 0.72 0.69 0.61 0.79 0.75 0.60
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Dumbser, M., and M. Käser (2006), An arbitrary high order discontinuous
Galerkin method for elastic waves on unstructured meshes II: The three-
dimensional case, Geophys. J. Int., 167(1), 319–336, doi:10.1111/j.1365-
246X.2006.03120.x.

Eberhart-Phillips, D., and A. J. Michael (1993), Three-dimensional velocity
structure, seismicity, and fault structure in the Parkfield region, central
California, J. Geophys. Res., 98(B9), 15,737–15,758, doi:10.1029/
93JB01029.

Farr, T. G., et al. (2007), The Shuttle Radar Topography Mission, Rev.
Geophys., 45, RG2004, doi:10.1029/2005RG000183.

Frankel, A. (1993), Three-dimensional simulations of ground motions in
the San Benardino valley, California, for hypothetical earthquakes on the
San Andreas Fault, Bull. Seismol. Soc. Am., 83, 1020–1041.

Frohlich, C. (1994), Earthquakes with non-double-couple mechanisms,
Science, 264, 804–809, doi:10.1126/science.264.5160.804.
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Republic. (gallovic@karel.troja.mff.cuni.cz)
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guyen Dinh Pham1, Heiner Igel2, Josep de la Puente3, Martin Käser2, and
ichael A. Schoenberg4
s
a
t
o
�
2
t
m
i

ed 14A
viornm
.

ental Sc

epartme
ley, CA
ABSTRACT

Rotational motions in homogeneous anisotropic elastic
media are studied under the assumption of plane wave propa-
gation.The main goal is to investigate the influences of aniso-
tropy in the behavior of the rotational wavefield. The focus is
on P-waves that theoretically do not generate rotational mo-
tion in isotropic media. By using the Kelvin–Christoffel
equation, expressions are obtained of the rotational motions
of body waves as a function of the propagation direction and
the coefficients of the elastic modulus matrix.As a result, the
amplitudes of the rotation rates and their radiation patterns
are quantified and it is concluded that �1� for strong local
earthquakes and typical reservoir situations quasi P-rotation
rates induced by anisotropy are significant, recordable, and
can be used for inverse problems; and �2� for teleseismic
wavefields, anisotropic effects are unlikely to be responsible
for the observed rotational energy in the Pcoda.

INTRODUCTION

Seismological studies are traditionally based on the observation,
rocessing, and inversion of three orthogonal components of trans-
ational ground motions �displacement, velocity, or acceleration�. In
heory, to fully describe the motion of the solid volume around a
oint, one needs to consider not only three components of translation
ut also six components of strain and three components of rotations
see Aki and Richards, 2002; Stein and Wysession, 2003; Cochard et
l., 2006�.Although geophysical studies associated with translation-
l motions and strain have attained a large success, the full benefits
f rotational motions are still under investigation, and this type of
ignal has been ignored for a long time. This is mainly because sen-
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D47
ors for rotational motions with sufficient resolution were not avail-
ble until recently. After advances in laser technology, instruments
hat consistently record rotational ground motions around one axis
r all three orthogonal axes have already been developed and tested
McLeod et al., 1998; Pancha et al., 2000; Schreiber et al., 2006,
009; Wassermann et al., 2009�. As a consequence, studies that aim
o exploit the additional information given by collocated measure-
ents of translational and rotational ground motion are growing rap-

dly �e.g., Igel et al., 2005, 2007; Cochard et al., 2006; Suryanto et
al., 2006; Pham et al., 2009a, 2009b; Ferreira and Igel, 2009; Ficht-
ner and Igel, 2009; Bernauer et al., 2009�. For example, several re-
cent studies covering many aspects of rotational ground motions
have been presented in a special issue on Rotational Seismology and
Engineering Applications of the Bulletin of the Seismological Soci-
ety of America in May 2009 �Lee et al., 2009b�. In particular, a re-
view by Lee et al. �2009a� envisions the emergence of a new branch
in the fields of observational seismology and earthquake engineer-
ing.

Once the technology for its measurement has become available,
the key question is: What kind of information do we expect to re-
trieve from carrying out joint measurements of translations and rota-
tions — compared with just translational observations? Early stud-
ies �Takeo and Ito, 1997� indicate that earthquake rupture histories
can be better constrained with measurements of rotational motions.
Furthermore, the multicomponent point measurements of rotational
and translational motions allow the estimation of wavefield proper-
ties �e.g., phase velocities, propagation direction; Igel et al., 2007,
Cochard et al., 2006� and allow the recovery of shear-wave structure
without traveltime information �Fichtner and Igel, 2009; Bernauer et
al., 2009� as well as constraining the scattering properties of the
near-receiver crustal structure �Pham et al., 2009b�.

An aspect that has been missing in previous studies is the role that
the elastic anisotropy might play in the rotational measurements. It is
well known that anisotropy is a ubiquitous phenomenon in the

pril 2010; published online 5 October 2010.
ental Sciences, Geophysics Section, Munich, Germany; presently Vietnam
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arth’s crust and upper mantle. Many authors �e.g., Crampin, 1981,
984; Crampin et al., 1982, 1984; Sams et al., 1993; Larner, 1993�
eport the influence of anisotropic effects on seismic processing and
nterpretation. Tsvankin �1996� emphasized that progress in seismic
nversion and processing in anisotropic media depend on our ability
o relate different seismic signatures to the anisotropy parameters. In
eservoir and drilling engineering, the simultaneous determination
f the elastic coefficients and anisotropy parameters helps in predict-
ng flow paths for improved oil recovery, designing a hydraulic frac-
uring scheme, determining mud weight and selecting drill bit, and
reventing hole collapse during and after drilling �Wang, 2002�. At
resent, the anisotropy parameters can only be retrieved using labo-
atory measurements or arrays of standard translational seismome-
ers deployed, at least, along a line.

At the onset of this study, there are several open questions: �1�
ow does anisotropy affect rotational ground motions? �2� Can rota-

ional motions help to constrain anisotropic properties? �3� What in-
trument configurations are necessary to extract the relevant infor-
ation? We will attempt to give preliminary answers to these ques-

ions in the following sections.
The main goal of this study is to estimate the amplitudes of the ro-

ational motions that we can expect in various geophysical problems
nd their dependence on the anisotropic properties of the medium
nd the propagation direction. We first approach the problem in an
nalytical way, focusing on the solution for plane waves in linear
lastic anisotropic media. Moreover, we provide estimates of the ex-
ected amplitudes of rotational motions induced by P-waves as a
unction of the degree of anisotropy. Last but not least, this study
onfirms the fact that anisotropy alone cannot account for the P coda
ertical rotational motions observed on a ring laser at the Fundamen-
al station in Wettzell, Germany, as reported by Igel et al. �2007� and
ham et al. �2009b�.

FUNDAMENTAL THEORY

In the framework of classical elasticity, a general plane-harmonic-
ave solution for the displacement vector u of body waves is

u�An exp�i��t�� ·x��, �1�

here A is the ground displacement peak amplitude; n�n1e1

n2e2�n3e3 is the unit vector denoting the direction of the particle
isplacement �i.e., the wavefield polarization; ei �i�1,2,3� are the
nit vectors along the coordinate axes�; ni

ui /�u1u1
*�u2u2

*�u3u3
*� �ui� /A are the direction cosines of n

nd i is the imaginary unit; superscript * represents complex conju-
ate; and �z� stands for magnitude of the complex number z. Further-
ore, the wavenumber vector is ��� /v��1e1��2e2��3e3�
� /vl and the quantities �, v, and l��1e1��2e2��3e3 are, re-

pectively, the angular frequency, the phase velocity, and the unit
ector denoting the propagation direction of the plane wave. Finally,
he direction cosines of l are denoted �i.

The rotational motions � generated by the plane wave expressed
y equation 1 can be calculated by taking half of the curl of the dis-
lacement field �Igel et al., 2005, Cochard et al., 2006�
��
1

2
�� �u���

A

2
i��n exp�i��t�� ·x��

��
A

2

i�

v ��2n3��3n2

�3n1��1n3

�1n2��2n1
�exp	i�
t�

1

v
l ·x�� . �2�

he corresponding rotation rates �̇ are then

�̇��t��
A

2

�2

v ��2n3��3n2

�3n1��1n3

�1n2��2n1
�exp	i�
t�

1

v
l ·x�� .

�3�

Looking at equation 3, one can recognize that, in homogeneous
nbounded isotropic media, P-waves do not generate any rotational
otion. This is because, for P-waves, the vectors l and n are identi-

al, in opposition to S-waves, which have perpendicular l and n and
ence produce rotation motion. Hence, in unbounded isotropic me-
ia, rotations can only be the consequence of an S-wave. However,
his is no longer the case in anisotropic elastic media in which the
hase velocity v and the direction cosines ni depend on the wave
ropagation direction �i. Hence, P-waves in anisotropic media can,
n general, produce rotational motions. As a consequence, the mea-
urement of significant rotational signals during the passage of a
-wave can be regarded as an indicator of anisotropy.
To understand the behavior of the rotational motions in anisotrop-

c elastic media, we must first realize that the phase velocity v, the
olarization ni, and the material properties are bound by the Kelvin–
hristoffel equation �see e.g., Musgarve, 1970; Carcione, 2001, p.
1�

����v2I3� ·u�0, �4�

here � is the material density — a constant isotropic parameter; I3

s the 3�3 identity matrix; � is the symmetric Kelvin–Christoffel
atrix

��L ·C ·LT, �5�

L���1 0 0 0 �3 �2

0 �2 0 �3 0 �1

0 0 �3 �2 �1 0
�, �6�

nd C is the elastic modulus matrix and is given by

C��
c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

� . �7�

Whenever a material possesses more than two independent pa-
ameters defining the entries of C, the seismic wave velocities differ
epending on the propagation direction and the material is called
anisotropic.” A material that has all 21 coefficients in C indepen-
ent is called a material of the triclinic symmetry class, or simply tri-
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Anisotropy and rotational motions D49
linic material. This is the most general case of anisotropy and in-
ludes as special cases all of the other crystalline symmetry classes
i.e., monoclinic, trigonal, tetragonal, orthorhombic, hexagonal, cu-
ic, and isotropic�. One of the most important anisotropy symmetry
lasses for seismological purposes is transverse isotropy. When the
ymmetry axis coincides with e3 the elastic modulus matrix CTI of a
ransversely isotropic material is �see e.g., Thomsen, 1986; Car-
ione, 2001, p. 6�

CTI��
c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

� , 2c66�c11�c12.

�8�

The isotropic case can be considered as a special case of anisotro-
y in which c11�c22�c33���2�, c12�c13�c23��, c44�c55

c66�� and all of the other coefficients are equal to zero. Here �
nd � are the Lamé coefficients of the material.

Explicitly, the components of the Kelvin–Christoffel matrix are

�11�c11�1
2�c66�2

2�c55�3
2�2c56�2�3�2c15�3�1

�2c16�1�2

�22�c66�1
2�c22�2

2�c44�3
2�2c24�2�3�2c46�3�1

�2c26�1�2

�33�c55�1
2�c44�2

2�c33�3
2�2c34�2�3�2c35�3�1

�2c45�1�2

�12�c16�1
2�c26�2

2�c45�3
2� �c46�c25��2�3

� �c14�c56��3�1� �c12�c66��1�2

�13�c15�1
2�c46�2

2�c35�3
2� �c45�c36��2�3

� �c13�c55��3�1� �c14�c56��1�2

�23�c56�1
2�c24�2

2�c34�3
2� �c44�c23��2�3

� �c36�c45��3�1� �c25�c46��1�2. �9�

t is clear that equation 4 is an eigenequation for the eigenvalues
�v2�m and eigenvectors �u�m, m�1,2,3. The dispersion relation is
xpressed by

det����v2I3��0, �10�

rom which we can obtain the three phase velocities vm �m�1,2,3�
s a function of the direction cosines �i and the independent coeffi-
ients of the elastic modulus matrix C. These velocities correspond
o the three body wave modes propagating in an unbounded homo-
eneous medium: the highest value of vm corresponds to a quasi-P-
ave �qP�, whereas the other two correspond to quasi-S-waves qS1

nd qS2, usually ordered in descending vm value. For each solution
, we obtain from equation 4 an associated eigenvector u; hence, the
olarizations ni are fully determined. As a consequence, finding the
otation rates produced by any plane wave is possible for a given an-
sotropic material. First, we set a propagation direction and wave
ode, so that we can find the values v and ni using equations 10 and

. Substituting these values into equation 3 and setting a value for the
ave’s peak displacement A and frequency �, one finally obtains the

hree components of the rotation rate �̇.
We can now use the aforementioned process in an effort to visual-

ze the influence that anisotropy has in the behavior of the rotational
avefield. In Figure 1, we use a plotting similar to that used by de la
uente �2008� to depict the variability of the phase velocities and
eak rotation rates depending on the propagation direction. In partic-
lar, we show the values of peak rotation rates around two axes � and
generated by plane waves in a transversely isotropic �TI� medium.

he three axes l �corresponding to the propagation direction�, �, and
of an orthogonal Cartersian coordinate system are defined in Ap-

endix A. For the particular case of a wave propagating in the x di-
ection, we have l�e1, ��e3 and ��e3, so that the three directions
oincide with the Cartesian axes x, y, and z. The rotation rates in all
ases are obtained by rotating the three components of the rotation
ates that we obtained using equation 3, as shown inAppendix B. We
ssume plane harmonic waves of peak displacement A�10�5 m
nd period T�1 s propagating in Mesaverde clay shale. The elastic
arameters of the material are taken from Thomsen �1986� and are
resented in Table 1. The plots show the highest values �phase veloc-
ty or rotation rates around � and � components� for each propaga-
ion direction. Our calculations for this particular material reveal
hat, for all qP-, qS1-, and qS2-waves, no rotational motion around
he wave-propagation direction l is generated. The same result �i.e.,
he component of the rotation rate vector in the propagation direction
is zero� is also obtained for the monoclinic, orthorhombic, and tri-
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igure 1. Example of isosurfaces of the peak phase velocity in km/s
left column� and peak rotation rate around two axes � and � �mid-
le and right columns� in nrad/s as a function of the wave propaga-
ion direction. The plots shown correspond to qP- �top row�, qS1-
middle row�, and qS2- �bottom row� waves.Aplane harmonic wave
f peak displacement 10�5 m and period T�1 s propagating in a TI
aterial �Mesaverde clay-shale� was assumed. The propagation di-

ection l of the plane wave together with the � and � axes create an
rthogonal Cartesian axis system.The vertical propagation direction
n this example coincides with the symmetry axis of the TI material.
or all three wave types, no rotational motion around the propaga-

ion direction l is generated.
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linic materials for which the elastic coefficients were mentioned in
e la Puente �2008�. In fact, this result follows directly from equation
if we project the value of the rotation rate on the l direction, which

esults in l ·�̇�0, regardless of the material’s properties.
Figure 1 shows us that the phase velocity and rotation rates strong-

y depend on the wave’s propagation direction. The anisotropic be-
avior is clearly revealed by the apparition of rotational motions
aused by qP-waves, which should be zero for all directions in ho-
ogeneous isotropic materials, as we mentioned previously. This

gain suggests that qP rotational motions contain information on an-
sotropic properties of the medium. It should be noted that there is
ore than one order of magnitude difference between the rotational

mplitude of qP-waves and that of qS-waves in this example. Thus,
o know if qP rotational motions can be used for inversion, it is fun-
amental to investigate the magnitude of the rotation rates associat-
d with qP for different levels of anisotropy.

Although there are several symmetry classes in anisotropy, the
lastic anisotropy of rocks is usually moderate and, in most cases, a
I symmetry is sufficient to describe its effects in the wavefield �e.g.,
svankin, 1996; Guéguen and Sarout, 2009�. Moreover, transverse
sotropy is also acknowledged as the anisotropic case of broadest
eophysical applicability �Thomsen, 1986�. Thus, hereafter in this
tudy our investigations focus only on the rotational motions caused
y qP-waves in the particular case of a �e1,e3� plane of a TI medium
ith e3 as the axis of symmetry.
Before going further, we attempt to verify the analytical equations

hat we have.We will compare in the following section the peak rota-
ion rates of qP-waves obtained using this analytical solution with
he results obtained from numerical simulations using the ADER-
G method �the combination of a Discontinuous Galerkin finite ele-
ent method and an Arbitrary high-order DERivative time integra-

ion approach developed by Dumbser and Käser, 2006 and extended
o anisotropic materials by de la Puente et al., 2007�.

qP ROTATIONAL MOTIONS IN TI MEDIA

When considering plane P-waves propagating in the �e1,e3� plane
�2�0, n2�0� of a TI medium whose symmetry axis is e3, equation
can be rewritten as

�̇�
A

2

�2

v � 0

�3n1��1n3

0
�exp	i�
t�

1

v
l ·x��, �11�

nd the Kelvin-Christoffel equation 4 can be simplified as

�c11�1
2�c55�3

2��v2 0 �c13�c55��1�3

0 c66�1
2�c55�3

2��v2 0

�c13�c55��1�3 0 c55�1
2�c33�3

2��v2 �
·�u1

u2

u3
��0. �12�

able 1. Elastic coefficients for the TI material (Mesaverde cl

c11 c12 c13 c22

590 66.6 19.7 39.4 66.6

The material density � is given in �kg·m�3�.All of the other coeffic
quation 12 shows the dispersion relation for coupled waves �qPand
SV�

�c11�1
2�c55�3

2��v2��c55�1
2�c33�3

2��v2�� �c13

�c55�2�1
2�3

2�0, �13�

hat allows estimating the phase velocities v of qP-waves as �see e.g.,
svankin, 1995a; Carcione, 2001�

� �2���1/2�c11�1
2�c33�3

2�c55�D, �14a�

����c11�c55��1
2� �c55�c33��3

2�2�4��c13�c55��1�3�2.

�14b�

he polarization of qPcan be inferred from equations 12 and 13

n1

n3
�

u1

u3
�s�c55�1

2�c33�3
2��v2

c11�1
2�c55�3

2��v2 , �15�

here s��1 if �1�3�c11�1
2�c55�3

2��v2��0; s�1 if �1�3�c11�1
2

c55�3
2��v2� � 0.

In the �e1,e3� plane u2�0, using n1
2�n3

2�1 and equation 15 we
btain

n1�s� c55�1
2�c33�3

2��v2

c11�1
2�c33�3

2�c55�2�v2 , �16�

n3�� c11�1
2�c55�3

2��v2

c11�1
2�c33�3

2�c55�2�v2 . �17�

ubstituting equations 14a, 16, and 17 into equation 11, the rotation
ates induced by plane P-waves propagating in the �e1,e3� plane of a
I material with e3 as the axis of symmetry can be expressed as a

unction of the propagation direction as

˙ �A�2� �

2�c11�1
2�c33�3

2�c55�D�� 0

�3n1��1n3

0
�

�exp	i�
t�
1

v
l ·x��, �18a�

1�s�D� �c55�c11��1
2� �c33�c55��3

2

2D
, �18b�

3��D� �c55�c11��1
2� �c33�c55��3

2

2D
, �18c�

s��1 if �1�3��c11�c55��1
2� �c55�c33��3

2�D�

�0, �18d�

le), given in †109 N·m�2
‡.

c23 c33 c44 c55 c66

39.4 39.9 10.9 10.9 23.45

re zero.
ay sha

ients a
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s�1 if �1�3��c11�c55��1
2� �c55�c33��3

2�D��0.

�18e�

ssuming that � is the angle between the wave propagation direc-
ion l and the symmetry axis e3 of the TI medium, we have

�1�sin � �19a�

�3�cos � . �19b�

his substitution allows us to calculate the rotation rates induced by
lane P-waves propagating in the �e1,e3� plane of a TI material as a
unction of � .

To evaluate the correctness of the analytical solution, we model
he synthetic seismograms created by a plane P-wave of dominant
eriod of 1 s propagating upward through a TI medium that the sym-
etry axis belongs to the �e1,e3� plane.Amodel of 30,000 m length,

0,000 m width, and 20,000 m depth is used. The material chosen is
esaverde clay shale �Table 1�. To check the effect of different inci-

ence angles, we rotate the symmetry axis of the material a full circle
nside the �e1,e3� plane with steps of 5°. Such rotation of the material,
aving fixed the propagation direction of the plane wave, is equiva-
ent to a test in which the material is fixed and the wave propagation
irection l is rotated. In total, we investigate 72 different cases char-
cterized by the angle between the material’s symmetry axis and the
ertical axis, ranging from 0° to 360°.
Six-component seismograms �three components of rotation rates

nd three components of translational velocities� are calculated us-
ng theADER-DG method. The modeling parameters are detailed in
able 2.
The simulation results show that there is only rotational signal

round the e2 axis, as we expected from theory �see equation 18�. We
uperimpose the normalized peak rotation rates around the e2 axis
btained from the simulations and the analytic approach as a func-
ion of the angle � between the wave propagation direction and the
ymmetry axis of the material in a polar coordinate system. The ex-
ellent fit between both results presented in Figure 2 indicates the
onsistency of the analytical and numerical solutions.

We summarize that, for homogeneous anisotropic elastic media,
e can estimate the rotational motions caused by a certain plane
ave as a function of propagation direction and elastic coefficients.
he anisotropic behavior is clearly revealed by the appearance of qP

otational motions. In the following, we extend the analytical equa-

able 2. The modeling parameters used in this study.

esh type Hexahedral

lement edge length 1000 m

otal number of elements 18,000

olynomial degree inside elements 3

umber of processors 64

ength of seismograms 5 s

oundary conditions Absorbing �top�,
inflow �bottom�,
periodic �sides�

verage time step 1.4085�10�2 s

un time per simulation 
50 s
ions to be able to infer the magnitude of the rotation rates associated
ith qPdepending on the degree of anisotropy of the material.

MAGNITUDE OF qP ROTATIONS IN TERMS
OF THOMSEN PARAMETERS

As reported by Thomsen �1986�, for the case of transverse isotro-
y, an alternative and more descriptive set of parameters can be used
o fully describe the medium’s properties in substitution of the five
lastic coefficients presented in equation 8. These parameters are the
wo elastic equivalent quantities 	0 and 
 0 and three coefficients � ,
, and 
 * �usually called Thomsen parameters� expressed as follows

0��c33

�
, �20�

0��c55

�
, �21�

��
c11�c33

2c33
, �22�

� �
c66�c55

2c55
, �23�

igure 2. Variations of the normalized peak rotation rate induced by
qP-wave of period T�1 s propagating in a vertical plane of a TI
edium �Mesaverde clay shale� as a function of the angle � between

he wave propagation direction and the symmetry axis of the medi-
m. The results are presented in a polar coordinate system. Solid
ine�analytic results, dash-dot line�numerical simulation results
sing theADER-DG method.
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*�
1

2c33
2 �2�c13�c55�2� �c33�c55��c11�c33�2c55�� .

�24�

he coefficients � , �, and 
 * are dimensionless anisotropy parame-
ers that fully characterize the strength of the anisotropy. Thus, to
uantify the magnitude of qP rotations in anisotropic elastic media,
n this section we investigate the dependence of the peak rotation
ate values of qP-waves on these Thomsen parameters.

As mentioned by Tsvankin and Thomsen, 1994 and Tsvankin,
995b, the parameter � does not affect the propagation of the qP- or
he qSV-waves in TI media. Only the SH mode depends on this pa-
ameter. This can also be recognized from equation 13. For the cou-
led waves, neither the phase velocities nor the Kelvin–Christoffel
quations depend on c66. As a consequence, the rotation rates in-
uced by qP-waves are also independent of c66 �see equation 18�.
his means that, in a certain TI medium with a constant value of 
 0

or equivalently c55�, the qP rotation rates are independent of � �see
quations 21 and 23�. Hence, we consequently skip the parameter �
n the following. We quantify the peak rotation rates of the qP-waves
enerated in TI materials with different levels of anisotropy only as a
unction of the two parameters � and 
 *.

We define a set of elastic modulus matrices C by assuming fixed
alues of 	0, 
 0, �, and � and letting � and 
 * take different values.
or each ��,
 *� couple, we aim to obtain the peak rotation rates pro-
uced by a qP-wave traveling in any direction. To this goal, for each
lastic modulus matrix C and for each propagation direction, we first
xtract the phase velocity and the polarization of the considered qP-
ave by solving equation 10. The corresponding rotation rates are

alculated using equation 3. The corresponding peak rotation rate
an be then obtained trivially from the full rotation rate vector. In this
ay, we obtain the peak qP rotation rate that can be generated by a

ertain plane wave in the considered materials, each characterized
y its � and 
 * values, in all propagation directions l. We consider
alues of � ranging from 0 to 0.35 and those of 
 * from �0.3 to 1.
hese values cover most TI cases observed �Thomsen, 1986�. Four
ase studies are investigated: �1� a plane wave of peak ground dis-
lacement �PGD� 355.78 nm and period T�1 s �caused by a distant
arthquake� propagating through bedrock; �2� a plane wave of PGD

48�10�4 m and period T�0.8 s �can be caused by a local earth-
uake M7.0, epicenter distance 100 km� propagating through bed-
ock; �3� a plane wave of PGD�10�6 m and frequency f �150 Hz
can originate from a microseismic event of Mw�0 at hypocenter
istance of approximately 1 km� propagating through reservoir
ock; and �4� a plane wave of PGD�180.35�10�6 m and f

5 Hz �can be caused by an air-gun experiment� propagating
hough reservoir rock �see Chen et al., 2008�. For each case study,

able 3. Parameters used for quantifying peak rotation rates
tudies.

ase study
Peak ground

displacement �m�

. Bedrock/distant earthquake 355.78�10�9

. Bedrock/local earthquake 48�10�4

. Reservoir/microseismic event 10�6

. Reservoir/air-gun experiment 180.35�10�6
easonable values of 	0, 
 0, and mass density � are used and are de-
ailed in Table 3. Because of the independence of the qP rotation
ates on � , any arbitrary value of this Thomsen parameter can be tak-
n. Here we note that the first case study is based on measurements of
he 25 September 2003 M8.1 Tokachi-oki earthquake at the Wettzell
tation in southeast Germany �see Pham et al., 2009a� except for the
nisotropy, which has been solely added for the purpose of the re-
earch presented here.

We compute for each of the four study cases the peak rotation rates
f qP-waves generated in different TI materials for a set of � and 
 *

alues. The results are given in Figures 3–6. Every point in the plot
epicts the maximum qP rotation rate among all propagation direc-
ions for a given couple of values of ��,
 *�. A general trend that can
e observed is that peak qP rotation rates are higher with increasing
alues of � and 
 *. In particular, if we look at the results obtained for
he case of the distant earthquake �Figure 3�, we can safely conclude
hat, if we consider weakly anisotropic bedrock under Wettzell �Lee
t al., 2009b�, we should measure qP rotation rates of at most 5
10�11 rad /s. This value is much smaller than the amplitude �6.3
10�10 rad /s� observed in P coda rotations, as reported by Pham et

l. �2009a�. However, for the other three study cases, significant am-
litudes of qP rotation rates are expected �Figures 4–6�. With peak
P rotation rates in the order of �rad /s, even in weakly anisotropic
aterials the signals can be recorded with current instrument tech-

ology �Nigbor et al., 2009; Wassermann et al., 2009�.

DISCUSSION

The rotational motion of qP-waves studied in this paper is another
xpression of the polarization deviation of the P-waves in anisotrop-
c media studied in earlier papers �e.g., Pšenčík and Gajewski, 1998;
heng and Pšenčík, 2002�. However, at the beginning of this study it
as not clear how anisotropy affects rotational ground motions and

f rotational motions can help putting constraints on anisotropic
roperties.The results obtained in this paper under the assumption of
lane wave propagation show that �1� anisotropic behavior in elastic
edia can be recognized from rotational motion records, especially

y the appearance of qP rotations; �2� for typical reservoir situations
nd strong local earthquakes qP rotation signals are significant, re-
ordable, and can be used for inverse problems.

It should be noted that our original motivation to study the relation
etween anisotropy and rotational motions comes from efforts to ex-
lain the observed P coda rotations reported by Igel et al. �2007� and
ham et al. �2009b�. At the beginning of this study, it was unclear
hether rotational motions induced by qP-waves in anisotropic me-
ia contribute to the observed rotational signals in the P coda. Relat-

waves in terms of the Thomsen parameters for four case

nsidered
riod �s� 	0 �m/s� 
 0 �m/s� � �kg /m3�

1 6600 3700 2900

0.8 6600 3700 2900

1 /150 3928 2055 2590

0.2 3928 2055 2590
of qP-
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d to this, several results obtained in the study presented here need to
e mentioned. First, although anisotropy does generate qP rotations,
or teleseismic wavefields the rotational energy induced by aniso-
ropic effects is expected to be much smaller than the observed one in
he Pcoda. Second, it is evident from equation 3 that translational ac-
eleration and the resulting qP rotation rates would have the same
aveforms coinciding in time. However, as reported by Pham et al.

2009b�, the P coda rotations observed at the Wettzell station come
ater than the appearance of direct P-waves. These results demon-
trate that anisotropic qP rotational signals cannot be the main cause
f the observed Pcoda rotations. The difference in the arrival time of
nisotropic qP rotational motions and scattering Pcoda rotations can
e used to separate these two cases for specific purposes when a het-
rogeneous medium is present.
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igure 3. The maximum peak rotation rates �in 10�11 rad /s� caused
y plane P-waves in a full space TI medium as a function of the
homsen parameters � and 
 *, as expected for a distant earthquake
ith PGD of 355.78 nm and period T�1 s.Avertical P velocity 	0

6600 m /s, vertical S velocity 
 0�3700 m /s, and � �2900
g /m3 were assumed. Every point in the plot depicts the maximum
P rotation rate among all propagation directions for a given couple
f values of ��, 
 *�.
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igure 4. The maximum peak rotation rate �in 10�7 rad /s� caused by
P-waves in a full space TI medium as a function of the Thomsen pa-
ameters � and 
 *, as expected for a local earthquake with PGD 48

10�4 m and period T�0.8 s. A vertical P velocity 	0

6600 m /s, vertical S velocity 
 0�3700 m /s, and � �2900
g /m3 were assumed. Every point in the plot depicts the maximum
P rotation rate among all propagation directions for a given couple
f values of ��, 
 *�.
CONCLUSIONS

In summary, we conclude that rotational motions contain addi-
ional information about the material’s anisotropic properties and
hat joint measurements of translational and rotational motions of
P-waves in anisotropic media might allow one to constrain aniso-
ropic parameters. Our results not only demonstrate the potential
enefit of measurements of rotational ground motions but also pose
everal issues that need to be addressed in the future.

� Because we have shown that the amplitudes of the qP rotational
motions generated in anisotropic materials are high enough to
be observed and recorded, one of the key questions is: Can we
extract additional information about the material’s properties
using qP rotations?
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igure 5. The maximum peak rotation rate �in 10�6 rad /s� caused by
P-waves in a full space TI medium as a function of the Thomsen pa-
ameters � and 
 * as expected for a reservoir microseismic event
ith PGD of 10�6 m and frequency f �150 Hz.Avertical P veloci-

y 	0�3928 m /s, vertical S velocity 
 0�2055 m /s, and �
2590 kg /m3 were assumed. Every point in the plot depicts the

aximum qP rotation rate among all propagation directions for a
iven couple of values of ��, 
 *�.
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igure 6. The maximum peak rotation rate �in 10�7 rad /s� caused by
P-waves in a full space TI medium as a function of the Thomsen pa-
ameters � and 
 * as expected for an air-gun experiment in a reser-
oir area with PGD 180.35�10�6 m and frequency f �5 Hz. A
ertical P velocity 	0�3928 m /s, vertical S velocity 
 0

2055 m /s, and � �2590 kg /m3 were assumed. Every point in
he plot depicts the maximum qProtation rate among all propagation
irections for a given couple of values of ��, 
 *�.
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� In the study presented here, we focus mainly on qP-waves, the
rotational motions of which are completely independent of the
Thomsen parameter � . Thus, the consideration of this measure
of S anisotropy �i.e., � � is out of the framework of this paper.
Theoretically, qS motions also contain additional information.
Can we constrain the Thomsen parameter � using measure-
ments of rotational motions of qS-waves? What additional in-
formation can be extracted if these motions are used?

� The well-known result for isotropic media that the rotation vec-
tor is orthogonal to the propagation direction �i.e., the compo-
nent of the rotation rate vector in the propagation direction is
zero� is theoretically and numerically demonstrated to also
hold for anisotropic media. This opens an opportunity to inves-
tigate scattering properties of heterogeneous media on the basis
of variations of rotational motions around the wave propaga-
tion direction.

Finally, the applicability of the presented theory to real data will
est on the ability to develop reliable sensors �borehole- and surface-
ased� for rotational motions with a broad enough frequency band-
idth and dynamic range.
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APPENDIX A

ORTHOGONAL CARTESIAN COORDINATE
SYSTEM �, �, �

For the purpose of visualization of the influence that anisotropy
as in the behavior of the rotational wavefield, an orthogonal Carte-
ian coordinate system l, �, � is used in the paper �see Figure A-1�.
he system is defined as follows. We first build the unit vector l
��1,�2,�3� so that its axis coincides with the wave propagation di-

ection. Furthermore, we generate a set of three auxiliary vectors p,
, and r that will help us define the two remaining axes of our Carte-
ian coordinate system. These are defined as

p� ��1,��2,0�, �A-1�

q� �0,��3,�2�, �A-2�

r� ��3,0,��1� . �A-3�

he definition of the two remaining Cartesian axes will depend on
hether the auxiliary vectors are collinear or not and whether one of
hem is the vector 0. The three distinct cases are described as follows.
f �l�p� � 0, then � is defined as

�� l�p� ��2�3,�1�3,�2�1�2� . �A-4�

f �l�p��0 and �l�q� � 0, then � is defined as

�� l�q� ��2
2��3

2,��1�2,��1�3� . �A-5�

f �l�p��0 and �l�q��0, then � is defined as

�� l�r� ���1�2,�3
2��1

2,��2�3� . �A-6�

he vector � is always obtained by cross product of l and �,

�� l��. �A-7�

APPENDIX B

AXIS TRANSFORMATIONS OF ROTATIONS

To set up the relationship between components of a rotational
otion in two orthogonal Cartesian coordinate systems �x,y,z� and

x*,y*,z*�, we start by recalling the definition of the rotation rate

��̇x

�̇y

�̇z

��
1

2
� �V�

1

2��yVz��zVy

�zVx��xVz

�xVy��yVx
�, �B-1�

here V is the ground translational velocity and �̇ is the rotation
ate.

In the �x*,y*,z*� system, we can similarly find that

�̇x
*�

1

2
��y*Vz

*��z*Vy
*� . �B-2�

he relationship between the components of the translational mo-
ion in the two systems can be expressed as

V*�AV, �B-3�

hich explicitly can be written as

l

e1

l3

e2

l1

θ

φ

l2

e3

igure A-1. Illustration of the orthogonal Cartersian coordinate sys-
em l, �, � used in this study.
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�Vx
*

Vy
*

Vz
*���a11 a12 a13

a21 a22 a23

a31 a32 a33
��Vx

Vy

Vz
�, �B-4�

here aij�ei
* .ej�cos 	 ij �i�1, 2, 3; j�1, 2, 3� are the so-called

irection cosines; 	 ij are angles between two sets of axes; and
e1

*,e2
*,e3

*� and �e1,e2,e3� denote the unit basis vectors of the axes of
he two systems.

Using B-4, equation B-2 can be rewritten as

�̇x
*�

1

2
��a31�y*Vx�a32�y*Vy�a33�y*Vz�� �a21�z*Vx

�a22�z*Vy�a23�z*Vz�� . �B-5�

ow we use the Jacobian of the transformation to obtain the deriva-
ives in the new coordinate system.

�x*�
�x

�x*
�x�

�y

�x*
�y�

�z

�x*
�z�a11�x�a12�y�a13�z,

�B-6�

�y*�
�x

�y*
�x�

�y

�y*
�y�

�z

�y*
�z�a21�x�a22�y�a23�z,

�B-7�

�z*�
�x

� z*
�x�

�y

�z*
�y�

�z

�z*
�z�a31�x�a32�y�a33�z.

�B-8�

ubstituting B-6–B-8 and B-5, we find that

�̇x
*�

1

2
	�a33a22�a32a23�
 �Vz

�y
�

�Vy

�z
�� �a31a23

�a33a21�
 �Vx

�z
�

�Vz

�x
�� �a32a21�a31a22�
 �Vy

�x

�
�Vx

�y
�� �B-9�

hich leads to the final form

˙
x
*� �a33a22�a32a23��̇x� �a31a23�a33a21��̇y� �a32a21

�a31a22��̇z. �B-10�

imilarly, we also obtain

˙
y
*� �a13a32�a33a12��̇x� �a11a33�a31a13��̇y� �a12a31

�a32a11��̇z, �B-11�

�̇z
*� �a23a12�a13a22��̇x� �a21a13�a11a23��̇y� �a11a22

�a a ��̇ . �B-12�
12 21 z
he last three equations can be written in the compact form

�̇*� �A�1�T�̇, �B-13�

hich we can compare to B-3 to see how the rotation-rate vector can
e transformed into a rotated Cartesian system once we know the ex-
ression of the unitary vectors �e1

*,e2
*,e3

*� that form the basis of the
ew system.
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S U M M A R Y
We present a detailed study on the numerical effects due to staircase approximations of non-
planar material interfaces and the importance of mesh alignment to such material boundaries
using the discontinuous Galerkin finite element method. Our aim is to define clear rules that
have to be adhered to guarantee acceptable synthetic data in seismic forward modelling for
the cases where material contrasts occurring along curved interfaces are discretized with
regular meshes. To this end, we compare results of structured staircase approximations with
reference results obtained by unstructured triangular meshes that can be aligned to non-planar
interfaces. We investigate different mesh spacings, wave frequencies, and material contrasts
to cover various parameter ranges that allow us to measure their influence on the accuracy of
the resulting waveforms. Our results show that acceptable synthetic results strongly depend
on the material contrast and we give a quantitative estimate of the required mesh resolution
in the sense of numbers of elements per shortest dominant wavelength to obtain satisfying
seismograms even if the material interfaces are not respected by the mesh. We apply our rules
to two different test cases including a multilayered model and a basin structure, both with
non-planar interfaces of small and large material contrasts to confirm the validity of our study.
We finally conclude that for moderate material contrasts regular meshing can be beneficial
due to its simple mesh generation process and typically superior computational efficiency
compared to unstructured meshes, however, the correct frequency- and material-dependent
mesh resolution has to be chosen.

Key words: Numerical approximations and analysis; Computational seismology; Wave scat-
tering and diffraction; Wave propagation.

1 I N T RO D U C T I O N

Recently, the development of seismic forward modelling tools seem
to increasingly consider the use of unstructured meshes (Bao et al.
1998; Gao & Zhang 2006; Stupazzini et al. 2008; Ichimura et al.
2009; Etienne et al. 2009; Wilcox et al. 2010). The main motivation
for this discretization approach is the alignment of the mesh to geo-
metrically complex material discontinuities or topographic features.
The accurate representation of the real geometry of a physical prob-
lem is generally assumed to be important to achieve high-quality
simulation results avoiding numerical artefacts due to inappropriate
model discretization. However, unstructured meshes typically re-
quire more computational memory than regular, structured grids as
the connectivity between element vertices has to be stored explic-
itly. Furthermore, they often are computationally more expensive
to obtain a numerical solution. Nevertheless, unstructured meshes

∗Now at: University of Hamburg, KlimaCampus, Hamburg, Germany.

tend to become a popular choice for wave propagation applications,
as the mesh spacing h can be changed locally (h-adaptation) to ad-
just the element size to the material properties or to improve the
resolution of particular areas of interest. Alternatively, a solution
can be approximated within each element using polynomials of var-
ious degree p leading to locally increased accuracy (p-adaptation).
In addition, local time stepping might be used (Dumbser et al.
2007) to reduce the computational cost. Unfortunately, these ad-
vanced methods can be difficult to implement, maintain, or extend
to further functionalities due to the underlying data structures and
sophisticated algorithms.

Within the topic of unstructured 3-D meshes there is a further
distinction, mainly between meshes of hexahedral or tetrahedral el-
ements, as other element types like pyramids or prisms are rarely
used. Methods like the spectral element method (SEM) show par-
ticular advantages for hexahedral meshes, while their efficient for-
mulation even for 2-D triangular meshes seems to be problematic
(Pasquetti & Rapetti 2006; Mercerat et al. 2006). On the other
hand, the discontinuous Galerkin (DG) method is well suited for

C© 2010 The Authors 1031
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tetrahedral or triangular meshes but in general computationally
more expensive. In both cases, however, the creation of the com-
putational meshes for geometrically complex domains requires ad-
vanced mesh generators, for example, CUBIT, ANSYS ICEM-CFD,
Fluent Gambit or TetGen. Most of this meshing software is devel-
oped and used for engineering problems such as structural mechan-
ics, fluid dynamics, etc. and can handle geometries that typically
represent combinations and modifications of simple geometrical
shapes. In contrast, many problems in geoscience consists of more
complicated structures and geological units with irregular internal
material interfaces, non-planar earthquake faults or complex do-
main boundaries due to topography. Furthermore, the geometrical
information is given as a large data set of discrete points of regular
or irregular distributions, which have to be interpolated to obtain
surface splines that can then be processed by the mesh generators.
The step of building this geometry typically is a time consuming
task requiring a large amount of manual interaction. Finally, not
all geoscientists, or computational seismologists in particular, have
access to the appropriate, often commercial software, which hinders
the distribution of codes based on specific mesh generators within
the community of seismology or geoscience in general.

On the other hand, methods based on regular, structured grids
like finite differences (FD), for example, Moczo et al. (2007) or
Olsen et al. (2006), helped tremendously to answer many scien-
tific questions in the past and are widely spread in the seismolog-
ical community. However, the assignment of material properties
to nodes located at the interface can be problematic and staircase
approximations of material discontinuities usually occur. For inter-
nal material interfaces the accuracy often relies on sufficiently fine
grid spacing and special treatments to avoid spurious diffractions
(Zahradnı́k et al. 1993; Collino et al. 1997). The misalignment of
the regular grid to material discontinuities leads to first-order errors
proportional to the grid spacing or time step that are insensitive
to the approximation order of the numerical scheme (Gustafsson
& Wahlund 2004; Symes et al. 2008). Therefore, work has been
done to represent such interfaces through an appropriate usage of
effective material using harmonic and arithmetic averaging of elas-
tic moduli and densities, for example, by Graves (1996) or Moczo
et al. (2002). Zhang & LeVeque (1997) developed a second-order
accurate method for the acoustic wave equations in heterogeneous
media using high resolution multidimensional flux-limiters on a
Cartesian grid. Near the material interface special formulas are de-
veloped using the immersed interface method that incorporate the
jump conditions and give pointwise second order accuracy even
when the interface is not aligned with the grid. This approach was
then extended to fourth-order accuracy and for elastic waves (Zhang
& Symes 1998). A major disadvantage of regular grid methods oc-
curs when dealing with complex free-surface topography. It is well
known that standard FD schemes require a high grid resolution at
free-surface boundaries to avoid numerical artefacts, in particular, if
non-planar free-surface topography has to be included (Robertsson
1996; Bohlen & Saenger 2006). Moczo et al. (2007) summarize
and analyse existing FD schemes for this topic in detail and suggest
an alternative approach to model free-surface topography. However,
standard FD schemes rely on dense meshes which could result in
an enormous computational effort. An interesting estimation of the
computational requirements needed for a large-scale FD simulation
is given by Bao et al. (1998). Nevertheless, the use of regular grids
allows in general for highly efficient codes both in terms of memory
and computational cost.

In this paper, we analyse quantitatively numerical errors of syn-
thetic seismograms due to staircase approximations of material dis-

continuities using the DG method, as its implementation on regular
meshes is computationally also much more efficient. To this end, we
focus on the systematic dependence of the errors on mesh spacing,
material contrast, and frequency content of the seismic signal. To
our knowledge only few quantitative studies exist for this topic and
mainly consider the FD approach, for example, van Vossen et al.
(2002) or Bohlen & Saenger (2006). There, FD schemes are investi-
gated by modelling free-surface conditions and solid-fluid contrasts
using variable grid spacings and different angles between the ori-
entation of the grid and the interface. However, they perform their
studies for material properties typically occurring in geosciences
but do not focus explicitly on error dependencies on the wave speed
ratio. In our study, we simulate the reflection and transmission of a
2-D plane wave at a semi-circular interface between two materials
and also investigate the effects at a non-planar free-surface boundary
condition using regular, quadrilateral meshes. The reference solu-
tion for all tests is produced with the same, well-tested high-order
DG method on unstructured triangular meshes to fully account for
the geometrical features of the test cases. This way, differences due
to the usage of different numerical methods are excluded. Hence, we
can compare synthetic seismograms whose misfits can only orig-
inate from the different discretization approaches. Our goal is to
define proper discretization rules that should be considered in for-
ward modelling of seismic wave propagation in order to guarantee
a desired accuracy. Finally, we show that these rules also hold for
more realistic applications with complicated geometrical proper-
ties and material distributions typically encountered in layered or
sedimentary basin environments.

The paper is structured as follows. Section 2 defines the model
setup and studies the results of the different staircase discretiza-
tion approaches. We analyse in detail the errors of the synthetic
seismograms and their spatial distribution to set up discretization
rules which should help modellers to choose a sufficient geometry
sampling. In a second step, we verify these rules in Section 3 with
a more complicated layered model with two arbitrary shaped inter-
faces. Finally, we apply and test our rules in a realistic scenario of
a basin structure in Section 4 and finally draw our conclusions in
Section 5.

2 I M P O RTA N C E O F I N T E R FA C E
A P P ROX I M AT I O N

To quantify the dependency of the numerical errors on the ap-
proximation quality of the discretization, the material contrast, and
the frequency content of the seismic waves, we set up a test case
which allows us to perform a systematic analysis by the variation
of the respective parameters. This will then lead to the definition of
some fundamental rules concerning the discretization of complex
geometries with regular meshes and the importance of the interface
approximation by mesh alignment.

2.1 Model setup

Similar to previous work (Kawase 1988; Ohminato & Chouet 1997)
we simulate the incidence of a plane P wave with a Ricker-type
source time function onto a semi-circular material interface sepa-
rating a basin-like structure from a homogeneous half-space (see
Fig. 1). Material 1 located in the half-circle of radius r = 100 m is
surrounded by material 2 of higher wave velocities. In addition to
five different material contrasts of elastic media, we also consider
two special cases, where the material 1 in the basin is an acoustic

C© 2010 The Authors, GJI, 183, 1031–1051
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Figure 1. Model setup of the accuracy study with a basin-like structure
(material 1) in a homogeneous half-space (material 2). We show a zoomed
section of the area of the material interface with receiver locations denoted
by dots. Seismograms at positions of highlighted geophones (downward-
pointing triangle) are discussed in detail in Section 2.2.

fluid, or where the material interface represents a free-surface
boundary such that material 1 vanishes. We will focus on the com-
putational domain (x , z) ∈ � = [−400, 400] × [−400, 0] m ∈ R

2

with the top boundary (z = 0 m) being a free surface. In fact, the
other boundaries of the model are extended sufficiently to avoid any
interference of possible reflections from non-perfectly absorbing
boundaries with the waves of interest that are reflected, transmit-
ted, or converted at the material interface or the free surface. Tests,
which are not shown here, indicated that, in principle, similar results
are obtained for plane S-wave incidence or waves from single-force
sources generating P and S waves as well as for different interface
geometries, for example, a notch (Godinho et al. 2009). The dots
in Fig. 1 denote the locations of 21 × 21 receivers allowing for a
dense sampling of the wavefield to obtain an overview of the spatial
error distribution.

In Fig. 2, we show the two different discretization approaches
used. On the left-hand side a regular, structured grid with a mesh
spacing of h = 20 m is sketched. In our study we assign constant
material properties within each element determined by the location
of the element’s barycentre. With the displayed coarse resolution of
only a fifth of the semi-circle’s radius the discretized shape of the
material interface hardly represents the true geometry. On the right
side of Fig. 2 we show an unstructured, triangular mesh with an
average triangular edge length of h = 10 m. This discretization is
used to produce a reference solution for the problem and provides
a sufficiently accurate discretization, as further mesh refinement
to h = 5 m generates quasi-identical seismograms. Therefore, we

also remark that the unstructured triangular mesh with its piecewise
linear edge-alignment of h = 10 m represents the material interface
sufficiently accurate.

For our tests concerning the sensitivity of numerical seismograms
to the discretization of complex geometry, we use a series of reg-
ular square-shaped meshes with h = 20, 10 and 5 m providing an
improved discretization of the curved material interface by an in-
creasingly fine staircase approximation. Furthermore, we vary the
material contrast to investigate its importance with respect to the
discretization approach. The material contrast between two materi-
als 1 and 2 is given through the ratio of the S-wave speeds vS,1/vS,2,
with vS,1 ≤ vS,2. In this way, small numbers represent strong material
contrasts. Table 1 gives an overview of the applied material contrasts
and wavelengths. Finally, we use plane, Ricker-type P waves of dif-
ferent dominant frequency contents, f 15 = 15 Hz, f 20 = 20 Hz
and f 25 = 25 Hz to analyse the dependence of the discretization
effects on the seismic wavelengths. We mention, that the Ricker
wavelet of a dominant frequency f contains significant energy up to
a maximum frequency of around 2.5 f .

The used simulation code is based on a DG method and is well
tested and verified against analytical solutions and other numerical
schemes (Dumbser & Käser 2006; Käser et al. 2008). Its accuracy
and applicability to strong material heterogeneities was also con-
firmed in previous work (Castro et al. 2010; Chaljub et al. 2010).
Using the same numerical solver for structured and unstructured
meshes ensures that differences in the seismograms originate only
from diverse geometry representations and not from numerical bi-
ases like diffusion, dispersion, underresolution, or different ways of
incorporating material properties. We remark, that all simulations
are performed with order 7 in space and time and use enough ele-
ments per wavelength to resolve the wavefield sufficiently accurate.
This is confirmed by running the simulations of highest frequency
content and coarsest discretization with a decreased order of ac-
curacy, which basically does not change the resulting seismograms
and therefore proves numerical convergence of the solution. The
remaining small differences are much smaller than the effects ob-
tained by varying the parameters of our accuracy analysis.

2.2 Accuracy analysis

In the following we analyse the results of the 63 test cases obtained
by seven different material contrasts, three mesh spacings and three
frequencies. First, we study the spatial error distribution to identify
areas of particularly high errors. Then we investigate and display
the misfits of selected seismograms to define some basic rules.
These rules should guarantee a desired level of accuracy for curved

Figure 2. Sketch of the two different discretization approaches. Material properties for the DG method are set element-wise determined by the barycenter
of each element. Hence, the discrete material interface (red line) is dislocated from the exact position (black semi-circle) and depends on the mesh. Left: an
example of a regular mesh with 20 m spacing is shown which is not able to represent the interface properly leading to a coarse and jagged approximation. Right:
an example of a triangular mesh with 10 m spacing (triangular edge lengths) used to compute the reference solution. In this case, the shape of semi-circle is
approximated with piecewise linear edges of triangular elements.
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Table 1. Material properties for the seven test cases with different contrasts across the interface. Furthermore, the dimensionless values of the shortest
wavelength per mesh spacing λS/h are given for the dominant frequencies f . Please, note that a P wave represents the shortest wavelength in the Solid–Fluid
test case.

λs/h for f 25 λs/h for f 20 λs/h for f 15

Test case ρ (kg m−3) vP (m s−1) vS (m s−1) h20 h10 h5 h20 h10 h5 h20 h10 h5

Solid–Solid 1
Material 1 1000 1732 1000 2 4 8 2.5 5 10 3.3 6.7 13.3
Material 2 1299 2249 1299 2.6 5.2 10.4 3.2 6.5 13 4.3 8.7 17.3
Contrast 0.77 0.77

Solid–Solid 2
Material 1 1000 1732 1000 2 4 8 2.5 5 10 3.3 6.7 13.3
Material 2 1538 2665 1538 3.1 6.2 12.3 3.8 7.7 15.4 5.1 10.2 20.5
Contrast 0.65 0.65

Solid–Solid 3
Material 1 1000 1732 1000 2 4 8 2.5 5 10 3.3 6.7 13.3
Material 2 2000 3464 2000 4 8 16 5 10 20 6.7 13.3 26.7
Contrast 0.5 0.5

Solid–Solid 4
Material 1 1000 1732 1000 2 4 8 2.5 5 10 3.3 6.7 13.3
Material 2 2500 4503 2600 5.2 10.4 20.8 6.5 13 26 8.7 17.3 34.7
Contrast 0.38 0.38

Solid–Solid 5
Material 1 1000 1732 1000 2 4 8 2.5 5 10 3.3 6.7 13.3
Material 2 5000 8660 5000 10 20 40 12.5 25 50 16.7 33.3 66.7
Contrast 0.2 0.2

Solid–Free Surface
Material 1 – – – – – – – – – – – –
Material 2 2000 3464 2000 4 8 16 5 10 20 6.7 13.3 26.7
Contrast – –

Solid–Fluid
Material 1 1020 1500 0 3 6 12 3.8 7.5 15 5 10 20
Material 2 2000 3464 2000 4 8 16 5 10 20 6.7 13.3 26.7
Contrast 0.43 –

interface approximations, that have to be obeyed when using struc-
tured meshes.

2.2.1 Spatial error distribution

We compare the quality of the obtained seismograms at all 441
receivers indicated in Fig. 1. To measure the misfit between the
simulated test seismogram Sh,i(t) and the reference solutions Sref ,i(t)

we use the root mean square (rms) error

Ei =
√∫ |Sh,i (t) − Sref ,i (t)|2dt∫ |Sref ,i (t)|2dt

, (1)

where i is the index of the receiver, h the mesh spacing of the
numerical computation, and t is time. We emphasize that the rms
error is not always suitable to compare seismograms quantitatively.

Figure 3. Error maps of the rms error E for the test case Solid–Solid 1 with the material contrast 0.77.
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Figure 4. Error maps of the rms error E for the test case Solid–Solid 2 with the material contrast 0.65.

Figure 5. Error maps of the rms error E for the test case Solid–Solid 3 with the material contrast 0.5.

Figure 6. Error maps of the rms error E for the test case Solid–Solid 4 with the material contrast 0.38.
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Figure 7. Error maps of the rms error E for the test case Solid–Solid 5 with the material contrast 0.2.

Figure 8. Error maps of the rms error E for the test case Solid–Free Surface.

Figure 9. Error maps of the rms error E for the test case Solid–Fluid.
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Instead, time-frequency (TF) misfit criteria as suggested by
Kristeková et al. (2006, 2009) represent a more appropriate ap-
proach for the comparison of two signals. The main advantage of
the TF-misfit is to obtain separate information about phase and
envelope errors. We also determined the envelope and phase mis-
fits individually, however, it turned out that the combined analysis
of these envelope and phase misfits at each receiver gives at least
a similar pattern as the rms error. Even though we, in general,
strongly recommend the use of the TF-misfit analysis we prefer
the single-valued rms error in this case to provide an overview of
the spatial error distribution without splitting all our results consid-
ering envelope and phase misfits separately. Furthermore, the rms
error typically tends to overestimate the errors compared to separate
envelope and phase misfits and therefore serves as an upper limit
estimation.

To present the errors we assign a coloured pixel to each receiver
depending on the single valued rms misfit of its seismograms dis-
tinguishing horizontal and vertical components.

In Figs 3–9, we show the spatial error maps representing the
single valued rms misfit Ei between reference solutions and seis-
mograms obtained with the structured grid. Each figure belongs
to one material contrast and contains the results of the three
dominant frequencies f 15, f 20 and f 25 (ordered from left- to
right-hand side) obtained from the three refined mesh spacings
h = 20, 10, 5 m (ordered from top to bottom). For each fre-
quency and mesh size we display the horizontal and vertical ve-
locity components. For better visualization and comparison the
colour bars are normalized ranging between 0 and 1 for the
minor material contrasts Solid–Solid 1 (Fig. 3) to Solid–Solid
3 (Fig. 5) and between 0 and 2 for the stronger contrasts

r126

r111

f2
5

f2
0

f1
5

f2
5

f2
0

f1
5

Figure 10. Example seismograms of the accuracy study test case Solid–Solid 1 with the material contrast 0.77. Shown are the horizontal and vertical velocity
components of r126 (top panel) and r111 (bottom panel).
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Solid–Solid 4 (Fig. 6) to Solid–Fluid (Fig. 9) where the errors are
larger.

A first and obvious observation is that the misfit of the horizon-
tal velocity components in the centre of the model (x = 0 m) is
always zero, as no energy appears on this component caused by
the plane vertical P wave incident from below. However, higher
error levels appear, in general, for the horizontal component. This
is also due to the fact that all energy in the system is primarily
in the vertical component and only by reflections, refractions and
transmissions energy is transferred into the horizontal component.
Therefore, the horizontal component seems to be especially sensi-
tive to the geometry approximations of the semi-circular interface.
A further observation is the higher error level close to the material
interface, at the free-surface, and at two areas leading away from
the semi-circular basin at approximately 30◦ downward. The shape

of the semi-circle is easily identifiable by warmer colours for the
stronger material contrasts. Besides higher errors occur at the in-
side of the semi-circle close to the material contact. Furthermore,
a general increase of the error level with increasing mesh spacing,
higher frequency content and stronger material contrast is visible.

Particularly high errors appear in the case of the Solid–Free Sur-
face (Fig. 8) and Solid–Fluid (Fig. 9) contrasts where the staircase
approximation of the curved interface obviously creates large mis-
fits compared to the reference solution obtained with the rather
smooth approximation via aligned triangular edges. In these two
cases even for the finest mesh spacing h = 5 m and lowest fre-
quency f 15 the horizontal component already shows an error level
clearly above Ei = 0.5. However, for the Solid–Solid material
interfaces in Figs 3–7 the finest mesh spacing h = 5 m seems to
work surprisingly well.

r126

r111
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5

f2
0

f1
5

f2
5

f2
0
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5

Figure 11. Example seismograms of the accuracy study test case Solid–Solid 3 with the material contrast 0.5. Shown are the horizontal and vertical velocity
components of r126 (top panel) and r111 (bottom panel).
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Based on this investigation of the spatial error distribution we can
now focus on the seismogram misfits and the effects of the staircase
approximation of a curved interface on the seismic signature in
more detail.

2.2.2 Seismogram misfits

After the analysis of the overall distribution of rms errors, we study
the seismic waveforms at two receivers in different areas of the
computational domain. To this end, we show the variation of the
seismograms for the test cases Solid–Solid 1 (Fig. 10), Solid–Solid
3 (Fig. 11), Solid–Free Surface (Fig. 12) and Solid–Fluid (Fig. 13)
with respect to their dependence on the mesh spacing (different
colours) and frequency (ordered from top to bottom) for both hor-

izontal (left) and vertical (right) components. In each figure we
display the results obtained for receivers r111 and r126 at the loca-
tions indicated by the downward-pointing triangles in Fig. 1. While
receiver r111 (x , z) = (−100.0, −152.5) m lies in an area of a gen-
erally low rms error, receiver r126 (x , z) = (−100.0, −2.5) m has
a crucial position close to the free-surface boundary at the top of
the computational domain and directly at the material interface. If
we compare the behaviour of the seismogram misfit in Figs 10–13
with each other, the growing misfits with increasing material con-
trast is clearly observable again. The seismograms of the test case
Solid–Solid 1 (Fig. 10) are examples of a remarkably good fit, which
is due to the small material contrast. Only at the crucial position of
r126 for a coarse mesh spacing of h = 20 m we obtain larger ampli-
tude errors and phase shifts for the horizontal velocity component.
The seismograms of receiver r126 for the test case Solid–Solid 3

r126

r111
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5
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0
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5

f2
5
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0
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5

Figure 12. Example seismograms of the accuracy study test case Solid–Free Surface. Shown are the horizontal and vertical velocity components of r126 (top
panel) and r111 (bottom panel).
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Figure 13. Example seismograms of the accuracy study test case Solid–Fluid. Shown are the horizontal and vertical velocity components of r126 (top panel)
and r111 (bottom panel).

(Fig. 11) show nicely how the error decreases with decreasing mesh
spacing. However, we can observe only a small decrease of the mis-
fit at lower frequencies. In contrast, receiver r111 seems to be much
less affected. As expected, the quality of seismograms at receiver
r126 depends strongly on the combination of the three different
simulation parameters due to its worst case position identified in
Section 2.2.1

Furthermore, the seismograms of the test cases Solid–Free Sur-
face (Fig. 12) and Solid–Fluid (Fig. 13) clearly demonstrate that the
waveforms are strongly affected by the staircase approximation of
the semi-circular interface. While the misfits at receiver r111 again
are much smaller and decrease even more with reduced mesh spac-
ing and frequency, the seismograms at receiver r126, especially the
horizontal components, are not acceptable even for the finest mesh
h5 and lowest frequency f 15.

2.3 Discretization rules

To facilitate the definition of useful discretization rules that have to
be considered when approximating curved material interfaces we
introduce the total error

Etot = 1

N

∑
i

(Ei,horizontal + Ei,vertical) (2)

over all receivers i that occur in an error map of Figs 3–9, where N
is the number of receivers. Note, that N changes for the test case
Solid–Free Surface depending on how many receivers are still below
the free-surface boundary, while N = 441 for all other test cases.
The error E tot allows us to measure the overall seismogram misfit of
a simulation depending on different mesh spacings, frequencies, and
material contrasts. A threshold of the error E tot is shown as a dashed
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Figure 14. Left: error E tot versus mesh spacing h with varying frequencies
f for the different material contrasts. Right: error E tot versus frequency f
with varying mesh spacing h. The threshold of acceptance is shown as a
dashed red line.

Figure 15. Left: error E tot versus mesh spacing h with varying frequencies
f for the different material contrasts. Right: error E tot versus frequency f
with varying mesh spacing h. The threshold of acceptance is shown as a
dashed red line.

red line in all plots of Figs 14–16. The results of the systematic
error analysis are shown in Figs 14 and 15 on the left displaying
the behaviour of the error E tot with respect to mesh refinement
for each of the seven different material contrasts. The three lines
of different symbols represent the frequencies. Clearly, the errors
are consistently smaller for lower frequencies and decrease almost
linearly with mesh refinement for all seven test cases. Therefore,
our DG approach confirms the first-order error behaviour due to
the simple staircase approximation as predicted by studies on the
immersed interface method (Zhang & LeVeque 1997; Zhang &
Symes 1998) even though the approximation of the solution using
our DG scheme is of order 7 in space and time. We mention that the
basic idea in immersed interface methods is to take into account the
jump conditions for the discontinuous solution or its derivatives at
an interface and to find linear combinations of these discontinuous
values that give more accurate numerical approximations at or near
the interface.

Presenting the results in a different way in Figs 14 and 15 on the
right, where the error is plotted against frequency, shows that sys-
tematically finer meshes provide smaller errors that increase with
higher frequency content. In a third presentation of our results in
Fig. 16 we show the behaviour of the error for all seven material
contrasts (different line symbols) in one plot. In the top row the fre-
quency is fixed in each plot and the error decreases with decreasing
mesh spacing h. In the bottom row the mesh spacing is fixed and the
error behaviour depending on frequency is shown. Obviously, the
errors are generally smaller for smaller material contrasts, however,
the test case Solid–Fluid seems to be even more sensitive to the
staircase approximation than the Solid–Free Surface. We point out
that it is important to consider interface waves such as Rayleigh
waves at the free surface and Scholte waves at an elastic–acoustic
interface when signals are recorded directly at or in the vicinity of
the interface. Even though such interface waves propagate slower
than the S wave inside the elastic material their phase velocities are
usually close to the S-wave velocity. Therefore the suggested mesh
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Figure 16. Error E tot versus mesh spacing h and frequency f , respectively with varying material contrasts. The threshold of acceptance is shown as a dashed
red line.

spacing of the following discretization rules would have to be
adjusted by using a correspondingly smaller mesh spacing. Fur-
thermore, the velocities of the interface waves show significant
frequency-dependence (dispersion) and their energy content com-
pared to the body waves is difficult to estimate. Therefore, a system-
atic study of their influence would go beyond the scope of this work.
However, our results agree, in general, with the studies of Bohlen &
Saenger (2006) concerning staircase approximations of free-surface
boundaries in numerical modelling of seismic wave propagation,
as accurate simulations including topography or bathymetry (van
Vossen et al. 2002) require a much higher mesh resolution than
those treating internal elastic interfaces. They show that surface
waves are particularly sensitive to non-smooth topography. In con-
trast, for the Solid–Solid test cases a regular mesh with staircase
approximation of material interfaces can generate acceptable results
depending on the combination of mesh spacing, frequency and ma-
terial contrast. For seismic wave speed contrasts across a material
discontinuity of 0.77 (Solid–Solid 1) only small differences in the
seismograms are obtained even for relatively high frequencies and
coarse meshes (see Fig. 3). An increase of the material contrast
requires in turn an adjustment of either a higher mesh resolution or
a reduction of the frequency.

Finally, we can establish rules, which should be adhered when
modelling complex geological interfaces, especially with the DG
approach using regular, structured meshes and which should also
be considered in wave propagation modelling using other methods.
First we define a threshold for classifying a seismogram to be ac-
ceptable. In our case, this threshold is defined as E tot = 0.3 above
which seismograms are degenerated too much due to the geomet-
rical representation of the interface. This threshold is shown as a
dashed red line in all plots of Figs 14 and 16. As examples to clarify
the meaning of this threshold with respect to the seismic waveforms
and their misfits we refer to the seismograms shown in Section 2.2.2
In Fig. 11 the horizontal component obtained at receiver r126 with
frequency content f 15 and mesh spacing h10 (green) has an error
level Ei = 0.285 and is therefore classified as just acceptable. A
non-acceptable example is given in the same graphic for frequency

f 25 obtained with h10 (green) with Ei = 0.500. In contrast, a clearly
acceptable horizontal seismogram is shown in Fig. 11 for receiver
r111, frequency f 25 and h10 (green), with Ei = 0.135.

If we now use the results shown, for example in Fig. 15, none
of our simulations of the Solid–Free Surface or Solid–Fluid cases
produced acceptable seismograms. Therefore, we will focus on the
different Solid–Solid test cases in the following. However, we point
out that our tests consider a vp/vs-ratio of

√
3 of a Poisson material.

As shown recently by Moczo et al. (2010) the accuracy of most of
the used numerical schemes decreases with increasing vp/vs-ratio
and values of 5 and larger can occur in near-surface sedimentary
structures. From each of the plots of Fig. 14 we use the acceptable
data point with the highest error value but still below the red thresh-
old line. Also, we use the non-acceptable data point with the lowest
error level but larger than the error threshold. Using the information
of the shortest dominant wavelength per mesh spacing for each test
case given in Table 1 we can plot these data into the graph in Fig. 17
to determine a transition zone that separates two regions. Above
the transition zone (grey shaded), bounded by the solid black line
from above, the sampling in the sense of elements per wavelength is
good enough for the particular material contrast to produce accept-
able seismograms. Below the transition zone, bounded by the dashed
red line from below, the sampling is insufficient and non-acceptable
seismograms according to our threshold are obtained. Considering
this result is extremely important for high-order accurate numerical
schemes, like the DG or SEM methods, as such methods usually
allow for large mesh spacings due to their high-order approxima-
tion properties within an element. In cases, where geometrically
complicated material interfaces cannot be honoured by mesh align-
ment or regular meshes are used for computational efficiency, it is
crucial to respect the results represented in Fig. 17 to reduce nu-
merical artefacts due to the staircase approximation. From Fig. 17
we also can conclude that low-order schemes using the staircase
approximation naturally seem to overcome the problem of complex
geometry as the number of gridpoints or elements per wavelength
is typically chosen high enough (e.g. 8 gridpoints per wavelength)
to obtain satisfying results. Furthermore, our results confirm the
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Figure 17. Diagram representing the discretization rules by displaying what
mesh spacing (measured in elements per shortest dominant wavelength) is
required for a given material contrast to obtain acceptable seismograms
above the black solid line. The material contrast between two materials 1
and 2 is given through the ratio of S-wave speeds vS,1/vS,2, with vS,1 ≤
vS,2. Values below the red dashed line produce non-acceptable results, while
the grey shaded area denotes a transition zone.

exceptionally fine mesh spacing required to model Solid–Fluid or
Solid–Free Surface contacts with methods which cannot align the
mesh to such non-planar interfaces typically occurring for strong
bathymetry or topography. For further details on this topic for FD
schemes we refer to the work of Robertsson (1996) and Bohlen &
Saenger (2006).

3 M U LT I P L E L AY E R S W I T H
U N D U L AT I N G I N T E R FA C E S

Since our previous study consist of a rather simple geometry with
only one interface, we here construct a more complex situation rep-
resenting a more realistic application. This test case contains three
layers separated by two undulating interfaces with a material con-
trast of 0.5 each. The regular grid spacing of the quadrilateral mesh

Table 2. Material properties used for the multiple
layer application.

ρ (kg m−3) vP (m s−1) vS (m s−1)

Material 1 1000.0 1732.1 1000.0
Material 2 2000.0 3464.1 2000.0
Material 3 4000.0 6928.2 4000.0

is constructed by respecting the rules of Section 2.3. Representative
seismograms of selected receivers are analysed and discussed in
detail.

3.1 Test case description

An overview of the layered model is given in Fig. 18 with material
properties given in Table 2. The top boundary at z = 0 m is a free
surface, the bottom at z = −8000 m is absorbing and the lateral
boundaries are set periodic. The source is a point source at (x , z) =
(10, −1990) m using a force pair on the two velocity components
with a Ricker-type source time function of dominant frequency f =
8 Hz. The total simulation time is 10 s.

Considering Fig. 17, we should be able to use a mesh spacing
of five elements per dominant wavelength to represent an interface
with material contrast 0.5 sufficiently accurate with a structured
discretization. Like in Section 2, we cover a large part of the do-
main with a dense receiver array of 31 × 31 receivers distributed
within a rectangular area of (x , z) ∈ [−3000, 3000] × [−6000,
0] m. The shortest dominant wavelengths for material 1 and 2 are
125 and 250 m, respectively, leading to mesh spacings of h = 25
and h = 50 m at the interfaces. The employment of a regular but
non-conforming mesh (Hermann et al. 2010) enables us to test both
interfaces with their specific resolutions. In more specific terms,
this means that we use a regular mesh spacing of h = 25 m above
z = −3000 m and h = 50 m below this depth. An example of the
interface discretization by the structured grid is given in Fig. 18(b).
To ensure a correct resolution of the wavefield we choose the ap-
proximation order 6 in space and time. Again, a reliable reference
solution is produced using the same numerical method and order
of accuracy on an unstructured edge-aligned triangular mesh with
a resolution of 2.5 elements per shortest dominant wavelength.

Figure 18. (a) S-wave velocity distribution of the multiple layer application. The area within the red rectangular is zoomed in (b) together with an overlay of
the quadrilateral mesh.
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3.2 Results and discussion

The overall rms error distribution is shown in Fig. 19 and its level
is very small as expected. A clear error pattern with error concen-
trations at the material interfaces is much harder to recognize than
in the test cases of Section 2.2.1. However, a trace of higher errors

along the lower interface still can be identified. Our interpretation is
that due to the complicated wavefield, interface waves, multiple re-
flections, and transmissions the errors might locally sum up close to
the interfaces. Therefore, the seismogram with the largest misfit is
obtained by receiver r911 and one with a very small misfit by r545.
The locations of these stations are denoted in the overview Fig. 18(a)

Figure 19. Error maps of the rms error Ei for the multiple layer test case.

Figure 20. Time–frequency misfits of the horizontal and vertical velocity components of the worst receiver r911. We also show the seismograms comparison
between the reference solution obtained on the triangular mesh (black) and the solution obtained on the quadrilateral mesh (red) together with their single-valued
EM and PM of Table 3.
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Figure 21. Time–frequency misfits of the horizontal and vertical velocity components of the receiver r545. We also show the seismograms comparison between
the reference solution obtained on the triangular mesh (black) and the solution obtained on the quadrilateral mesh (red) together with their single-valued EM
and PM of Table 3.

and the seismograms together with their time-frequency envelope
(TFEM) and phase (TFPM) misfits (Kristeková et al. 2006, 2009)
are shown in Figs 20 and 21, respectively, using Kristeková’s sig-
nal analysis code from www.nuquake.eu/Computer_Codes/index.
html.

Obviously, the envelope misfits of both components at r911 are
relatively large compared to the much smaller phase misfits. Fur-
thermore, the misfits dominate in the frequency range from f = 8 Hz
to 2.5 f = 20 Hz as expected due to the dominant and maximum
frequency content of the Ricker wavelet. However, most features of
the waveforms can be found in both seismograms and the goodness-
of-fit values (Kristeková et al. 2009) are still equal or better than 7.2,

which in the verbal classification is a ‘good’ result (Table 3). We
point out that Anderson (2004), introducing this classification, used
the empirical earthquake-engineering characteristics of earthquake
ground motion and adjusted his scale to the fact that differences
between synthetics and real records are in most cases large. There-
fore, for comparisons of numerical solutions the chosen scale of
the time-frequency goodness-of-fit might be too robust, as the com-
parison of numerical solutions typically has differences much less
than those between synthetics and real records. Nevertheless, the
seismograms at receiver r545 shown in Fig. 21 are in our opinion
in a perfect agreement as underscored by the goodness-of-fit values
equal or better than 8.8.

Table 3. Table of envelope misfit (EM), phase-misfit (PM) and corresponding goodness-of-fit values of
envelope (EG) and phase (PG) for selected receivers r545 and r911.

Horizontal Vertical

EM (per cent) EG PM (per cent) PG EM (per cent) EG PM (per cent) PG

r545 12.4 8.8 5.3 9.5 11.4 8.9 4.3 9.6
r911 32.5 7.2 11.4 8.9 24.9 7.8 12.0 8.8
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Figure 22. (a) S-wave velocity structure of the basin model stretched in vertical direction by a factor of 3. (b) Zoomed section of the left border of the basin with
an overlay of the triangular mesh which respects the interface of the bedrock. White triangles mark the positions of the three geophone positions r103–r105.
(c) Same area as (b) but with an overlay of the quadrilateral mesh with staircase approximation of the interface.

Note that this test case includes two non-planar interfaces and
that the 10 s simulation time allows for the arrival of waves that
crossed these interfaces several times. Furthermore, waves can
travel through the model in the horizontal direction due to the pe-
riodic boundaries and could be strongly affected by the material
interfaces. Nevertheless, our rules of Section 2.3 still hold. The
structured mesh with 5 elements per shortest dominant wavelength
seems to represent an arbitrarily shaped interface of material con-
trast 0.5 with satisfying accuracy.

4 S E D I M E N TA RY B A S I N

The accuracy and reliability of synthetic seismograms is of fun-
damental importance for the investigation of realistic modelling
scenarios. Therefore, we use our previous study on the sensitivity
of numerical seismograms on geometrically complex material in-
terfaces and apply our resulting discretization rules on a realistic
example of a sedimentary basin derived from the EuroseisTest Ver-
ification and Validation Project (Chaljub et al. 2009). The aim is to
test if the numerical effects of staircase approximations of curved
boundaries are acceptable under the consideration of our proposed
rules, as this would justify simple and fast regular mesh gener-
ation in contrast to a more involved mesh alignment procedure to
well-defined material interfaces. Our simplified EuroseisTest model
contains a strong discontinuity that separates the bedrock of con-
stant seismic wave velocities from the basin with depth-dependent
wave speeds producing moderate material contrasts from 0.32 at
the deepest part of the basin to extreme contrasts of 0.1 close to
the surface as shown in Fig. 22. In this section, we check, if our

rules hold also in a real world case, where a sedimentary basin
with extremely low wave velocities is embedded in a high-velocity
bedrock.

4.1 Test case description

The model setup is a simplified 2-D version of the ‘EuroseisTest
Verification and Validation Project’ model (Chaljub et al. 2009)
describing the geological setting of the Mygdonian sedimentary
basin near the city of Thessaloniki in northern Greece as shown in
Fig. 22(a). The vertical direction of the S-wave velocity structure is
stretched by a factor of 3 for better visualization of the thin basin.
The complete extension of the physical domain has 28.32 km width
and 15 km depth. So only the part of the computational domain
around the basin is shown. The free surface elevation is at z = 63 m
and the deepest point of the basin is at z = −319.6 m. Within the
basin the wave speeds depend on depth d from the surface and are
constant for the bedrock as given in Table 4.

Thus, high S-wave velocity contrasts of 0.1 exist at the top left
and right borders of the basin. With increasing depth the S-wave
ratio continuously changes to 0.32 in d = −382.6 m depth. In the
following we select two positions, one with high and one with low
material contrast, which will be discussed on the basis of recorded

Table 4. Material properties used for the sedimentary basin application.

ρ (kg m−3) vP (m s−1) vS (m s−1)

Basin 2100.0 1000.0 + 100.0
√

d 200.0 + 32.0
√

d
Bedrock 2600.0 4500.0 2600.0

C© 2010 The Authors, GJI, 183, 1031–1051
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seismograms. Again, we use a 21 × 21 receiver array to cover the
basin and the adjacent bedrock but focus on two sets of receivers to
illustrate representative results. These receiver stations are marked
by six black triangles in Fig. 22(a). The two highlighted receiver
sets cross the material discontinuity, which means that the lowest
receiver is based in the bedrock (r218, r103), the middle close to
the interface but already in the basin (r219, r104), and the topmost
clearly inside the basin (r220, r105). As a source we choose again
the force pair with a 5 Hz Ricker pulse of Section 3.1 located at
(x , z) = (−4.5075 × 106, −1000) m. The total simulation time
is 10 s.

Like in the previous experiments material properties are assigned
elementwise, but to achieve a better representation of the velocity
gradient in the basin we first assign the material properties to the
vertices of an element and average them in a second step. A reference
solution is produced with a fine triangular mesh respecting the
material discontinuities by element edges and using a DG scheme
of accuracy order 5.

Figs 22(b) and (c) show a zoomed view of the left part of the
basin with an overlay of the triangular and quadrilateral meshes,
respectively. The triangles of the reference model have a mean
edge size of 10 m in the basin and for the bedrock we allow a
smooth increase to 100 m, enough to resolve the propagating waves
properly. The mesh spacing for the regular mesh is 10 m in a box
including the basin and 100 m around this box using the non-
conforming mesh approach introduced by Hermann et al. (2010).
An edge size of 100 m in the bedrock corresponds to 3.7 ele-
ments per shortest dominant wavelength, while the higher reso-
lution of 10 m in the basin area leads to depth-dependent sampling
of 2.8–11.7 elements per shortest dominant wavelength. Since large
parts of the basin-bedrock interface lie in larger depth with material
contrast of 0.32 an interface approximation using 10 elements per
shortest dominant wavelength should be sufficient, as suggested by
the graph in Fig. 17. We admit that this value represents a lower
limit regarding our rules, however, we remark that even the regu-
lar mesh aligns well to the predominantly flat and smoothly varying
basin-bedrock interface. At smaller depth the stronger material con-

trasts cause an undersampling of the interface geometry with 2.8
elements per shortest dominant wavelength, which is clearly less
than what is required by our rules of Section 2.3. However, these
cases appear only in very small areas near the borders of the basin
at the surface. As computational efficiency is also an issue in real
applications we deliberately avoid the very fine mesh spacing close
to the surface to prohibit heavy oversampling of the interface in
the deeper parts of the model and to keep the computational cost
low. In the following we will show that even in such extreme cases
where compromises have to be found we still obtain satisfactory
results.

4.2 Results and discussion

As expected from Section 2.2 both discretization approaches pro-
duce similar seismograms except for small differences, since we are
using less elements per wavelength than required by Section 2.3 in
areas of extremely high material contrasts. Thus, we focus on two
representative areas.

One of the best matching seismograms are recorded at receivers
r218–r220 although they are located directly at the basin-bedrock
interface and are shown in Fig. 23. While the arrival times fit almost
perfectly, differences in amplitude can be observed in r219 and
r220. A quantitative determination of the single-valued EM and PM
criteria of Kristeková et al. (2009) shows a decrease of the misfit
with increasing depth (Table 5). This means that seismograms in
the bedrock are less affected by the geometry approximation than
the ones in the basin. As numerous reflections are typical for low
velocity basins embedded in high-velocity bedrock, it is expected
that amplitude and phase errors are accumulating. However, the
resulting goodness-of-fit values of around 9 confirm the excellent
agreement. A time-frequency misfit analysis for the best matching
receiver r218 is given in Fig. 24. Occurring errors are smaller than
10 per cent and provide acceptable numerical seismograms obtained
by the chosen staircase approximation. Furthermore, all receivers
located in the bedrock and most of the stations in the basin show
similar well matching seismograms.

Figure 23. Seismograms of the receiver set r218–r220 located in the middle of the basin. The seismogram in the lowermost plot (r218) is recorded in the
bedrock, the other two are 30 and 60 m above already in the basin. The black line denotes the reference solution, the red line the seismogram obtained using
the quadrilateral mesh.
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Table 5. Table of envelope misfit (EM), phase-misfit (PM) and corresponding goodness-of-fit values of
envelope (EG) and phase (PG) for selected receivers.

Horizontal Vertical

EM (per cent) EG PM (per cent) PG EM (per cent) EG PM (per cent) PG

r220 14.3 8.7 5.5 9.5 18.0 8.4 6.2 9.4
r219 20.4 8.2 8.1 9.2 10.8 9.0 3.2 9.7
r218 5.4 9.5 2.2 9.8 9.1 9.1 3.9 9.6

r105 23.7 7.9 29.0 7.1 12.6 8.8 15.1 8.5
r104 20.3 8.1 15.7 8.4 12.5 8.8 15.8 8.4
r103 3.7 9.6 3.7 9.6 6.0 9.4 4.2 9.6

Figure 24. Time–frequency misfits of the horizontal and vertical velocity components of receiver r218. We also show the seismograms comparison between
the reference solution obtained on the triangular mesh (black) and the solution obtained on the quadrilateral mesh (red) together with their single-valued EM
and PM of Table 5.

In contrast, receivers r103–r105 located in a very shallow region
of the basin and close to the basin–bedrock interface show the
largest differences of all receivers. In this area the basin has a depth
of only 50 m. Hence, the resulting S-wave speed ratio is 0.16. Due
to the high material contrast and the vicinity to the left boundary
numerical effects due to insufficient geometry approximation are
most prevalent here. The corresponding seismograms are shown
in Fig. 25. Although still satisfactory a regress to a goodness-of-
fit value of 8 or even 7 is observable for receivers r104 and r105

(Table 5). r103 is located in the bedrock and as mentioned above is
less affected by the geometry approximation effects, which results
in a significantly smaller misfit. Actually, seismograms of r103 are
among the best matching seismograms of all, while the largest
misfits appear only 30 or 60 m above at receivers r104 and r105.
Most obvious are the strong phase misfits at receivers r104 and r105
starting after 3 s as shown in the time-frequency analysis for receiver
r105 in Fig. 26. Here, strong envelope misfits are also observed
directly after the first arrival on the horizontal component and after
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Figure 25. Seismograms of the receiver set r103–r105 located in the middle of the basin. The seismogram in the lowermost plot (r103) is recorded in the
bedrock, the other two are 30 and 60 m above already in the basin. The black line denotes the reference solution, the red line the seismogram obtained using
the quadrilateral mesh.

3 s on the vertical component. These critical misfit levels can be
explained by the lower number of elements per wavelength for the
interface approximation in this area than suggested in Section 2.3.

However, with respect to the different discretization approaches
and the compromise between computational effort and approxima-
tion accuracy of the material interface, the agreement between the
seismograms is still remarkably good. Furthermore, we mention that
the obtained results still provide goodness-of-fit values of ‘good’ or
‘excellent’, which are reasonable for comparisons of synthetics in
benchmarks of seismic wave propagation scenarios.

5 C O N C LU S I O N S

In this work, we investigated the effect of staircase approxima-
tions of material discontinuities along curved interfaces using a DG
Finite Element method trying to clarify under which conditions such
geometry approximations, typically used by regular grid schemes
like FD, provide acceptable results. We produced reference solu-
tions using a high-order accurate DG scheme on triangular meshes
which can be aligned to the geometry of curved interfaces. We
then solved the wave equations on regular square-shaped meshes
leading to jagged material contacts. We studied the misfits of seis-
mograms depending on the signal frequency, the mesh spacing, and
the material contrast. In fact, the misfits increase with a decreasing
number of elements per wavelength and with increasing material
contrast. The systematic parameter study of Section 2 enabled us
to define rules that should be adhered to ensure accurate synthetic
data, if regular meshing is applied. A general finding was that up
to a material contrast, in the sense of a S-wave speed ratio, of 0.5
a discretization of five elements per shortest dominant wavelength
generates acceptable seismograms in spite of complex material in-
terfaces. Furthermore, high-order accurate numerical methods can
reduce this resolution on structured grids for weaker material con-
trasts. However, in the case of stronger material contrasts than 0.5
the number of elements per wavelength has to be increased signifi-
cantly to avoid numerical artefacts due to the staircase approxima-

tion. Special cases of a free-surface boundary or an acoustic–elastic
coupling should be treated by mesh alignment to the interface as
we were not able to produce acceptable seismograms within the
range of tested frequencies and mesh spacings with the staircase
approximation of such boundaries.

In Section 3, we considered a more complicated test case to
verify our discretization rules containing a three layer problem
separated by two undulating interfaces with material contrasts of
0.5 each and using a minimum number of elements for geometry
approximation. In summary, all seismograms show the expected
minor misfits compared to the reference solution.

Finally, we applied our results to a realistic scenario of a basin
structure. The main issue was to find a compromise between a
correct resolution of the material interface and computational ef-
ficiency. At the shallow basin boundaries where extremely high
material contrasts occur we used less elements per wavelength than
suggested by our rules to keep the computational cost low and still
obtain good matching seismograms. As expected, the largest but
surprisingly moderate misfits can be found in these areas. However,
these critical areas are very localized and therefore do not seem
to influence the overall error or the accuracy in other areas dra-
matically. Nevertheless, the surprising result is that even for such
untypically high material contrasts over a basin-bedrock interface
close to the surface we still obtained a satisfying accuracy of the
synthetic seismograms although a structured mesh is applied, which
does not respect the material interface.

We conclude that taking into account our approximation rules
defined in this study ensures reliable modelling results when using
structured discretizations including non-planar material interfaces.
Furthermore, adhering these rules can help to minimize the mesh
generation effort and computational cost. Conclusions for high-
order methods, like SEM and DG, applied on structured meshes can
also be drawn. If the material properties allow for large elements
these coarse meshes can violate the interface geometry to a certain
degree and do not have to be aligned exactly with them in order to
produce acceptable results. On the other hand, we remark that fine
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Figure 26. Time–frequency misfits of the horizontal and vertical velocity components of receiver r105. We also show the seismograms comparison between
the reference solution obtained on the triangular mesh (black) and the solution obtained on the quadrilateral mesh (red) together with their single-valued EM
and PM of Table 5.

discretizations often required by low-order methods often account
for the geometry with sufficient accuracy automatically.
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Dumbser, M. & Käser, M., 2006. An arbitrary high order discontinuous
Galerkin method for elastic waves on unstructured meshes II: the three-
dimensional case, Geophys. J. Int., 167(1), 319–336.
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Seismic and acoustic measurements in a broad sense, 
including surface seismic, borehole seismic and sonic 

waveforms, play an important role in improving our 
knowledge of hydrocarbon reservoirs in both exploration and 
production phases. In that context, accurate modeling of wave 
propagation, in particular when considering irregular free-
surface effects, complicated subsurface geological structures, 
or the physics of a sonic tool deployed downhole, is one of the 
major challenges geophysicists are facing.

We present a discontinuous Galerkin (DG) finite-element 
method recently developed in computational seismology for 
application on high-performance computing (HPC) facili-
ties, and illustrate its potential for seismic and sonic modeling 
in oil and gas exploration.

The exploration industry has developed a broad spectrum 
of techniques to initially detect, accurately survey, and con-
stantly monitor these reservoirs to supply our still increasing 
demand for fossil fuels. Typically, surface seismic acquisitions 
are characterized with sources at or near the free surface and 
3D multicomponent data recorded either at the free surface or 
eventually at the seafloor using ocean-bottom cables (OBC). 
With a typical frequency bandwidth of about 5–250 Hz, the 
flexibility and density of source and receiver distributions 
provide a wide lateral coverage of the prospected area that 
ranges on a scale of several square kilometers. Borehole seis-
mic surveys are characterized with sources either at the surface 
(e.g., 3D VSP) or downhole (cross-well imaging, localization 
of microseismic events) with receivers in the borehole close to 
the targeted reservoir. They provide complementary informa-
tion, as compared to surface seismic interpretation, by shed-
ding more light onto particular structures of the reservoir that 
are up to several hundred meters away from the wellbore. For 
imaging with much higher depth-resolution (typically 0.5 ft) 
along the wellbore sonic measurements with frequencies of 
1–5 kHz are used to derive, for instance, lithology proper-
tiesand rock textures at diff erent depths. They are also used 
to analyze borehole stability, borehole mud invasion, and any 
formation damage within a few meters from the wellbore.

For instance, independent of the scale of the problem, 
seismic and sonic waves within this broad frequency range 
are used to extract the reservoir’s structural characteristics and 
compositional properties. The underlying inversion and mi-
gration techniques often rely on accurate synthetic data pro-
duced via special forward modeling tools. Solving the forward 
problem, in this case, means solving the full 3D seismic wave 
equations. This involves generation of synthetic data sets of 
seismograms recorded at desired locations for a given veloc-
ity model and source characteristics. Another application of 
wave-propagation simulations is in the design of survey ge-
ometries and parameters to save valuable resources. The gen-
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eration of highly accurate and reliable synthetic data incorpo-
rating all important model features can be challenging, but 
represents an absolutely crucial prerequisite. The importance 
as well as the difficulties to produce such data sets are em-
phasized by the foundation of the SEG Advanced Modeling 
(SEAM) project (Fehler, 2009), which is dedicated to large-
scale geophysical modeling in industry. New numerical meth-
ods can provide such synthetics, even though they might still 
be computationally more involved than standard techniques 
like finite differences (FD) due to their better approximation 
capabilities. Thus, future developments aim for strong inter-
connections between flexible and accurate numerical simula-
tion methods and powerful computational resources such as 
those provided by current HPC facilities.   

In this article, we present the discontinuous Galerkin 
finite-element method to emphasize its advantages and fu-
ture potential, especially for seismic modeling in the explo-
ration industry. In the following, the principles of this nu-
merical scheme are explained and its promising properties 
with respect to HPC hardware are discussed. Two examples 
occurring in seismic exploration demonstrate the method’s 
applicability and flexibility and cover 3D problems of a ma-
rine survey on the kilometer scale to sonic logging on the 
centimeter-to-meter depth scale.

Discontinuous Galerkin method
An approach for the simulation of seismic wave propagation, 
introduced by Käser and Dumbser (2006), is the discontinu-
ous Galerkin (DG) finite-element method. In particular, its 
combination with the explicit time integration method of 
Titarev and Toro (2002) using arbitrary high-order deriva-
tives (ADER) leads to a high-order accuracy in both space 
and time. The extension of the method to 3D unstructured 
tetrahedral meshes enables automatic mesh generation for 
complex model geometries. Furthermore, different mate-
rial properties can be considered, such as acoustic fluids and 
elastic, anisotropic, viscoelastic or poroelastic solids (de la 
Puente et al., 2008). Therefore, the ADER-DG scheme pro-
vides extremely high flexibility with respect to a wide range 
of wave-propagation problems. The numerical method be-
longs to the class of finite-element (FE) methods, but uses 
the discontinuous Galerkin approach (e.g., Cockburn et al., 
2000; Hesthaven and Warburton, 2008). Here, in contrast 
to typical FE schemes, the approximating 3D polynomials 
inside each element are allowed to be discontinuous along in-
terfaces between neighboring elements. These discontinuities 
are then treated as in high-order finite-volume (FV) methods 
using the well-established theory of Riemann problems and 
Riemann solvers (e.g., Toro, 1999). While the degree of the 
approximating polynomials determines the spatial order of 
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accuracy, the ADER 
time integration ap-
proach provides the 
same time accuracy. 
Thereby, the time ex-
trapolation of the so-
lution to future time 
levels uses a Taylor ex-
pansion where higher-
order time derivatives 
are replaced by space 
derivatives via a recur-
sive use of the velocity-
stress wave equation. A 
further advantage is that the polynomial basis functions are 
orthogonal which leads to a diagonal mass matrix. In fact, 
such basis functions exist for many different element types 
(e.g., triangles, quadrilaterals, tetrahedrons, hexahedrons, 
pyramids, and prisms). Furthermore, the scheme’s extension 
to higher approximation orders does not require an increased 
stencil as typically necessary for FV or FD schemes. Instead, 
only the number of degrees of freedom (i.e., the polynomial 
coefficients) inside an element increases. Therefore, the nu-
merical algorithm keeps a spatially local character as each 
time update of the solution inside one element only depends 
on the minimum number of direct neighbors sharing a com-
mon interface (Figure 1). At these interfaces the concept of 
numerical fluxes is a key ingredient and strength of ADER-
DG as it allows a variety of physical effects to be accom-
modated: boundary conditions, friction laws for dynamic 
rupture processes, or the combination of different element 
types and nonconforming mesh transitions. 

In order to focus the computational effort on particular 
areas of interest, local adaptation of the approximation order 
and local time stepping is possible. In particular, the local 
time-stepping approach allows each element to use its own 
optimal time-step length according to the local stability con-
dition. Hence, these features increase the performance and 
efficiency in models with strongly varying element sizes with-
out losing accuracy. 

Suitability for HPC infrastructure
A major advantage of ADER-DG is its locality as an ele-
ment updated in time only requires information from the 
direct neighbors in the form of polynomial coefficients. This 
property does not change with increasing approximation 
order as only the number of coefficients grows. Therefore, 
the scheme is well suited for parallelization. In fact, com-
munication between elements takes place only once per time 
step and represents much less than 1% of the CPU time. 
The results of a strong-scaling test for the borehole applica-
tion, where the model size (i.e. the total number of elements) 
remains constant (~1.3e6) but the number of cores increases, 
are shown in Figure 2. The CPU time reduction remains 
still close to the ideal case and the speedup is satisfactory up 
to 1024 cores with an efficiency of 76%. The crucial issue 
for the scaling properties of the algorithm is the load bal-

Figure 1. Tetrahedral element with its direct neighbor elements for 
minimal communication across their common interfaces (red).

Approximation 
order

1 2 3 4 5 6 7 8

m (DOF per  
element)

1 4 10 20 35 56 84 120

Me (memory per 
element [bytes])

2664 2880 3312 4032 5112 6624 8640 11232

Elements per core 
Mc = 0.5GB

200,000 180,000 160,000 130,000 100,000 80,000 60,000 45,000

Table 1. Number m of degrees of freedom (DOF), memory consumption Me per element, and an estimate of the 
element number per core of Mc=0.5 GB memory in dependence of approximation order.

Figure 2. CPU time decrease (top) and speedup (bottom) for an 
increasing number of cores for the strong-scaling test (solid line) in 
comparison to the theoretically ideal case (dashed line).
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ance which depends on the mesh partitioning strategy. For 
a standard, global time-stepping scheme, where all elements 
are updated to the next time level, optimal load balance is 
achieved by dividing the computational domain into subdo-
mains with the same number of elements. However, the local 
time-stepping approach yields more difficulties as each ele-
ment runs its own time step. Therefore, element updates hap-
pen asynchronously as smaller elements update more often 
than larger ones. The resulting load imbalances are currently 
overcome by grouping elements into zones, partitioning each 
zone separately as shown in Figure 3c, and spreading the 
parts equally to different cores. 

Therefore, significant improvements of the algorithm 
should be achieved by run-time optimization of the serial part 
of the code. In fact, each tetrahedral element update requires 
the computation of three volume integrals and eight flux in-
tegrals (two per element face). Each integral computation 
consists of local matrix multiplications where three matrices 
of dimensions 9 × 9, 9 × m, and m × m are related to the 
nine velocity-stress variables and the number (m) of degrees 
of freedom (DOF), which depends on the degree (N) of the 
approximation polynomial as m = (N + 1)(N + 2)(N + 3) / 6. 

Memory consumption is not an issue as all data can be 
kept in arrays for each core. For every element, there are 9×m 
degrees of freedom and 9 × 9 entries of the Jacobian ma-
trices as double-precision real numbers to store in memory. 
In contrast, volume and flux integral matrices of size m × 
m are element-independent and have to be kept in memory 

only once. Table 1 shows the memory requirement and the 
estimated maximum number of elements on an IBM Blue-
gene architecture with Mc = 0.5 GB of memory per core with 
respect to the approximation order. 

The 3D wave equations in velocity-stress formulation 
contain nine unknowns (six stresses and three velocities), 
each of which is approximated by the DOF inside an element 
leading to a 9 × m matrix. Furthermore, each element side 
has its own 9 × 9 matrix of flux-orientation and material 
information. Therefore, the total memory per tetrahedral ele-
ment is given by Me = (9m + 4�92)�8 bytes (Table 1). Note 
that the estimate of elements per core considers the memory 
requirement of a few MB for additional data (e.g., volume 
and flux matrices, basis functions, mesh coordinates, etc.). 
Other architectures like the SGI Altix system or the IBM 
Power 6 often have 2 GB or 4 GB of memory per core and 
therefore can accommodate correspondingly more elements. 

The applicability and geometrical flexibility of ADER-
DG using 3D unstructured tetrahedral meshes is demonstrat-
ed in the following two examples which are relevant in hy-
drocarbon reservoir exploration. The examples show the wide 
range of applications from borehole sonic measurements on 
the centimeter scale up to fully 3D salt reservoir models on 
the kilometer scale. Both problems are solved on the HPC 
facilities of SGI and IBM.  

Borehole-scale modeling
Sonic logging can estimate geophysical and petrophysical 

Figure 3. Problem setup for sonic logging. (a) Sonic logging tool in a cased, fluid-filled borehole penetrating a formation of tilted layers with an 
invasive zone of mud in the vicinity of the well. (b) Sketch of the sliced 3D model discretized by a problem-adapted tetrahedral mesh. (c) 2D 
projection of a cut through the 3D mesh showing the zonal partitioning approach for multiprocessor computations, where different colors represent 
the subdomains processed on different cores.  
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properties (especial-
ly velocities and po-
rosity) of a penetrat-
ed formation with a 
depth resolution of 
~0.5 ft. To validate 
sonic measurements 
via modeling of 
acoustic-wave prop-
agation modeling, it 
turns out to be fundamental to consider the model geometry 
and heterogeneous material distribution in and around the 
well. In Figure 3a, we sketch a setup of a sonic logging ex-
periment, where a logging tool is inside a fluid-filled well that 
penetrates an interbedded formation of two different materi-
als. It is assumed that a steel casing separates the borehole 
fluid from a damaged formation zone. Due to the damage of 

the formation around the wellbore, the drilling fluid (mud) 
typically causes an invasive zone leading to a nearly radial 
material gradient of a few meters away from the well. In our 
study, we investigate the effect of the steel casing on sonic 
measurements and the importance of the material gradient 
with respect to the recorded signals. To this end, we use an 
explosive source at the lower end of the tool and 25 equally 

Figure 4. Synthetic waveforms of velocity components for the sonic logging experiment. (a) Damage zone (material gradient) of 2-m radius 
is assumed. Results are shown for four experiments: small (blue solid line) and large (red dashed line) material contrast with casing, and small 
(green solid line) and large (black dashed line) material contrast without casing. (b) Same as (a), however, without damage zone. (c), (d) Same 
as (a), (b) for the z-velocity component instead of the y velocity. 

��[kg/m³] � [109Pa] � [109 Pa] VP [m/s] VS [m/s]

Tool/casing 7800 65.0000 65.0000 5000 2887

Bore fluid 1020 2.2950 0.0000 1500 0

Material 1 2700 14.5480 14.5480 4020 2321

Material 2 2700 13.5480 13.5480 3880 2240

Material 3 2500 10.5480 10.5480 3423 1977

Table 2. Material properties of the modeling setup for sonic measurements in the borehole considering the logging 
tool, the bore fluid, the casing, and the heterogeneous formation. 
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spaced receivers along the tool (Figure 3a). 
In Figure 3b, we show a cut through the 3D 
mesh where the ratio between smallest and 
largest elements (here ~50) is visible. The 
mesh of the fluid and the uppermost lay-
ers is omitted for better visualization of the 
geometry. In this case, the local time-step 
algorithm particularly pays off, as the steel 
tool and casing force the use of extremely 
small elements (~1 inch edge length), but 
yield a P-wave speed of 5000 m/s. These 
parameters lead to a time-step length of ~1 
�s in these elements. Figure 3c shows the 
mesh partition strategy, where each color 
represents a different subdomain. Note 
that the tool, fluid, casing, and formation 
are partitioned individually via the separa-
tion into zones. Then subdomains of each 
zone are collected and put to one core to 
achieve an acceptable load balance as in 
the local time-stepping approach smaller 
elements are computationally more expen-
sive than larger ones. Comparisons show, 
that the local time-step approach is about 
three times faster than a global time-step 
algorithm for this application.

Table 2 gives the material properties of 
the steel tool and casing, the fluid, and the 
geological formation for our tests. First we 
consider a cased well and a material gradi-
ent around the well of 2-m radius where 

Figure 5. SEG/EAGE salt model. (a) Complete and (b) simplified model including the fundamental features of intersections of layers, faults, 
and the salt body. The horizontal red line indicates the cross section along A-A’; the vertical red lines indicate the two boreholes.

Figure 6. (a) Cut through the tetrahedral mesh 
produced with ICEM-CFD (ANSYS) along the 
A-A’ profile showing the geometry of the salt body 
of the SEG/EAGE salt model. (b) 3D perspective 
of the salt (yellow) exhibiting complex features 
due to its intersection with a fault. (c) 3D 
geometry of the discretized salt body. 
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Figure 7. Reduced numerical diffusion and extended frequency content of synthetic seismograms due to higher approximation orders on the same 
mesh spacing. 

the properties change linearly from the bore fluid to the un-
perturbed formation values. The interbedded layers consist 
of material 1 and 2, producing a synthetic data set shown in 
blue in Figure 4a. Enhancing the material contrast by replac-
ing material 2 by material 3 results in virtually the same data 
set (shown in red). However, we obtain clear differences by 
removing the casing and repeating the experiments as shown 
by the green and black data in Figure 4a. Obviously, the cas-
ing strongly obscures the effect of different material proper-
ties on the seismogram. In a second series of tests, we omit 
the gradient and use the unaltered material properties of the 
formation directly adjacent to the wellbore. In this case, the 
casing again has a larger effect on the seismograms than the 
material contrasts in the formation. In fact, the removal of 
the casing leads to increasing phase shifts of later arrivals in 
the seismograms. 

Consideration of the z-velocity components in Figure 4c 
and Figure 4d shows slightly different results with less pro-
nounced phase shifts. However, the effect of the tool’s ge-
ometry on the P-wave bouncing up and down the tool due 
to the strong impedance contrast between the steel and the 
surrounding fluid (Kaser and Dumber, 2008) is clearly vis-
ible. Furthermore, a systematic analysis of the rotational mo-

tion (not shown) could provide additional information and 
promote the construction and design of rotational borehole 
sensors.

Reservoir-scale modeling
Surface seismic data generally provide a large-scale picture 
of the geological subsurface and the geometrical features of a 
reservoir. Seismic simulations are used for model validation 
or survey design. In particular, time-lapse seismic measure-
ments allow assessment of changes in the subsurface with 
time, such as fluid movement or effects of secondary oil re-
covery. Such data are examined for variations in seismic at-
tributes related to pore-fluid content. Therefore, reservoirs 
are described by dynamically changing properties and re-
duced turnaround times for model updates through efficient 
model-building technologies are becoming increasingly im-
portant.

ADER-DG is capable of using unstructured tetrahedral 
meshes for the accurate simulation of seismic-wave propaga-
tion phenomena. For geometrically complex models, such as 
the SEG/EAGE salt model (Figure 5a), the mesh generation 
process for tetrahedral meshes can be highly automatized 
once the model geometry is defined. The mesh can be aligned 
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��[kg/m³] � [109] M [Pa 109] VP [m/s] VS [m/s]

Water 1020 2.2950 00000 1500 0

Layer 1a 2000 4.5067 4.5067 2600 1501

Layer 1b 2050 5.0000 5.0000 2705 1562

Layer 2a 2500 7.5000 7.5000 3000 1732

Layer 2b 2600 9.0000 9.0000 3223 1861

Salt 2160 20.8000 14.4570 5094 3103

Table 3. Material properties of the modeling example of the simplified 3D salt model problem.

to complex shapes of 
free surface topography, 
structural interfaces, or 
faults in order to ap-
proximate correctly such 
structural features. This 
is particularly important 
when these features rep-
resent sharp material dis-
continuities that should 
not be smoothed out 
by strong gradients. To 
demonstrate the capability of the methodology, we apply our 
software to a simplified salt model (Figure 5b) that contains 
the main features (like the complex salt body, the major fault, 
and some sedimentary layers) of the SEG/EAGE model. The 
problem of the original complete model is that it requires 
a tedious, manual correction of the geometry definition, as 
some interfaces and surfaces forming the geological units are 
intersecting in a nonphysical manner. Different sections and 
parts of our simplified salt model are shown in Figure 6 and 
the according material properties are given in Table 3. A 2D 
cut along profile A-A’ (red surface line in Figure 5) is shown 
in Figure 6a together with the notation of the material distri-
bution. In Figure 6b, we display a 3D perspective view of the 
model, where the water layer and geological units 1b and 2b 
are removed in order to see the deformation of the fault due 
to the salt body intrusion. A separate view of the complex 
3D geometrical structure of the salt body is shown in Figure 
6c. Note that holes in the original definition of the enclosing 
salt body surface are closed according to the geometry of the 
intersecting faults. Here, we emphasize that a crucial precon-
dition of the automatic mesh generation process is the exact 
definition of the model’s geometry. Once this is done, the 
appropriate mesh spacing has to be chosen such that the geo-

metrical features are accounted for with sufficient resolution 
and that the propagated seismic waves are approximated with 
the desired accuracy.

It is important to remember that the accuracy of the nu-
merical seismograms depends on three factors: (1) the mesh 
spacing, (2) the approximation order, and (3) the propaga-
tion distance of the waves. A detailed study of the influence 
of these parameters on the accuracy of synthetic seismograms 
obtained by ADER-DG has been carried out by Käser et al. 
(2008). 

An example of the effect of different approximation or-
ders for the SEG/EAGE salt model is shown in Figure 7. The 
seismogram is obtained by using a tetrahedral mesh of 3.1e6 
elements of ~200-m edge length and is recorded by a receiv-
er inside one of the boreholes indicated as vertical red lines 
in Figure 5. An explosive source producing a Ricker wave-
let with dominant frequency of 5 Hz is in the other well. 
Using an ADER-DG scheme of second-order (O2) in time 
and space generates a smooth seismogram, where much of 
the amplitude information is essentially lost due to numeri-
cal diffusion. Therefore, the problem is under-resolved, but 
gives a first rough estimate of the solution without produc-
ing numerical artifacts. Increasing the order to O3 or O4 

Figure 8. Synthetic raw shots of two surface receiver lines across the salt model. (a) The source position is at the surface close to the center of  
receiver line A-A’. (b) The source is inside a borehole with a receiver line connecting the two wells at the surface.

Downloaded 08 Feb 2010 to 141.84.9.25. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



January 2010      The Leading Edge      85

H i g h - p e r f o r m a n c e  c o m p u t i n g

preserves more amplitude information, while the change be-
tween two consecutive orders indicates how close the solution 
has already converged towards a quasi-analytic solution. The 
frequency spectra in Figure 7 clearly show the extended fre-
quency content of the synthetic signal of higher approxima-
tion quality while preventing spurious high-frequency noise. 

We finally apply the ADER-DG O4 scheme to the sim-
plified salt model to produce synthetic raw shots, similar to 
acquired data in surface surveys, running a computation on 
512 cores. Examples of resulting data sets are shown in Fig-
ure 8 for two different shot locations recorded along surface 
receiver lines (a) on cross section A-A’ and (b) connecting the 
two boreholes. The strong direct water wave is clearly visible 
in Figure 8a while effects due to the structural features of the 
salt body are visible in Figure 8b. Data processing can now 
be applied as for real data. Besides, the synthetics allow for 
systematic studies of source signature effects and structural or 
compositional subsurface properties on the seismic response.

Concluding remarks
We presented the new discontinuous Galerkin finite-element 
method for modeling seismic wave propagation using HPC 
infrastructures and applied to relevant problems in oil and 
gas exploration. The geometrical flexibility of unstructured 
tetrahedral meshes combined with the method’s high-order 
approximation properties in space and time, due to a novel 
time-integration technique for explicit schemes, demon-
strates the potential of the proposed simulation technology 
to produce accurate and reliable synthetic data sets for chal-
lenging modeling problems. The applicability of the software 
using different hardware architectures of modern HPC-
infrastructure, its scaling properties, and memory usage al-
low the solution of large-scale wave-propagation problems 
to support model validation by comparing synthetics with 
field data. Further technical improvements with respect to 
run time and cache optimization are necessary to enhance 
the method’s performance on HPC facilities. Developments 
covering a broader field of geophysical applications should be 
motivated by specific needs of the users. 
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Quantitative Comparison of Four Numerical Predictions of 3D Ground

Motion in the Grenoble Valley, France
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Martin Käser, Marco Stupazzini, and Miriam Kristekova

Abstract This article documents a comparative exercise for numerical simulation of
ground motion, addressing the seismic response of the Grenoble site, a typical Alpine
valley with complex 3D geometry and large velocity contrasts. Predictions up to 2 Hz
were asked for four different structure wave-field configurations (point source and
extended source, with and without surface topography). This effort is part of a larger
exercise organized for the third international symposium on the effects of surface
geology (ESG 2006), the complete results of which are reported elsewhere (Tsuno et al.,
2009).

While initial, blind computations significantly differed from one another, a
remarkable fit was obtained after correcting for some nonmethodological errors for
four 3D methods: the arbitrary high-order derivative discontinuous Galerkin method
(ADER-DGM), the velocity-stress finite-difference scheme on an arbitrary discontinu-
ous staggered grid (FDM), and two implementations of the spectral-element method
(SEM1 and SEM2). Their basic formulation is briefly recalled, and their implementation
for the Grenoble Valley and the corresponding requirements in terms of computer
resources are detailed.

Besides a visual inspection of PGV maps, more refined, quantitative comparisons
based on time-frequency analysis greatly help in understanding the origin of differ-
ences, with a special emphasis on phase misfit. The match is found excellent below
1 Hz, and gradually deteriorates for increasing frequency, reflecting differences in
meshing strategy, numerical dispersion, and implementation of damping properties.

While the numerical prediction of ground motion cannot yet be considered a
mature, push-button approach, the good agreement reached by four participants indi-
cates that, when used properly, numerical simulation is actually able to handle correctly
wave radiation from extended sources in complex 3D media. The main recommenda-
tion to obtain reliable numerical predictions of earthquake ground motion is to use
at least two different but comparably accurate methods, for instance the present formu-
lations and implementations of the FDM, SEM, and ADER-DGM.

Introduction

The very fact that a large part of the world’s populations
lives in earthquake-prone areas implies that seismologists
must predict earthquake ground motion during potential fu-
ture earthquakes, no matter whether they can or cannot timely
predict earthquake occurrence. Prediction of the earthquake
motion at a site of interest is extremely important for design-
ing new buildings and reinforcing existing ones, as well as for
undertaking actions that could help mitigate losses during
future earthquakes.

Theory and numerical simulation are irreplaceable tools
in the earthquake ground-motion research, mainly for two
reasons. Considering the present-day limitations of direct
controlled physical experiments in seismology, it is extre-
mely difficult to scale laboratory experiments to real struc-
tures. Moreover, in most cases, there is a drastic lack of
earthquake recordings at the sites of interest.

Given the present state of our knowledge of the processes
and structures that form earthquake groundmotion, and, at the
same time, capabilities of modern seismic arrays, realistic 3D
computational models have to include nonplanar interfaces
between layers, gradients in velocity, density, and quality
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factors inside layers, and often free-surface topography. In
particular, the rheology of the medium has to allow for real-
istic broadband attenuation. Realistic strong ground-motion
simulations should also account for nonlinear behavior in soft
soils, which will, however, be neglected here for the sake of
simplicity.

Only approximate computational methods are able to
account for the structural complexity of the realistic models.
The most important aspects of each method are accuracy and
computational efficiency (in terms of computer memory and
time). These two aspects are in most cases contradictory. A
reasonable balance between the accuracy and computational
efficiency in case of complex realistic structures made the
numerical modeling methods dominant among all approxi-
mate methods.

A number of different numerical modeling methods
have been developed within the last few decades. Each meth-
od has its advantages and disadvantages that often depend on
the particular application. Therefore, it is very unlikely that
one of the existing or recently developed numerical modeling
methods can be systematically and simultaneously the most
accurate and the most efficient for all important medium
wave-field configurations.

In general, a sufficiently high level of agreement or suf-
ficiently small level of misfit between data and theoretical
prediction can be considered a confirmation of a theoretical
model of an investigated process. In particular, the agreement
between recorded and numerically predicted earthquake
motion can be considered an ultimate criterion for capability
of seismologists to simulate earthquake ground motion. A
procedure of evaluating the capability of the theoretical mod-
el to describe the reality can be called validation. Clearly, in
the validation it is necessary to understand what is a reason-
able level of agreement. Given the complexity and inevitable
uncertainty of realistic models (earthquake source and mate-
rial structure), this is not a simple problem. Certainly, first
we have to be sure that the numerical simulation method
and its implementation in the computer code are correct.
A procedure of evaluating the capability of the method to
solve the elastodynamic equations with initial and boundary
conditions can be called verification. Without the method
verification, it is impossible to properly evaluate the level
of agreement between recorded and simulated motions.
Consequently, verification of the recent numerical modeling
methods for complex realistic models is an important task.

The importance of the objective comparison, verifica-
tion, and validation of the numerical modeling methods is
evidenced by different initiatives. On one hand, the Southern
California Earthquake Center (SCEC) has recently organized
3D numerical simulation code validation projects for wave
propagation (Day et al., 2003) and dynamic rupture simula-
tions (Harris et al., 2009). The goal was to validate and
compare 3D earthquake simulation methods, and foster their
application by the engineering community. On the other
hand the EU FP6 SPICE project (Seismic Wave Propagation
and Imaging in Complex Media: A European Network,

www.spice‑rtn.org, 2004–2007) aimed at development of
computational tools for seismic wave propagation, earth-
quake motion, and seismic imaging. SPICE has established
an open Internet-based digital library (Gallovic et al., 2007;
www.spice-rtn.org/library), which comprises computer
codes, training materials, simulation exercises, and an inter-
active web interface for code validation (Moczo et al., 2006;
www.nuquake.eu/SPICECVal/). The main goal of the SPICE
Code Validation is to provide an open long-term basis for
possible tests and comparisons of the numerical methods
and codes for the seismic wave propagation and earthquake
motion simulations. The objective evaluation of accuracy
and comparison is facilitated using the time-frequency misfit
criteria (Kristekova et al., 2006) interactively applicable to a
solution one wants to compare with any of the previously
uploaded solutions.

In parallel, real sites and realistic models were prime
targets of the blind prediction tests in framework of three
international symposia on the effects of surface geology
(ESG) in Odawara, Japan (1992), Yokohama, Japan (1998),
and Grenoble, France (2006). The ESG 2006 symposium
provided an excellent opportunity to focus on numerical
modeling of earthquake motion in the Grenoble Valley for
local weak and moderate earthquakes. The Grenoble Valley
is a very interesting and typical deep Alpine sediment-filled
structure. The Grenoble urban area, mostly built over the
sedimentary area, gathers a significant population (around
500,000), a number of high-tech and/or sensitive industrial
facilities, and educational and research institutions. There-
fore, despite an only moderate regional seismic hazard (with
known historical events hardly reaching magnitude 6) and
considerable broadband site effects, Lebrun et al. (2001)
raised the concern about the seismic risk in such Alpine
valley configurations, which are also met in different other
areas within the European Alps, and in other mountainous
areas with embanked valleys filled with young, postglacial
lacustrine sediments.

Our article presents results of a multi-institution project
and an unprecedented comparison of very different and
important methods applied to a structurally complex model
of a real site. The scope of our article is not to benchmark
computer codes that solve a well-referenced problem with a
known analytical solution. Rather, our article considers a
realistic 3D problem for which we do not have a reference
solution. There is no objective way of defining an absolute
level of accuracy for the different predictions of the seismic
response of the Grenoble Valley.

The applied methods have been developed by various
teams in different institutions using different computer
facilities. It was not technically feasible to perform presented
simulations on the same computer. It is important to realize
that the use of the same computer is of marginal importance
compared with the main aspect of the article.

The scope and goal of our article match those of the
SCEC code validation project that targeted the Los Angeles
basin to demonstrate the reachable level of agreement among
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the leading U.S. modeling teams. Our article has a similar
goal; in addition, it considers awider set of numericalmethods
and a significantly higher maximum frequency.

Compared with the Los Angeles basin, the modeling of
the Grenoble Valley is complicated by the relatively large
velocity contrast and the complex interface geometry. The
level of the reached agreement was not possible to anticipate
and thus is not trivial.

Structurally complex models of real sedimentary valleys
pose great challenges. Even though there have been a number
of attempts at validation, the agreement between synthetics
and data remains far from satisfactory, except for very low
frequencies, say <0:1 Hz. This is because one cannot isolate
the validity of the simulation from that of other factors, such
as the material model, including possible nonlinearities, and
the source description. One common way to reduce the
influence of these factors is to use small earthquakes, whose
rupture can be modeled as a point source.

Given the model complexity and methodological differ-
ences among the applied methods, we found a surprisingly
good level of agreement for four of the submitted predictions
obtained by different teams: Käser et al. (2006) used the
arbitrary high-order derivative discontinuous Galerkin meth-
od (ADER-DGM), Chaljub (2009) used the spectral-element
method (SEM), Kristek et al. (2009) used the finite-difference
method (FDM), and Stupazzini (2009) and Stupazzini et al.
(2009) used another implementation of the SEM. The ADER-
DGM, FDM, and SEM differ both in the basic formulations
of the equations of motion and boundary conditions, and the
way they construct discrete models and the resulting systems
of algebraic equations. They also differ in the required com-
putermemory and time.At the same time these threemethods,
together with the finite-element method (FEM), are at present
the most powerful numerical modeling methods for earth-
quake ground motion. Whereas the FDM and FEM have a
relatively long tradition, the SEM has been used since the
early 1990s; ADER-DGM has been elaborated and applied
to seismology rather recently. Despite this relatively long
tradition of the FDM and FEM, they are still being developed
in terms of accuracy and efficiency, and it is reasonable to
expect considerable improvements.

In this article we first present the structural model of the
Grenoble Valley and definition of the numerical simulations.
In the next section we briefly introduce the ADER-DGM,
FDM, and SEM. Computational aspects of the simulations
for the Grenoble Valley are then discussed. The main part
of the article presents comparison of the numerical results
obtained with the ADER-DGM, FDM, and two implementa-
tions of the SEM. We conclude with main lessons learned and
recommendations for future blind predictions and bench-
mark tests.

Structural Model of the Grenoble Valley

Grenoble is settled on Quaternary fluvial and postglacial
deposits at the junction of three large valleys of the French

external Alps (Fig. 1), surrounded by three mountain ranges.
This junction mimics the letter Y (the so-called Grenoble Y),
with three legs:

1. The northeastern branch of the Y is the N30°–40° trend-
ing Grésivaudan Valley, extending about 60 km upstream
along the Isère River.

2. The northwestern branch is the N150° trending, Cluse-
de-l’Isère Valley, extending from Grenoble to Moirans
(about 20 km), where the Isère River flows to the
northwest.

3. The southern branch follows the Drac River, flowing
from the south and arriving in a small plain about 15 km
upstream of Grenoble.

The three massifs delineated by these valleys are the
Belledonne crystalline massif to the east and two subalpine
foothills consisting of sedimentary rocks (limestone) to the
north (Chartreuse) and the southwest (Vercors). These foot-
hills were formed when the Alpine shortening displaced the
sedimentary cover to the northwest, forming folds and related
thrusts (7 to 5 m.y. B.P.) and uplifted the crystalline basement
(5 m.y. B.P.) to the east of the study area (Belledonne massif).

The IsèreValley (from upper Grésivaudan to downstream
Cluse-de-l’Isère) therefore extends for about 110 km from
Albertville in the northwest to Rovonwest of theVercorsmas-
sif; it is 3 to 5 km wide and quasi-flat, with slowly decreasing
altitudes (330 m in Albertville, 211 m in Grenoble, 180 m in
Rovon). The surrounding mountains exhibit, however, a
pronounced topography with maximum elevations slightly
above 2000 m in Vercors and Chartreuse and above 3000 m
in the Belledonne massif. As explained by Gamond et al.

Figure 1. Situation map of the Grenoble area in the French
Alps, showing the Y-shaped Grenoble Valley surrounded by the
Vercors and Chartreuse limestone massifs with maximal elevation
of 2000 m, and the crystalline Belledonne chain where elevation
reaches 3000 m. GMB1 indicates the location of the Montbonnot
borehole (see text).
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(2009), this course runs along several hundred meters deep
paleovalley carved in the Mesozoic sedimentary cover of the
Alpine foothills. The northeast-southwest GrésivaudanValley
was dug by erosion around 5 m.y. B.P. through the tributaries
of the paleo-Isère River, while the northwest-southeast
Cluse-de-l’Isère was carved by epigenesis between 5 and
2 m.y. B.P. when the foothills were uplifted.

Its present morphology presents asymmetrical inclined
sides and longitudinal moraines typical of glacial valleys.
During the last glacial-interglacial cycles, as all valleys in the
western Alps, it was successively eroded and overdeepened
by thick Alpine glaciers (Isère glacier, local glaciers of the
Belledonne massif, Drac-Romanche glacier) feeding large
ice lobes at the piedmont and then filled essentially by lake
sediments as glaciers were melting and retreating higher up
in the catchments during warm phases. In the IsèreValley,
both proglacial and deltaic lacustrine sediments completely
filled an up to 900 m deep and 100 km long fjordlike basin
during the last deglaciation, while only a thin, fluvial
sequence formed during our interglacial period (Chapron
et al., 2009).

Despite the relatively good mechanical characteristics of
these quaternary deposits, the large impedance contrast with
the embedding rocks, together with the large embankment
ratio, cause huge amplifications as observed by Lebrun et al.
(2001), Cornou et al. (2003a, 2003b), and Cornou et al.
(2009). A series of geotechnical and geophysical investiga-
tions has thus been carried out in theGrenoble area to improve
the knowledge of the underground structure. A summary of
these investigations can be found in the series of dedicated
articles included in Volume 2 of the ESG 2006 proceedings
(Chapron et al., 2009; Cornou et al., 2009; Dietrich et al.,
2009;Gamond et al., 2009;Guéguen et al., 2009; Jerram et al.,
2009;Ménard, Blein, Fournier et al., 2009; Ménard, Dietrich,
Vallon et al. 2009) and in Guéguen et al. (2007). Their
primary focus was to constrain the deep structure responsible
for the low-frequency effects; once this objective was met, a
secondary objective was assigned to better understand the
shallow structure controlling the higher-frequency amplifica-
tion and its short-wavelength lateral variations. Because the
ESG 2006 numerical simulations were limited to a 2 Hz max-
imum frequency, only the deep underground structure and
large-scale geometry and topography are presented here.

The first deep investigations consisted in several hun-
dreds of gravimetric measurements that allowed constraining
the geometry of the sediment/bedrock interface and indicat-
ing a large thickness close to 1 km in the deepest part (Vallon,
1999). This information was checked and calibrated through
the drilling of one deep borehole in the Grésivaudan Valley
(the Montbonnot GMB1 site in Fig. 1, now instrumented
with three accelerometers at the surface, GL-42 m, and
GL-550 m), which reached the bedrock at a depth of 535 m,
very close to the expectations from the gravimetric survey.
Above a thin (4 m thick) glacial till, the post-Würm filling
sequence consists in 520 meters of monotonous lacustrine
sandy-silty formations corresponding to the postglacial lake,

and ends with 15 meters of sandy-pebbly alluvium deposited
when the presently working Isère fluviatile regime started
again (Nicoud et al., 2002).

As described by Chapron et al. (2009), Dietrich et al.
(2009) and Ménard, Dietrich, Vallon et al. (2009), the nature
of this postglacial sedimentary infill has also been documen-
ted by a set of seismic reflection profiles acquired both on
land in the Isère Valley and in large valley lakes, such as
the Le Bourget Lake 50 km to the north of Grenoble. All
highlight very thick, rather homogeneous quaternary depos-
its with nonnegligible P- and S-wave velocity gradients. All
these measurements have been complemented by several
hundreds of microtremor measurements processed with the
H/V technique (Guéguen et al., 2007, 2009), which consis-
tently exhibit a low-frequency peak (usually between 0.3 and
0.5 Hz) associated with the thick lacustrine filling, and in
some parts, a second higher frequency peak (ranging from
2 to 5–6 Hz).

In summary, the main conclusions of all these deep
investigations are:

• 20 km of seismic reflection profiles at different cross sec-
tions along the Isère Valley, together with the information
collected in the borehole drilled near Grenoble and reach-
ing the sediment-bedrock, allowed us to calibrate or con-
firm the information provided by gravimetric surveys and
background noise H/V measurements on distribution of the
sediment thickness in the valley.

• The bottom of the valley is marked by an irregular topo-
graphy. The bottom of the Isère Valley shows a great vari-
ety of shapes: flat bottom, wide open V-shape, V-shape
interlocked in a larger U-shaped valley. At some places,
there exist underground substratum highs, such as a hillock
(probably of tithonic age) that could be identified just south
of the Grenoble downtown (see Fig. 2).

• The depth of the substratum increases downstream the
Isère River from about 200 m in the upper Grésivaudan,
500 m in the lower Grésivaudan, and more than 800 m
in the Cluse of Grenoble.

• The seismic velocities are roughly laterally homogeneous
at depths larger than 20–40 m, in line with the filling of the
valley by the postglacial lacustrine deposits.

• The P- and S-wave velocity distributions within the sedi-
ments are characterized by moderate to strong vertical
gradients, with the VP=VS ratio varying between 6 near
the surface and 2.7 at several hundred meters depth.

Given the limitation of our numerical simulation exer-
cise to an upper frequency of 2 Hz, we thus considered a
simple depth-varying sediment velocity model derived from
the deep borehole measurements. The valley model is thus
described by two main components:

• A 3D geometry consisting of a free-surface topography and
a sediment-basement interface.

• Sediment and bedrock velocity models exhibiting only a
1D depth dependence.
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The geometry of the surface topography is shown in
Figure 1, and the underground topography is depicted in
Figure 2. The velocity model is detailed in Table 1. This
model is still distant from the reality, especially for the shal-
low part. It constitutes, however, a good starting model that is
able to reproduce the main features of the low-frequency
response, and it is complex enough to enable a meaningful
comparison between different numerical methods.

The quality factor values were chosen infinite in the un-
derlying bedrock. The bedrock is very stiff and the computa-
tions are performed only for local, shallow sources, so that
crustal damping effects may be thought negligible in a first
step. The quality factor was taken slightly larger than that
actually measured in the Montbonnot borehole (QP � 35,
see Cornou, 2002), but these measurements were obtained
at higher frequencies (several tens of Hertz); higher Q values
are needed to reproduce the observed low-frequency duration
within the valley (Chaljub, 2009).

Selected Earthquakes

Various active tectonic features such as basement thrusts
and strike-slip faults have been described in this part of the
Alps (Thouvenot et al., 2003, 2009). However, the known
history reports only moderate earthquakes with intensities
reaching VIII on the Medvedev, Sponheuer, and Karnik
(MSK) scale, and estimated magnitudes between M 5 and
M 6. The last significant earthquake in the Grenoble immedi-
ate surroundings was an M 5.3 earthquake that occurred in
Corrençon (Vercors, about 30 km to the southwest of Gre-
noble) in 1962, which caused some chimney falls in the city.

The densification of the seismic monitoring networks
undertaken in the late 1980s revealed some clear, previously
unsuspected seismic alignments. In particular, the Belle-
donne Border Fault (BBF) has been identified as the most
active of these new features: it consists of a 50 to 70 km long,
northeast-southwest trending segment, characterized by

Figure 2. Map of sediment thickness in the Grenoble Valley showing 40 receivers (R01 to R40) used in the simulations. Contour lines
every 100 m are shown; the bold black line indicates the points where the sediment thickness equals 50 m. The positions of the point source
W1 and extended source S1 are shown in red. Red boxes indicate particular receivers for which a detailed comparison is shown further in the
article. Receiver R06 corresponds to the GMB1 location in Figure 1.

Table 1
Mechanical Parameters for the Grenoble Valley Model

Unit Thickness Unit Mass (kg=m3) S-Wave Velocity β (m=sec) P-Wave Velocity α (m=sec) Quality Factor QS Quality Factor QP

Sediments Up to 1000 m 2140� 0:125z* 300� 19
p
z 1450� 1:2z 50 37.5 α2=β2

Bedrock 0–3 km 2720 3200 5600 ∞ ∞
3–27 km 2720 3430 5920 ∞ ∞
27–35 km 2920 3810 6600 ∞ ∞
>35 m 3320 4450 8000 ∞ ∞

*z refers to depth expressed in meters.
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many small earthquakes exhibiting a right-lateral strike-slip
motion consistent with an east–west compressive tectonic
environment. Such a segment could therefore easily accom-
modate an M 6 event, with recurrence rates, however, well
beyond the 500- to 1000-year historic period. This fault runs
indeed east of and parallel to the northeast branch of the Y,
with a distance of approximately 5–7 km from the eastern
edge of the Isère–Grésivaudan Valley.

Because several recordings could be obtained at differ-
ent sites from a small magnitude event on this fault near the
village of Lancey in 2003, it was decided to simulate the
ground motion for two earthquakes (Chaljub et al., 2009):

• A real, weak one, called W1, corresponding to this 2003
event. This event had a moment magnitudeM 2.9, and was
assumed to be a point source with a 45° strike angle and a
90° dip angle, located at a 3 km depth. (There is, however, a
significant uncertainty on the depth estimate, which could
be up to 8 km).

• A hypothetical, stronger event (S1), corresponding to an
M 6 event rupturing the Belledonne Border Fault along
a segment centered at the W1 hypocenter. The fault length
and width were assumed to be 9 and 4.5 km, respectively.
A very simple (and, indeed, somewhat pessimistic and
unrealistic) kinematics was assumed. The rupture nucle-
ates at the fault center, propagates circularly with a rupture
velocity equal to 2:8 km=sec, and stops abruptly when
it reaches the boundary of the rectangular fault area. In
addition, the slip distribution is flat (i.e., constant slip over
the whole ruptured area). Such a fault mechanism gener-
ates very strong stopping phases, especially as the rupture
is very shallow: the resulting ground-motion values are
thus unrealistically high, and should be taken with much
caution if applied to hazard estimates. Such a scenario
nevertheless constitutes a good case for a comparison
between different numerical methods, because it includes
very strong pulses with high directivity.

For both cases, the source function was defined as

s�t� � 0:5�1� erf�4�t � 2τ�=τ ��; (1)

where τ is the rise time chosen to provide an average slip
velocity on the fault plane equal to 1 m=sec. It was thus
taken equal to 0.03 sec for the weak event (W1) case, and to
1.16 sec for the strong event case (S1).

The ground motion from each of these events was com-
puted at a series of 40 receivers displayed in Figure 2 (some
of them corresponding to the location of a few seismological
or accelerometric stations that recorded the M 2.9, 2003
Lancey earthquake). Most of these receivers are located at
the surface, but two are located at depth and correspond to
the Montbonnot downhole sensors (receiver R06 corre-
sponds to the GMB1 location in Fig. 1). Receivers R01, R04,
and R33 to R40 are located on rock outcrops, whereas all the
others are located within the valley.

The simulation exercise proposed for the ESG 2006
symposium also included another set of twin events (W2,
S2), located 20 km to the south of Grenoble, corresponding
to a conjugate strike-slip fault with a west-northwest–
east-southeast strike. A more complete description of the
simulation exercise can be found in Chaljub et al. (2009)
and Tsuno et al. (2009). In the present article, however, only
the (W1, S1) set of events is considered.

Fourteen different groups from eight countries contribu-
ted to the ESG 2006 comparison, providing a total of 18
prediction sets; three groups used the empirical Green’s func-
tion technique for the few receivers collocated with strong
motion stations, two used a 1D (horizontal layering) approach
for the borehole site, three modeled the response of a 2D
cross section, and seven addressed the 3D problem, out of
which three could account for the effects of both underground
and surface topography. The numerical schemes used for 3D
contributions belong to the finite-difference, spectral-element
and discontinuous-Galerkin finite-element methods. Four
participants whose 3D predictions were surprisingly close
updated their results after the ESG meeting, after correcting
some nonmethodological errors (evidenced by comparing to
other predictions) in preparation of the numerical simulations.
Only the results from the corrected predictions are considered
here. Further details on all other methods and results can be
found in Tsuno et al. (2009).

Computational Methods

3D Fourth-Order Velocity-Stress Finite-Difference
Scheme on an Arbitrary Discontinuous
Staggered Grid

Although the FDM has been used in seismology since the
late 1960s, its elaboration for the structurally complex media
is certainly far from being completed. Recent elaboration of
the staggered-grid schemes for viscoelastic media with mate-
rial interfaces as well as the development of the optimally
accurate schemes are two examples soundly indicating that
the best times of the finite-difference modeling are still ahead
of us. Because we do not have space here for more details, we
refer to the recent comprehensive review (Moczo, Robertsson,
Eisner, 2007) and monograph (Moczo et al., 2007).

For the numerical simulations we used a 3D fourth-order
velocity-stress finite-difference scheme on an arbitrary dis-
continuous staggered grid. A complete theory can be found
in articles byMoczo et al. (2002, 2004), Kristek et al. (2002),
Kristek and Moczo (2003), and Moczo and Kristek (2005).
Here we restrict our focus to the essential aspects of the
simulation method.

The scheme solves the equation of motion and Hooke’s
law for viscoelastic medium with rheology of the generalized
Maxwell body,

ρ _vi � σij;j �fi; (2)

and
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Here, in a Cartesian coordinate system �x1; x2; x3�, ρ�xi�;
i∈f1; 2; 3g, is density; κ�xi� and μ�xi� unrelaxed (elastic)
bulk and shear moduli; Yκ

l and Yμ
l anelastic coefficients;

~u�xi; t� displacement vector; t time; ~f�xi; t� body force per
unit volume; σij�xk; t�, εij�xk; t�, i, j, and k∈f1; 2; 3g stress
and strain tensors; ξijl material-independent anelastic func-
tions; and ωl relaxation angular frequencies. Summation con-
vention does not apply to index l. The anelastic coefficients
are obtained from

Yκ
l �

�
α2Yα

l �
4

3
β2Yβ

l

���
α2 � 4

3
β2

�
;

Yμ
l � Yβ

l ; l � 1;…; 4; (5)

where α and β are elastic (corresponding to the unrelaxed
moduli) P- and S-wave velocities, and anelastic coefficients
Yα
l and Yβ

l are obtained from the desired/measured quality
factor values
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The schemes for solving the equation of motion and time
derivative of Hooke’s law have the same structure as standard
fourth-order velocity staggered-grid schemes. The accuracy
of our scheme is determined by how we treat smooth material
heterogeneity and material discontinuity. The effective grid
density for a corresponding particle velocity component is
evaluated as an integral volume arithmetic average of density
inside a grid cell centered at the grid position of the corre-
sponding particle velocity component; for example

ρAI;J�1=2;K�1=2 �
1

h3

Z
xI�1=2

xI�1=2

Z
yJ�1

yJ

Z
zK�1

zK

ρdxdydz: (7)

The effective grid, unrelaxed bulk, and shear moduli are
evaluated as integral volume harmonic averages of moduli in
respective grid cells centered at grid positions of the stress-
tensor components; for example
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Z
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κ
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��1
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(8)

The integrals are evaluated numerically, and the grid cell can
contain a material discontinuity. The anelastic coefficients Yκ

l

and Yμ
l are determined as follows: An average viscoelastic

modulus in the frequency domain is numerically determined

for a cell as an integral harmonic average. A corresponding
quality factor is then determined from the averaged visco-
elastic modulus at specified frequencies. Equation (6) for the
bulk and shear moduli is then used to determine average
anelastic functions. A coarse spatial distribution of the anelas-
tic functions is applied in order to reduce the memory
requirements.

The free surface is simulated using the AFDA technique
(Kristek et al., 2002; Moczo et al., 2004).

If the near-surface sedimentary body with lower seismic
wavevelocities is covered by a fine spatial grid and underlying
stiffer bedrock with larger velocities is covered by a coarser
spatial grid, the number of grid points and, consequently, the
computer memory and time requirements are significantly
reduced compared with the uniform grid. In order to make
such a combined (or discontinuous) spatial grid efficient,
the ratio of the size of the spatial grid spacing in the coarser
grid and that in the finer grid should correspond to the ratio of
the shear-wave velocities in the stiffer bedrock and softer
sediments. Therefore, Kristek et al. (2009) and Moczo et al.
(2007) developed an algorithm that enables us to adjust a dis-
continuous spatial grid accordingly except that, due to the
structure of the staggered grid, the ratio of the spatial grid spa-
cings in the coarser and finer grids has to be an odd number. In
other words, depending on the model of medium, we can
choose a1∶1 (uniform) grid, or 1∶3; 1∶5;… discontinuous grid.
The grid is illustrated in Figure 3. A Fortran 95 computer code
3DFD_VS has been developed for performing the finite-
difference scheme. PML absorbing boundary conditions
are implemented. The code is MPI parallelized (see the Data
and Resources section for details).

3D Spectral-Element Method

The spectral-element method (SEM) has been introduced
quite recently for seismological applications (Seriani and
Priolo, 1991, 1994; Faccioli et al., 1997; Komatitsch and Vi-
lotte, 1998). The SEM is a special kind of the finite-element
method (FEM) that relies on the use of a high-order spectral
polynomial basis. Like the FEM, the SEM can naturally han-
dle media with complex geometries, including surface topo-
graphy and nonplanar interfaces, and it allows local mesh
refinement to account for variations in seismic wavelengths.
Moreover, compared with the traditional low-order FEM,
the high-order spectral basis yields very accurate results by
minimizing numerical dispersion and numerical anisotropy
(Seriani and Oliveira, 2007; de Basabe and Sen, 2007). In
practice, polynomial orders N � 4 to N � 8 are used and
provide sufficiently accurate results for both body and sur-
face waves, as soon as 5 to 6 points are used to sample the
seismic wavelengths.

In the classical SEM, as in the two implementations
presented hereafter, the choice of the element shapes, poly-
nomial basis, and numerical integration rule relies on tensor-
ization, that is, on separation of variables. The advantage is
the possibility to increase significantly the computational
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Figure 3. Avertical grid plane in the arbitrary discontinuous spatial staggered grid in the case of the coarser-to-finer spatial grid spacing
equal to 3. The interior grid positions of the finer grid: green, 4th-order FD scheme; blue, 2nd-order FD scheme; yellow, bicubic interpolation.
The interior grid positions of the coarser grid: red, 4th-order FD scheme. The red-circumscribed green positions define the boundary of the
coarser grid.
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efficiency by (1) leading to a diagonal mass matrix, allowing
fully explicit schemes to be used for time evolution; and
(2) decreasing the computational cost of the internal forces.
The drawback is the restriction of the geometry of spectral
elements to quadrangles in 2D and to hexahedra in 3D. Recall
indeed that in order to account properly for discontinuities in
elastic parameters, the spectral elements must not intersect
the physical interfaces. This condition is not always easy
to account for in a hexahedra-based SEM, for example, near
valley or basin edges. Extensions of the SEM to 2D meshes of
triangular elements have been proposed recently at the price
of either losing the diagonal character of the mass matrix
(Mercerat et al., 2005) or decreasing the spectral accuracy
(Komatitsch et al., 2001).

Review papers presenting the numerous developments
of the SEM for global or regional seismology applications
can be found in Komatitsch et al. (2005) and Chaljub et al.
(2007). Here, we briefly recall the key features of the SEM
discretization.

Through the principle of virtual work, the dynamic
equilibrium problem for the medium Ω can be stated in the
following weak or variational form: find u � u�x; t�, displa-
cement vector, such that ∀t∈�0; T�

∂2

∂t2
Z
Ω
ρu · vdΩ�

Z
Ω
σij�u�εij�v�dΩ

�
Z
ΓN

t · vdΓ�
Z
Ω
f · vdΩ;

i; j � 1…d for all v; (9)

where t is time, ρ � ρ�x� the material density, σij the stress-
tensor, εij the infinitesimal strain tensor, f � f �x; t� the
known body force distribution, t � t�x; t� the vector of
external traction prescribed onΓN , and v � v�x� is the generic
function (candidate to represent admissible displacements).
Note that the free-surface condition is obtained implicitly,
or naturally, in the weak formulation. The stress and strain
tensors in (9) are related to the displacement by Hooke’s
law (3).

An appropriate numerical solution of (9) can be
achieved through discretization in the space and time
domain. Herein, the latter is done via finite differences; the
best trade-off in terms of accuracy, stability, and computa-
tional complexity is obtained using the explicit second-
order leapfrog scheme (LF2-LF2) (Maggio and Quarteroni,
1994) that must satisfy the well-known Courant-Friedrichs-
Lewy (CFL) stability condition.

The spatial discretization is based upon the Galerkin
approximation to equation (9). It starts with a decomposition
of the computational domain Ω into a family of nonover-
lapping, unstructured quadrilaterals Ωk (or hexahedra in 3D).
Each element Ωk is obtained by a regular mapping of a ref-
erence element Ωref (the unit square ��1;�1�2 in 2D and the
unit cube ��1;�1�3 in 3D). Then, admissible displacements
are approximated by polynomials of degree N on each
element. This writes formally

XK
k�1

∂2

∂t2
Z
Ωk

ρu�i�N · v�i�dΩ�
XK
k�1

Z
Ωk

σlm�u�i�N �εlm�v�i�N �dΩ

�
XK
k�1

Z
Γ�k�
N

t�i�v�i�dΓN �
XK
k�1

Z
Ωk

f�i�v�i�dΩ; (10)

where uN and vN denote the approximations of u and v, and
u�i�N , v�i�N , t�i�N , f�i� the scalar components of the vectors uN , vN ,
t and f . Note that equation (10) implicitly assumes that the
displacements are globally continuous, but the material prop-
erties can be discontinuous across elements.

The integrals in (10) are evaluated numerically by a
high-order quadrature formula based on the Gauss-Lobatto-
Legendre (GLL) points (Davis and Rabinowitz, 1984; Canuto
et al., 1988). The polynomials used to approximate the dis-
placements are then defined as the shape functions of the
GLL points. Thanks to this particular choice, the SEM inherits
the exponential accuracy of spectral methods in space: for
problems with sufficiently smooth exact solution u, the
numerical solution uN obtained in the SEM converges more
rapidly than those based upon the classical FEM. This prop-
erty is known as spectral accuracy in the literature, and the
convergence of the spectral methods is referred to as expo-
nential or geometrical, as opposed to the algebraic conver-
gence of the classical FEM. Note that this does not hold
for the numerical realization of the free-surface condition:
the convergence of numerical traction toward the prescribed
traction is only algebraical (Deville et al., 2002). For the
wave propagation applications, the numerical accuracy is
more properly assessed by the analysis of numerical disper-
sion, which has been shown recently to be optimal for the
SEM (Seriani and Oliveira, 2007; de Basabe and Sen, 2007).

Assembling the elementary contributions to account for
the continuity of displacements, equation (10) can be written
as a global system of ordinary differential equations in time,

�M� �U�t� � �K�U�t� � F�t� � T�t�; (11)

where vectors F and T stem from the contributions of
the external forces and applied tractions, U stores the displa-
cement values uN�x; t� at the GLL nodes, and �M� and �K�
denote the mass and the stiffness matrices, respectively. An
important consequence of the choice of the polynomial basis
is that the mass matrix is diagonal, which, as stated pre-
viously, allows for the use of fully explicit finite-difference
schemes for the time evolution.

In the following we will present two different implemen-
tations of the SEM. In the first SEM-based code, hereafter
referred to as SEM1, viscoelasticity is accounted for using
a superposition of the standard linear solids (SLS; Liu et al.,
1976), which are implemented via memory variables (see
Chaljub et al., 2007, and references therein). Note that a
parallel superposition of the SLS is also called the general-
ized Zener body. Also note that the rheology of the general-
ized Zener body is equivalent to that of the generalized
Maxwell body as shown byMoczo and Kristek (2005). Thus,
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the rheology in the SEM1 is equivalent to that implemented in
the FD and ADER-DGMmethods described in the article. The
Lysmer and Kuhlemeyer (1969) absorbing boundary condi-
tions are applied. (See the Data and Resources section for
details on the SEM1 software package.)

In the second implementation, hereafter referred to as
SEM2, the viscoelastic behavior is implemented with a fre-
quency linear dependent quality factor, implying that all
frequency components are equally attenuated (Faccioli et al.,
1997). Kosloff and Kosloff (1986) showed that this can be
easily obtained by replacing the inertia term into the wave
equation with an ad hoc expression. The absorbing bound-
aries are implemented following Stacey’s (1988) first-order
P3 paraxial conditions. A more detailed description of the
software package adopted for the SEM2 simulation can be
found in Stupazzini et al. (2009) (also see the Data and Re-
sources section for details on the SEM2 software).

3D Velocity-Stress Discontinuous Galerkin Scheme
with ADER-Time Integration of Unstructured
Tetrahedral Meshes

The proposed numerical method combines a dis-
continuous Galerkin (DG) finite-element scheme with a
time-integration technique using Arbitrarily high-order
DERivatives (ADER) in order to solve the governing PDEwith
arbitrarily high approximation order in time and space. The
system of the 3D seismic wave equations formulated in
velocity-stress leads to a hyperbolic system of the form

∂Qp

∂t � Apq

∂Qq

∂ξ � Bpq

∂Qq

∂η � Cpq

∂Qq

∂ζ � EpqQq� Sp;

(12)

where the vector Q of unknowns contains the six stress and
the three velocity components. The Jacobian matrices A, B,
and C include the material values and can include aniso-
tropic, viscoelastic, or poroelastic material properties as
explained in detail in Dumbser and Käser (2006), Käser et al.
(2007), de la Puente et al. (2007) and (2008). The viscoelastic
medium and the attenuation is defined by rheology of the
GMB-EK, the same as described in the section on the
finite-difference method. Furthermore, the reactive source
term E is necessary, if viscoelastic attenuation is considered,
and S is an external source term accommodating force of mo-
ment tensor sources. In the discontinuous Galerkin approach,
the solution is approximated inside each tetrahedral element
by a linear combination of space-dependent polynomial
basis functions and time-dependent degrees of freedom as
expressed through

�Qh�p�ξ; η; ζ; t� � Q̂pl�t�Φl�ξ; η; ζ�; (13)

where the basis functions Φl form an orthogonal modal basis
and are defined on the canonical reference tetrahedron. Note
that there are no integration points necessary, because the

basis is a modal basis and not a nodal basis as typically used
in the SEM.

As the fully detailed derivation of the numerical scheme
would go beyond the scope of this article, we refer to the
previous work of Käser and Dumbser (2006) and Dumbser
and Käser (2006) for a detailed mathematical formulation of
the discontinuous Galerkin method. The unique property of
the ADER-DGM scheme is, that the time accuracy of the
scheme is automatically coupled to the space accuracy deter-
mined by the degree of approximation polynomials used in
equation (13). This is due to the ADER time-integration
approach (Titarev and Toro, 2002), where the fundamental
idea is to expand the solution of equation (12) via a Taylor
series in time

Qp�ξ; η; ζ; t� �
XN
k�0

tk

k!

∂k

∂tk Qp�ξ; η; ζ; 0�; (14)

where we then replace all time derivatives in equation (14) by
space derivatives using the governing PDE in equation (12).
It can be shown that the k-th time derivative can be expressed
recursively as

∂k

∂tk Qp � ��1�k
�
Apq

∂
∂ξ � Bpq

∂
∂η� Cpq

∂
∂ζ

�
k

Qq

� Epq

∂k�1

∂tk�1 Qp �
∂k�1

∂tk�1 Sp: (15)

Using equations (13) and (15) in (14), the Taylor series
expansion only depends on space derivatives of the basis
functions Φl and lower order time derivatives of the source
terms. The resulting expression for the degrees of freedom
can be integrated in time analytically as shown in detail
by Dumbser and Käser (2006) or Käser et al. (2007).
Therefore, this new approach, termed ADER-DG method,
provides arbitrarily high-order approximation in space and
time depends on the degree of the used basis polynomials
Φl in equation (13) and the corresponding order of the time
Taylor series chosen in equation (14).

Once the high-order time-integrated degrees of freedom
are computed, the evolution of the numerical solution in time
is calculated via local stiffness and flux terms (Dumbser and
Käser, 2006). Especially, the flux computations contribute as
the major part with more than 80% to the overall computa-
tional cost. A numerical flux out of the element and a numer-
ical flux into the element have to be calculated for each
element boundary, that is, triangular surface, for each tetra-
hedral element. Each flux computation requires a multiplica-
tion of two matrices F and Q of the sizes:

size of F: (number of degrees of freedom) × (number of
degrees of freedom) and

size of Q: (number of degrees of freedom) × (number of
variables in the system).

The stiffness terms, however, are relatively cheap as
only one matrix-matrix-multiplication of the same computa-
tional complexity has to be carried out. Nevertheless, all
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operations use only local data, that is, data from the element
itself and its direct neighbor sharing a common element
boundary. Due to this local character of the numerical
scheme, a number of different optimization approaches have
been developed (Dumbser et al., 2007) to enhance computa-
tional efficiency, in particular for parallel computing.

pτ -Adaptation. In most applications, the computational
domain is larger than a particular zone of interest. Therefore,
a large number of elements is needed to discretize the entire
geometry of the model. However, high-order accuracy might
only be required in a relatively small portion of the computa-
tional domain, which makes it desirable to choose the accu-
racy adaptively in space. With the ADER-DG approach, it is
possible to vary the degree p of the approximation polyno-
mials Φl in equation (13) from one element to the other. Due
to the direct coupling of the time and space accuracy via the
ADER approach, the scheme automatically becomes adaptive
in time accuracy, which is referred to as pτ -adaptation.

Local Timestepping. Geometrically complex computa-
tional domains or spatial resolution requirements often lead
to meshes with small or possibly degenerate elements. The
timestep for explicit numerical schemes is determined by
the ratio of the mesh size h of the smallest element and the
corresponding maximum wave speed in this element. For
global timestepping schemes, all elements are updated with
this extremely restrictive timestep length, leading to a large
amount of iterations. With the ADER approach, time accurate
local timestepping can be used, so that each element is
updated by its own, optimal timestep. An element can be
updated to the next time level if its actual time level and
its local timestep Δt fulfill the condition with respect to all
neighboring tetrahedrons n,

t�Δt ≤ min�tn �Δtn�: (16)

Information exchange between elements across interfaces
appears when numerical fluxes are calculated. These fluxes
depend on the length of the local time interval over which a
flux is integrated and the corresponding element is evolved in
time. Therefore, when the update criterion (16) is fulfilled for
an element, the flux between the element itself and its neigh-
bor n has to be computed over the local time interval:

τn � �max�t; tn�;min�t�Δt; tn �Δtn��: (17)

This can reduce the overall amount of flux calculations
dramatically because only the small elements have to be up-
dated frequently according to their small timestep lengths. A
full description of the pτ -adaptation and local timestepping
of the ADER-DG scheme is given by Dumbser et al. (2007).

Grouped Mesh Partitioning. For large-scale applications
it is essential to design a parallel code for supercomputing
facilities, where load balancing is an important issue.

However, if pτ -adaptivity and especially local timestepping
are applied, the partitioning is sophisticated because a sub-
domain can have different polynomial orders and timestep
lengths. We split the computational domain into zones that
usually contain geometrical or geological entities that are
meshed individually. Then, each of these zones is partitioned
separately into subdomains of equal numbers of elements,
which now include tetrahedral elements with roughly the
same sizes and orders of accuracy. Finally, each processor
receives a subdomain from each zone and therefore gets a
similar computational load. In Figure 4a we show a partition
of the full tetrahedral mesh used for the Grenoble model,
where each subdomain is color-coded. In Figure 4b we show
the grouped partitioning used to improve load balance.

Figure 4. (a) Partitioning of an unstructured tetrahedral discre-
tization of the Grenoble model. (b) Separate subdomains that con-
tain a balanced number of small and large tetrahedrons from
different zones are given to each processor, as indicated by the same
color, to optimize the load balance.
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Comparison of Computational Aspects in Modeling
Earthquake Motion in Grenoble Basin

3D Fourth-Order Velocity-Stress Finite-Difference
Scheme on an Arbitrary Discontinuous
Staggered Grid

Space-Time Grid. The computational domain is a rectan-
gular parallelepiped covered by a discontinuous staggered
grid. The upper part of the model with a sedimentary body,
1125 m thick, is covered by a finer grid with a grid spacing of
25 m. The finer grid is made of 1321 × 1431 × 45 grid cells.
The lower part of the model, covering a major part of the
bedrock, 8125 m thick, is covered by a coarser grid with
a grid spacing of 125 m. The coarser grid is made of 265 ×
287 × 65 grid cells. The coarser grid is overlapping 187.5 m
of the finer grid. The 1∶5 discontinuous spatial grid means
87% reduction in the total number of grid cells compared to
the uniform grid with a grid spacing of 25 m (approximately
90 mil. of grid cells in the discontinuous grid instead of
700 mil. of grid cells in the uniform grid). Fifty and ten grid
spacings are grid thicknesses of the PML boundary regions in
the finer and coarser grids, respectively. The timestep is
0.0022 sec. The used spatial grid means that the simulation
should be sufficiently accurate up to 2.5 Hz.

Material Heterogeneity and Attenuation. The true model
geometry of the material interfaces as well as the smooth
material heterogeneity inside the sedimentary body are
accounted for in the evaluation of the effective material elas-
tic and anelastic grid parameters grid using relations (5)–(8)
and the approach described therein. We can note that the
scheme using the integral volume harmonic averages of
the moduli and integral volume arithmetic average of density,
evaluated for each cell centered at a relevant grid position, is
capable to sense the true position of the material interfaces
within the cell.

The constant Q�ω� law is simulated using the rheology
of the generalized Maxwell body. The so-called coarse grid
graining is applied in the spatial discretization of the anelas-
tic coefficients and functions. The Q values are specified at

four frequencies: 0:07 Hz, 0.225 Hz, 0.71 Hz, and 2.25 Hz.
This should accurately cover the frequency range of 0.04 to
4 Hz. The P- and S-wave velocities are specified at a fre-
quency of 1 Hz.

Treatment of the Kinematic Source. The finite kinematic
model of the rupturing surface is simulated using 1836 reg-
ularly distributed point double-couple sources over a fault
area 9 km × 4:5 km for the S1 event. Each point source is
simulated using a discrete system of body forces acting at
the grid positions centered at the grid position of the normal
stress-tensor component. All point sources have the same
focal parameters and source-time functions. The action of
the individual point sources in time is prescribed and corre-
sponds to the specified rupture velocity.

Accuracy versus Efficiency. All simulations were per-
formed on a small cluster of the Opteron 2.2 machines (6
CPUs, 10 GB RAM in total). The computational parameters
are given in Table 2.

3D Spectral-Element Method: The
SEM1 Implementation

Model Geometry and Mesh Generation. In the first imple-
mentation of the SEM, SEM1, a simple meshing strategy, as
proposed by Komatitsch et al. (2004), is adopted. The topol-
ogy of the mesh is that of a layer-cake model in which the
interfaces are deformed to follow, as much as possible, the
physical interfaces. This strategy has the advantage of being
easy to implement, but it also has some drawbacks. First,
the size of the elements does not vary horizontally, which
prevents the use of very large models as the ones that
would be needed to propagate the seismic wave field from
a distant earthquake to the Grenoble Valley. For the Grenoble
simulation, which considers only local sources, this point is
not critical; it has the nice consequence of providing a more
accurate discretization of the free-surface topography, which
is rather stiff in the Grenoble area (see Fig. 5). Second, the
sediment-bedrock interface is not accounted for at depths
shallower than about 350 m (see Fig. 6). The velocity

Table 2
Comparison of the Computational Parameters

Test Case
Number of Grid
Cells or Elements

Order in
Space/Time Timestep

Number of Central
Processing Units

Central Processing
Unit Time Memory

DSG Velocity-Stress FD

W1 Flat 90,009,370 4=2 0.0022 sec 6 ∼33 hr ∼10 GB
S1 Flat 90,009,370 4=2 0.0022 sec 6 ∼33 hr ∼10 GB

SEM1

W1 Flat 332,160 4=2 0.0005 sec 32 ∼9 hr ∼10 GB
S1 Topography 332,160 4=2 0.0005 sec 32 ∼9 hr ∼10 GB

SEM2

S1 Topography 216,972 3=2 0.0003 sec 63 ∼10 hr ∼18 GB
ADER-DG

W1, S1 Flat 870,613 5=5 0.0001 sec 510 ∼32 hr ∼50 GB
S1 Topography 1,259,721 5=5 0.0001 sec 510 ∼48 hr ∼70 GB
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contrasts near the valley edges are thus approximated by con-
tinuous variations using the polynomial basis within each
spectral element. Although not quantified, the error due to
this approximation is not expected to be too large because
the size of the near-surface elements close to the valley edges
is that of the smallest wavelength in the simulation (that is,
about 150 m for a 2 Hz calculation). The mesh is coarsened
with depth using the conforming strategy proposed by
Komatitsch et al. (2004) as shown in Figure 6. We use a
polynomial order N � 4 within each element. For calcula-
tions accurate for frequencies up to 2 Hz, the mesh contains
332,160 elements and 22,062,624 grid points.

Material Heterogeneity and Attenuation. For the attenua-
tion model provided in the ESG exercise, the generalized
Zener body with three relaxation mechanisms was used in
order to mimic a constant shear quality factor in the sedi-
ments within the frequency band (0.2 Hz–10 Hz). The refer-
ence frequency, which was not imposed, is chosen to be the
fundamental frequency of the Grenoble Valley, f0 � 0:3 Hz.
Time extrapolation was handled by a second-order explicit
Newmark finite-difference scheme, with an additional
Runge-Kutta scheme being used to march in time the mem-
ory variables needed to model viscoelasticity (see details in
Komatitsch and Tromp, 1999).

Treatment of the Kinematic Source. To model the strong
motion case S1, we considered a set of 1250 point sources
regularly distributed on the prescribed fault plane. Each point
source was assigned a moment magnitude M 2:9 and an
onset time consistent with the imposed rupture kinematics.

Accuracy versus Efficiency. All simulations were per-
formedon a cluster of 42 SUN-V40Znodes equippedwith four
AMD-Opteron 2.6 GHz processors, each having 8 GB RAM.
The computational parameters are summarized in Table 2.

3D Spectral-Element Method: The
SEM2 Implementation

Model Geometry and Mesh Generation. In the second
implementation of the SEM, SEM2, the meshing strategy
adopted aims at accounting for true positions of material
interfaces. This task was successfully solved thanks to the
software CUBIT, which incorporates a set of powerful and
advanced meshing schemes specifically developed to handle
the hexahedral unstructured meshing problem (see the Data
and Resources section for details). A thorough description of
the meshing strategy adopted to strictly account for the geo-
metry of the Grenoble Valley can be found in Stupazzini
(2009). The final mesh is depicted in Figure 7 and consists
of 216,972 elements, the size of which ranges from a mini-
mum of about 20 m (inside the alluvial valley) up to 900 m.
The mesh is designed to propagate frequencies up to 2 Hz
with N � 3 (5,659,551 nodes) and up to around 3 Hz with
N � 4 (13,300,892). A detailed zoom of a portion of the
computational domain is presented in Figure 8, showing
the strategy adopted to account for the discontinuity between
the soft soil and bedrock. The computational domain is sub-
divided into small chunks; each of them is sequentially
meshed starting from the alluvial basin down to the bedrock.

Material Heterogeneity and Attenuation. Inside the alluvial
deposit the smooth vertical variation is taken into
account assigning at each GLL point the mechanical prop-
erties evaluated according to the prescribed depth variation.
The layer stratification is considered in the bedrock. The
discontinuity between the soft soil and bedrock is strictly
accounted for as previously mentioned. With respect to the
constant quality factor model, frequencies smaller than 0.5 Hz
will be overdamped, whereas higher frequencies will be
enhanced in the alluvial deposits.

Figure 5. Surface view of the mesh of 192 × 160 elements used
in the SEM1 calculations. The colors indicate surface elevation.
The mesh contains 192 × 160 elements for 2 Hz calculations.
The length of the elements does not vary horizontally and is kept
smaller than 150 m. Each surface element contains 125 gridpoints
(not shown here).

Figure 6. View of the 3D mesh of elements used in the SEM1
calculations. Golden colors indicate elements that are entirely with-
in the bedrock, whereas blue colors stand for elements that intersect
the sediments. The bedrock-sediment interface is not accounted for
at depths shallower than 350 m, in particular for elements close to
valley edges. The mesh is coarsened with depth following a simple
conforming strategy proposed in (Komatitsch et al., 2004).
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Treatment of the Kinematic Source. The seismic source is
introduced through an appropriate distribution of the seismic
moment tensor density (Aki and Richards, 2002). To model
the strong motion case S1, we considered a set of 750 point
sources regularly distributed on the prescribed fault plane.

Accuracy versus Efficiency. The simulations were per-
formed on AMD Opteron 250 (64 bit single core 2.4 GHz)
with 2 GB RAM and 1000T Ethernet (Oeser et al., 2006).
The computational parameters are summarized in Table 2.

3D Velocity-Stress Discontinuous Galerkin Scheme
with ADER Time Integration of Unstructured
Tetrahedral Meshes

Model Geometry and Mesh Generation. The ADER-DG
method uses a tetrahedral mesh that accounts for the given
geometry of the internal and external boundaries. Both the
digital elevation model of the topography and the interface
between the basin structure and the bedrock are provided
on a regular grid with x-, y-, and z-coordinates, which is
imported into a CAD tool to construct parameterized surfaces.

These surfaces are then triangulated with an appropriate mesh
size, and finally the volumes between the surfaces are filled
with tetrahedral elements. Hereby the tetrahedral elements
are conformingly connected to the surface triangulations.
Furthermore, variable element sizes are chosen in order to
account for the variable seismic velocity structure. Therefore,
the edge lengths of the tetrahedral elements vary between
200 m inside the basin up to 5000 m at the bottom of the
model, smoothly growing with increasing distance from
the basin. Within the whole basin structure the mesh size
increases vertically up to 500 m at the bottom of the basin.

In order to capture the topography sufficiently accu-
rately the lateral growths factor along the free surface is
chosen to result in a maximum edge length of 1000 m at
the top lateral boundaries.

Material Heterogeneity and Attenuation. The smooth ver-
tical heterogeneities inside the basin and in the surrounding
bedrock are approximated in the ADER-DG approach by
piecewise constant material; that is, the material parameters
are evaluated at the barycenter of a tetrahedral element and
are then assumed to be constant within the volume covered
by the element. Similarly, theQ-factor for the viscoelastic ma-
terial properties inside the basin is evaluated at the barycenter.
The given wave velocities at that position are then assumed to
be given for a central frequency of 1 Hz within the absorption
band from 0.1 to 10 Hz. The frequency-independent constant
Q-law is approximated with three relaxation mechanisms
defined by a generalized Maxwell body.

Treatment of the Kinematic Source. The ADER-DG
method treats the source term in both cases (W1 and S1) as
a kinematic seismic source. Whereas the W1 case uses a
single, double-couple point source with given location and
source parameters, the S1 source is represented by 5000
aligned slip patches of a dimension of 90 m × 90 m to cover
the specified 9 km × 4:5 km fault surface. Each slip patch is
treated as a point source with the same parameters (strike,
dip, rake) and the same shape of the source time function
and possess different onset times as derived from the given
rupture velocity. Therefore, the resulting seismic wave field
is generated as a superposition of all individual slip patches.

Accuracy versus Efficiency. The simulations were per-
formed on Intel Itanium2Madison processors 1.6 GHz, 4 GB
RAM per node. The computational parameters are summa-
rized in Table 2.

Comparison of Numerical Predictions

Outline of the Comparison Method

Comparing numerical predictions of ground motion in a
realistic 3D application is not straightforward because no
reference solution is available, and each prediction may
come with its own errors, either intrinsic (due to the limita-

Figure 8. In order to account for the discontinuity between soft
soil and bedrock the computational domain is subdivided into small
chunks, each of them is sequentially meshed starting from the
alluvial basin down to the bedrock.

Figure 7. Three-dimensional view of the mesh used in the
SEM2 calculations. The mesh contains 216,972 elements, ranging
from 20 m (inside the alluvial basin) up to 900 m; for 2 Hz calcula-
tions N � 3 is sufficient. Different colors refer to different mechan-
ical properties.
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tions of the numerical method used) or case-dependent (due
to implementation and human errors). While it can be as-
sumed that intrinsic errors can be identified by a proper
knowledge of the numerical method being used, implemen-
tation errors need more user experience and often a complex
iterative process to be tracked and hopefully minimized.

Here we present the results of such comparison process
for the Grenoble Valley between four implementations of the
numerical techniques presented before: DGM based on the
discontinuous Galerkin method, FDM based on the finite-
difference method, and SEM1 and SEM2, two implementa-
tions of the spectral-element method. We carefully checked
that the presented numerical predictions are not affected by
technical mistakes in individual implementations and simu-
lations.

We compare the ground-motion predictions for the weak
and strong motion cases W1-FLAT and S1-FLAT, respec-
tively. The comparison includes a visual inspection of
ground acceleration at selected receivers and global maps
of peak ground velocity, as well as a quantitative analysis
based on two different measures introduced recently: the
goodness-of-fit score proposed by Anderson (2004), which
consists of an average of ground-motion indicators of com-
mon use in engineering seismology, and the misfit measure
proposed by Kristekova et al. (2006), which is based on the
time-frequency representation of the seismograms.

Finally, we present the results obtained for the strong
motion case S1-TOPO and compare the different predictions
of the effects of surface topography.

Peak Velocities

Figure 9 shows the global maps of PGV (i.e., the peak
values of the norm of the ground velocity vector) computed
for the strong case motion case S1-FLAT by the four codes:
DGM, FDM, SEM1, and SEM2.

Note the high level of ground motion for thisM 6 event,
especially in the eastern part of the valley. Lower values
would be obtained by choosing a more physical source kine-
matics (instead of the Haskell model considered here, which
produces a very strong directivity effect on the S wave) and
depth (the top of the fault for the S1 event is located only
750 m below sea level, or about 1.5 km below surface).
All maps show little correlation with the sediment thickness,
except near the receiver R21, where the low values of ground
velocity are consistent with the presence of steep bedrock
uplift (see Fig. 2). The strongest amplitudes occur in the
southeast part of the valley, with peak velocities exceeding
1:5 m=sec. These localized high values are caused by late
interferences of surface waves diffracted off the eastern edge
of the valley with surface waves backscattered off the bed-
rock uplift.

The PGVmaps computed by the four codes look remark-
ably similar. Subtle differences can be seen, for example, in
the source region where the patterns differ slightly. This
could indicate small differences in the implementations of

the extended source. Also, the level of the peak values
displayed by the FDM code seems systematically larger than
that of the other predictions. However, given the intrinsic
difficulty of comparing peak values, the level of agreement
shown in Figure 9 is found to be satisfactory.

Quantitative Comparison

Similarity Score and Misfit Measure. The issue of assess-
ing the reliability of numerical predictions of ground motion
has received renewed interest in recent years with the intro-
duction of new tools to quantify the fit, either between syn-
thetics and observations or between numerical predictions.

Anderson (2004) proposed a measure of the goodness-
of-fit between two seismograms that is based on the compar-
ison of 10 criteria that are commonly used in engineering
applications: Arias duration (criterion1, or C1), energy dura-
tion (C2), Arias integral (C3), energy integral (C4), peak
acceleration (C5), peak velocity (C6), peak displacement
(C7), response spectrum (C8), Fourier spectrum (C9), and
cross correlation (C10). These criteria are evaluated in
narrow frequency bands and scaled between 0 and 10. A
global average (between individual criteria and different
frequency bands) is then applied to end up with one number,
the so-called similarity score. Based on the systematic com-
parison of the horizontal components of recorded motions,
Anderson (2004) introduced the following verbal scale for
goodness-of-fit: a score below 4 is a poor fit, between 4
and 6 is a fair fit, between 6 and 8 is a good fit, and beyond
8 is an excellent fit.

Figure 10 shows an example of calculation of the simi-
larity between the predictions of the north–south ground
acceleration at the borehole receiver R06 for the S1-FLAT
case. Solution SEM1-FLAT is used as a reference for all mea-
surements, and only one frequency band, 0.1,2 Hz, is
considered. Figure 10 confirms the impression of good fit
from visual inspection of seismograms. It also shows that
the differences between predictions obtained by different
codes are smaller than the difference between predictions
obtained by the same code with and without including the
effect of surface topography (SEM1-FLAT and SEM1-TOPO).

Kristekova et al. (2006) proposed a measure of the misfit
between two seismograms,which relies on the time-frequency
representations of the signals. Their time-frequency misfit
measure (hereafter referred to as TF misfit measure or simply
TF misfit) allows separating amplitude (envelope) and phase
differences both in the time and frequency domains.

Figure 11 shows an example of application of the TF
misfit to the predictions of north–south ground acceleration
at R06 for the S1-FLAT case by the FDM and SEM1 codes.
The figure shows the time-frequency envelope (amplitude)
and phase misfits, respectively, denoted by TFEM and TFPM.
An average of the absolute values of TFEM and TFPM over
time and frequency results in single-valued estimations of the
envelope (EM) and of the phase (PM) misfits. A single,
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global score (denoted by EPM) is finally obtained by aver-
aging EM and PM.

Application to the S1-FLAT and W1-FLAT Cases. We
computed both the similarity score and the TF misfit for
all 40 receivers and all predictions, taking the SEM1 result
as a reference. We chose to use a single reference to alleviate
the task of computing the misfits for each pair of predictions.
Our analysis was performed for a time window 0,20.48 sec
(2048 samples with timestep Δt � 0:01 sec) for each
component of ground acceleration.

The correspondence between the similarity score and the
TF misfit is summarized in Figure 12. Each dot represents a
pair of measures evaluated at a single receiver, on a single
component of ground acceleration for one of the cases
S1-FLAT, S1-TOPO, or W1-FLAT. The figure shows a linear
trend between the results of the two measures, which is

particularly accurate for well-matching predictions. The level
of the excellent fit, defined by Anderson (2004) as the simi-
larity score above 8, corresponds to a TF misfit level below
0.4. The equation of the linear regression writes
�10-S� � 5M, where S and M stand for the similarity score
and TF misfit, respectively. Based on this equivalence, we
will hereafter represent the results of the comparison of nu-
merical predictions using the sole TF misfit measure.

We found no significant dependence of the TF misfit on
the ground-motion component considered: the mean differ-
ence (averaged over the 40 receivers) between different
single-component TF misfits does not exceed 0.04 (or 0.2
in terms of the similarity scores). We will therefore use a
unique misfit value at each receiver, referred to as the total
misfit, and defined as the arithmetic mean of the three indi-
vidual TF misfits computed for the X, Y, and Z components.

Figure 9. PGV maps obtained by the four codes (a) DGM, (b) FDM, (c) SEM1, (d) SEM2 for the strong motion case S1 without surface
topography (S1-FLAT). Receiver locations are indicated by the triangles. The X and Y labels denote distances (in km) in the local Lambert
coordinate system. The bold curve indicates the 50 m contour line in the sediment thickness map and the bold straight line shows the surface
projection of the fault for the S1 event.
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Figure 13 shows the TF misfits between the different
predictions of the S1-FLAT and W1-FLAT cases computed at
the 40 receivers in the frequency band 0.1–2 Hz. Each dot
corresponds to the total TF misfit averaged over the three
components of ground acceleration.

For the S1-FLAT case, the misfit between the different
predictions is almost everywhere lower than 0.4, which cor-
responds to the level of the excellent fit defined by Anderson
(2004). Note the high similarity between the predictions of
the FDM and SEM1 codes, despite the systematic amplitude
shift observed in Figure 9. This illustrates the importance of

Figure 11. Example of application of the TF misfit analysis to
the predictions of the NS ground acceleration at receiver R06 for the
S1-FLAT case. (a),(c) Panels show the time-frequency envelope
(TFEM) and phase (TFPM) misfits, respectively, taking the
SEM1 prediction as a reference. (b) Time series of acceleration
predicted by codes FDM (red) and SEM1 (black) are shown.
Single-valued envelope (EM) and phase (PM) misfits are obtained
by averaging the absolute values of TFEM and TFPM over time and
frequency. The total TF misfit is obtained by averaging the envelope
and phase misfits EM and PM.
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Figure 12. Comparison of results obtained with the TF misfit
(M) plotted against those using the similarity score (S). Both mea-
sures have been applied to the 3 components of the 40 receivers for
the benchmark cases S1-FLAT, S1-TOPO, and W1-FLAT. A global
linear trend (red line) with equation (10-S � 5M) is found.

-0.70
0.00
0.70
1.40 SEM1TOPO

R 0 6 - N   

O

-0.70
0.00
0.70
1.40 D G M     

R 0 6 - N   

O

-0.70
0.00
0.70
1.40 F D M     

R 0 6 - N   

O

-0.70
0.00
0.70
1.40 S E M 2    

R 0 6 - N   

O

6 12 18 24 30

Time (s)Dec 31 (365), 1969 23:59:59.442

-0.70
0.00
0.70
1.40 S E M 1    

R 0 6 - N   

O

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
Anderson criteria

77

88

99

10 10

Sc
or

e

DGM
FDM
SEM2
SEM1-TOPO

R06 NS component
Reference: SEM1-FLAT

(a) (b)
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using a quantitative misfit measure instead of a single
ground-motion parameter. Although the implementation of
the point source is expected to be much simpler, the level
of misfit is higher for the weak-motion case W1-FLAT than
for the strong-motion case S1-FLAT. This is related to the
larger high-frequency content of the W1 source, compared
with the S1 source, which challenges the numerical methods
at hand. Individual time series and amplitude spectra of the
three components of ground acceleration at receiver R02,
located in the center of the Grenoble Valley, are shown in
Figure 14 and Figure 15 for the S1-FLAT case and W1-FLAT
case, respectively.

Visual inspection of the traces and spectra confirms the
high similarity between the different predictions of the
S1-FLAT case, including at late arrival times, whereas larger
differences in amplitude and phase arise for the predictions
of the W1-FLAT case. Note in particular in Figure 15 the dif-
ferences in timing and amplitude between the predictions of
the diffracted Rayleigh wave arriving around 8 sec. Because
of the wider frequency content of the source, the weak
motion case also tends to highlight the differences in the
implementation of intrinsic attenuation as described in the
previous section (see, for example, the larger high-frequency
content of the SEM2 prediction compared with the others).

Figure 16 and Figure 17 show the results obtained for
the S1-FLAT case at two other locations: R06 (Montbonnot
borehole ground-level station) in the middle of the 2D profile
across the Grésivaudan Valley and R21 close to the steep
bedrock uplift (see Fig. 2). Note the high similarity between
all predictions at receiver R06 and the differences in ampli-
tude and phase that lead to the large misfit between SEM1
and DGM at R21. This last example (R21) is one of the only
cases where the level of misfit is surprisingly high in one
component only (Z).

The global TF misfit distributions displayed in Figure 13
do not show any particular dependence on either the soil con-
dition or the receiver location within the valley. The main
trend is a systematic increase of the misfit with increasing
distance to the source. This is expected because intrinsic

errors (e.g., numerical dispersion) or differences in physical
modeling (e.g., intrinsic attenuation) tend to accumulate with
time andwith the distance propagated. In the remainder of this
section, we will therefore represent the misfit as a function of
the source-receiver distance. The detail of the TF misfits in
terms of amplitude and phase is shown for the S1-FLAT case
in Figure 18. Both measures show the same pattern, with the
highest similarity being found between the FDM and SEM1
predictions. However, the phase misfit seems to be more
helpful in tracking differences between predictions. For
example, the amplitude misfit between DGM and SEM1 is
roughly identical to the one between SEM1 and SEM2, but
larger phase misfits are seen between SEM1 and SEM2. Note
also that the increase of the total TF misfit between FDM and
SEM1 predictions with distance only appears in the amplitude
(envelope) misfit, the difference in phase being roughly con-
stant for all 40 receivers.

To better understand the differences between numerical
predictions for the S1-FLAT case, we plot in Figure 19 the
amplitude and phase misfits computed in three frequency
bands: low-frequency (LF) 0.2,0.5 Hz; intermediate fre-
quency (IF) 0.5,1.0 Hz; and high-frequency (HF) 1.0,2.0 Hz.
Note that the LF band is roughly centered at the fundamental
frequency of the Grenoble Valley (around 0.3 Hz); the energy
radiated by the source in the S1-FLAT case decreases signifi-
cantly in the HF band, suggesting that the weight of the HF
misfit in the total TF misfit is weak. There is a global trend
for the TF misfits (amplitude and phase) to increase with
frequency. Therefore, it becomes more difficult at higher
frequencies to assume a linear dependence on the source-
receiver distance. This can be mainly explained by the fact
that intrinsic errors of each numerical method (in particular
numerical dispersion) increase with frequency.

We finally remark that there is a strong dependence of
the amplitude misfit between DGM and SEM1with frequency,
which results in large differences in the HF band. The TF
misfits computed for the W1-FLAT case (see Fig. 13) suggest
that these discrepancies become dominant when the high-
frequency content of the source is larger.
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Figure 13. (a) TF misfits computed for the S1-FLAT case and (b) for the W1-FLAT case, taking the SEM1 prediction as reference. Each
dot corresponds to the average of the 3 components of total misfit (average of envelope and phase) measured on the predictions of ground
acceleration at each receiver in the frequency band 0.1,2.0 Hz. Receivers R01, R04, R08, and R33–R40 are located on rock sites.
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Figure 14. (a),(c),(e) Time series and (b),(d),(f) amplitude spectra of ground acceleration (EW, NS, UD) computed at receiver R02 by the
four different codes for the strong motion case S1-FLAT.
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Figure 15. Same as Figure 14 for the weak motion case W1-FLAT.
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Figure 16. (a),(c),(e) Time series and (b),(d),(f) amplitude spectra of ground acceleration (EW, NS, UD) computed at receiver R06 by the
four different codes (DGM, FDM, SEM1, and SEM2) for the strong motion case S1-FLAT.
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Figure 17. (a),(c),(e) Time series and (b),(d),(f) amplitude spectra of ground acceleration (EW, NS, UD) computed at receiver R21 by the
four different codes for the strong motion case S1-FLAT. Note the low similarity between the DGM and SEM1 predictions on the vertical
component.
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Figure 19. Same as Figure 18 for different frequency bands: (a),(b) 0.2,0.5 Hz; (c),(d) 0.5,1.0 Hz; and (e),(f) 1.0,2.0 Hz.
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Effect of Surface Topography

Three codes (DGM, SEM1, and SEM2) computed the
strong motion case S1-TOPO, which includes the effect of
surface topography. The PGVmaps obtained for the S1-TOPO
case are shown in Figure 20. Note the deformation of the
predicted patterns (compare with Fig. 9) close to the source
due to the presence of surface topography on top of the fault
plane. The overall distributions of peak values look quite
similar inside the valley, suggesting that the main differences
with respect to the S1-FLAT case occur on the rock sites. This
is only partly confirmed by Figure 21, which shows the maps
obtained by dividing the PGV by those obtained in the S1-
FLAT case. Noticeable differences are indeed observed in
the southwestern part of the valley, a region where strong
variations of the sediment thickness occur. The patterns

observed on the three maps of PGV ratios are quite consistent
outside of the valley: systematic amplification is found on
the mountain peaks (see, for example, receivers R33 and
R34 in the eastern Belledonne chain and receivers R39
and R40 in the northern Chartreuse massif), whereas
deamplification is found invalleys (see receiverR35). Seismic
motion on slopes is more complex because amplification or
deamplification can occur depending on the slope orientation
with respect to the seismic event (see the two flanks bordering
the Romanche Valley around receiver R35 at coordinates
X � 880 km, Y � 2015 km). Extreme and mean values of
amplification and deamplification are given in Table 3.

The average effect of surface topography inside the val-
ley, as measured by the ratio of the PGV, is found to be
negligible, but large differences in extreme values occur:
the maximal predicted amplifications vary significantly on

Figure 20. PGV maps obtained by three codes: (a) DGM, (c) SEM1, (d) SEM2 for the strong motion case S1-TOPO. (b) The map of
surface elevation is shown. Receiver locations are indicated by the triangles; the X and Y labels denote distances (in km) in the local Lambert
coordinate system. The bold curve indicates the 50 m contour line in the sediment thickness map; the bold straight line shows the surface
projection of the fault for the S1 event.
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rock sites and, more surprisingly, within the valley. This
could result from differences in the implementation of sur-
face topography, in the representation of velocity contrasts
near the valley edges, and in the design of the meshes for
the S1-FLAT and S1-TOPO cases.

Conclusions

The third international symposium on the effects of
surface geology in Grenoble, France (ESG 2006), provided

an excellent opportunity to focus the traditional blind predic-
tion experiment on numerical modeling of earthquake
motion in a typical deep Alpine sediment-filled structure,
the Grenoble Valley.

The Grenoble urban area gathers a significant popula-
tion of around 500,000, a number of high-tech and sensitive
industrial facilities, and educational and research institutions.
This and observed broadband site effects imply that the mod-
erate regional seismic activity poses a concern about the seis-
mic risk in the area. Moreover, similar conditions are also
met in other areas within the European Alps and in other
mountainous areas with embanked valleys filled with young,
postglacial lacustrine sediments. This specific area also
presents a further interest in relation to its relatively small
extent, which allows performing deterministic numerical
simulation up to higher frequencies than is usually consid-
ered in much wider areas such as the Los Angeles basin.

The present article reports partial results from this simu-
lation exercise for four structure wave-field configurations
that were specified for voluntary participants: W1-FLAT,
S1-FLAT, W1-TOPO, S1-TOPO, withW and Smeaning weak
and strong, FLAT and TOPO meaning geometry of the free
surface, respectively. The weak configurations comprised

Figure 21. Maps of ratios between the PGVobtained with the surface topography and PGVobtained for the flat free surface by the three
codes: (a) DGM, (c) SEM1, and (d) SEM2. (b) The map of surface elevation is shown. Receiver locations are indicated by the triangles and
the X and Y labels denote distances (in km) in the local Lambert coordinate system. The bold curve indicates the 50 m contour line in the
sediment thickness map and the bold straight line shows the surface projection of the fault for the S1 event.

Table 3
Extreme and Average Values of the Ratio of Peak
Ground Velocity Computed by the Codes DGM,

SEM1, and SEM2*

DGM SEM1 SEM2

Minimum ratio (valley) 0.447 0.549 0.133
Maximum ratio (valley) 2.255 1.641 3.599
Mean ratio (valley) 0.996 0.998 0.991
Minimum ratio (rock) 0.543 0.533 0.277
Maximum ratio (rock) 3.222 2.464 2.095

*With and without accounting for the effects of surface
topography.
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double-couple point sources, the strong ones finite kinematic
source models.

Fourteen groups from eight countries contributed to the
ESG 2006 comparison with at least one numerical method
and possibly different cases, providing a total of 18 predic-
tion sets; seven groups addressed the 3D problem, out of
which three could account for the effects of both under-
ground and surface topography. The numerical schemes used
for the 3D contributions belong to the finite-difference,
spectral-element, and discontinuous-Galerkin finite-element
methods. Four participants whose 3D predictions were sur-
prisingly close updated their results after the ESG meeting,
after correcting some nonmethodological errors (evidenced
by comparing to other predictions) in preparation of the
numerical simulations. Only the results from the corrected
predictions were considered here.

One of the main lessons of this comparative exercise
concerns the present capabilities of numerical simulation
and is indeed a lesson of modesty: all the submitted predic-
tions exhibit a very large variability. This variability confirms
that the numerical prediction of ground motion in general
certainly cannot be considered a mature, push-button ap-
proach, and the variability in direct uncorrected numerical
predictions can be significantly larger than the variability
associated with empirical predictions. This is also because
not all applied numerical codes implement the best metho-
dologically possible algorithms; some of the codes are not
yet bug free. Much care should be also given to an unambig-
uous definition of the input solicitation (input signal and/or
source kinematics). Not sufficiently elaborated numerical
predictions may yield wrong results and therefore will lead
to large mistrust from end users.

However, there is also another lesson, which is a lesson
of hope: the striking similarity between predictions by com-
pletely different numerical methods is a very encouraging
result. Despite the structural complexity, that is geometry
and relatively large velocity contrast at the sediment-
basement interface as well as smooth heterogeneity, and the
methodological differences among the simulation methods,
we found a surprisingly good level of agreement among four
of the submitted predictions obtained by the finite-difference
method (FDM), two implementations of the spectral-element
method (SEM1 and SEM2), and arbitrary high-order deriva-
tive, the discontinuous Galerkin method (ADER-DGM). It
clearly shows that, when used with caution, numerical simu-
lation is actually able to handle wave radiation correctly from
an extended source and their subsequent propagation in
complex 3D media.

The expression good agreement is not simply a matter of
subjective feeling. It indeed results from a detailed, quanti-
tative comparison between the four numerical predictions
using the misfit criteria proposed by Kristekova et al. (2006).
These misfit criteria are based on the time-frequency repre-
sentations of the signals and allow proper quantification and
characterization of disagreement between signals. This misfit
measurement is found to be consistent with the engineering-

oriented similarity score proposed by Anderson (2004).
Another instructive comparison was achieved by looking at
predicted PGV maps.

The main conclusions from the detailed comparison are
explained in the following list:

• The objective quantification of the mismatch between the
different predictions proves to be effective and useful. The
two different comparison tools used for quantification,
although very different, do provide very consistent results.
While Anderson’s engineering-based criteria are probably
enough for validating numerical predictions for end users,
more refined comparisons based on time-frequency analy-
sis greatly help in understanding the origin of differences.
In particular, the analysis of the phase misfit with the tech-
nique of Kristekova et al. (2006) proves very instructive in
identifying differences in propagation properties from one
numerical method to another, and thus in orienting further
investigations to refine computational tools.

• The match is found to be good at low frequencies (below
1 Hz) and to gradually deteriorate with increasing fre-
quency, as expected. The reasons for that could not be un-
ambiguously individualized, but may be related both to
differences in the numerical methods (numerical disper-
sion, implementation of damping) and differences in the
model implementation.

• An important component to explain the differences is cer-
tainly related to the meshing. While the applied finite-
difference scheme authorizes a good automatic accounting
for the details of the sediment-basement interface, different
strategies were used by the three other groups: some used a
rather coarse meshing that did not follow details of the
valley boundaries, especially at shallow depth, while some
others spent much time in refining the mesh. The 2 Hz
maximum frequency considered here is still too low to ac-
tually clearly identify the effects of the valley boundaries,
considering also the rather smooth velocity variation in the
sediments and the absence of shallow weathered layers in
the bedrock. This issue is presently investigated within the
framework of another numerical comparative exercise on
the Volvi–Euroseistest site in Greece, where both sedi-
ments and bedrock exhibit complex shallow structures
with inner interfaces between different units.

• The effects of free-surface topography were found signifi-
cant in elevated areas in the three surrounding mountain
ranges, but less important within the valley. However,
while they are negligible in the S1 case, they slightly in-
crease in theW1 case corresponding to higher predominant
frequencies. This result cannot therefore be extrapolated to
frequencies higher than 2 Hz, and the question is still open.

The comparison of the numerical predictions obtained
with the FDM, two implementations of the SEM, and ADER-
DGM indicates that each of these methods can be applied to
simulation of the earthquake motion in structurally complex
sediment-filled valleys with the flat free surface. In addition
to being methodologically relatively simpler than the SEM
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and ADER-DGM, the presented implementation of the FDM
can be computationally more efficient because the volume
harmonic averaging of moduli and volume arithmetic aver-
aging of density allows to account for irregular interfaces in
regular grids well-suited to parallel implementation, while
abrupt changes in the grid size are also allowed at the transi-
tion between sediments and much stiffer bedrock. In the case
of the presented predictions, the FDM needed approximately
65% of the computational time used by SEM, but obviously
the difference may depend on the used computer and on the
particular case under study. On the other hand, for the SEM
and ADER-DGM the incorporation of the nonplanar free sur-
face poses no methodological problem; thus, the methods
can be equally easily applied to both the flat and nonplanar
free surface. In general, it is far from easy and natural to
implement free-surface condition in the FDM. The applied
DSG Velocity-Stress FDM cannot account for the free-surface
topography. If the incorporation of the topography is inevi-
table, for example, at particular sites and at higher frequen-
cies, a hybrid combination with the finite-element method
(Galis et al., 2008) might be an alternative to the applied
DSG VS FDM.

We would like to stress two main conclusions based on
the ESG 2006 simulation exercise and the detailed compar-
ison of the four closest numerical predictions:

1. No single numerical modeling method can be consid-
ered as the best for all important medium wave-field config-
urations in both computational efficiency and accuracy.

2. Reliable predictions of the earthquake ground motion
in complex structures should be made using at least two
different but comparably accurate methods to enhance reli-
ability of the prediction. Our study indicates that the proper
formulations and implementations of the FDM, SEM, and
ADER-DGM can be applied.

Data and Resources

All data used in this article came from published sources
listed in the references. The Fortran 95 computer code for
performing the finite-difference scheme is available at www
.nuquake.eu/Computer_Codes/ (last accessed June, 2010).
A detailed description of the SEM1 software package can
be found at www.geodynamics.org/cig/software/packages/
seismo/specfem3d (last accessed June, 2010). A detailed
description of the software package adopted for the SEM2
simulation can be found at http://geoelse.stru.polimi.it (last
accessed June, 2010). The software CUBIT is available at
http://cubit.sandia.gov/ (last accessed June, 2010).
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S U M M A R Y
We present an important extension of the arbitrary high-order discontinuous Galerkin (DG)
finite-element method to model 2-D elastic wave propagation in highly heterogeneous ma-
terial. In this new approach we include space-variable coefficients to describe smooth or
discontinuous material variations inside each element using the same numerical approxima-
tion strategy as for the velocity–stress variables in the formulation of the elastic wave equation.
The combination of the DG method with a time integration scheme based on the solution of
arbitrary accuracy derivatives Riemann problems still provides an explicit, one-step scheme
which achieves arbitrary high-order accuracy in space and time. Compared to previous for-
mulations the new scheme contains two additional terms in the form of volume integrals. We
show that the increasing computational cost per element can be overcompensated due to the
improved material representation inside each element as coarser meshes can be used which
reduces the total number of elements and therefore computational time to reach a desired error
level. We confirm the accuracy of the proposed scheme performing convergence tests and
several numerical experiments considering smooth and highly heterogeneous material. As the
approximation of the velocity and stress variables in the wave equation and of the material
properties in the model can be chosen independently, we investigate the influence of the poly-
nomial material representation on the accuracy of the synthetic seismograms with respect to
computational cost. Moreover, we study the behaviour of the new method on strong material
discontinuities, in the case where the mesh is not aligned with such a material interface. In this
case second-order linear material approximation seems to be the best choice, with higher-order
intra-cell approximation leading to potential instable behaviour. For all test cases we validate
our solution against the well-established standard fourth-order finite difference and spectral
element method.

Key words: Numerical solutions; Numerical approximations and analysis; Computational
seismology; Wave propagation.

1 I N T RO D U C T I O N

The numerical computation of complete and sufficiently accurate
wave fields for complex subsurface models is getting increasingly
important in seismology, as full wave form inversion techniques
become feasible with modern supercomputers. However, there is a
large variety of numerical schemes to choose from when computing
synthetic seismograms and this choice might be problem-dependent.
A method called the discontinuous Galerkin (DG) finite-element
method has first been introduced for the solution of hyperbolic
partial differential equations (PDE) by Reed & Hill (1973) in the
context of the neutron transport equation. Since then, a variety of
DG methods have been developed in other research areas and its
convergence properties on different mesh types have been analysed

by many authors (e.g. Bernard et al. 2007; De Basabe et al. 2008;
Gassner et al. 2008). For a comprehensive overview of the history
of DG-related developments we refer to chapter 1.1 in (Hesthaven
& Warburton 2008) and the book of Cockburn et al. (2000). In
particular, Hu et al. (1999) analysed the dispersion and dissipation
properties of the DG method for 2-D wave propagation problems
discretized by triangular and regular quadrilateral elements. Later
Dumbser & Munz (2006) introduced an arbitrary high-order DG
scheme in space and time by applying the Cauchy–Kowalewski
procedure that makes extensive and recursive use of the governing
equations. The original idea of constructing such explicit one-step
time integration schemes that automatically provide the same time
accuracy as space accuracy was presented by Toro et al. (2001)
and Titarev & Toro (2002) based on Arbitrary accuracy DErivatives
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Riemann problems (ADER). We remark that this method allows
discontinuous solution between two adjacent elements. This dis-
continuity is then treated by numerical fluxes.

Recently, this approach, now termed ADER-DG, has been intro-
duced in the field of computational seismology in a series of papers
(Dumbser & Käser 2006; Käser & Dumbser 2006; de la Puente et al.
2007; Käser et al. 2007a; de la Puente et al. 2008) using a triangu-
lar and tetrahedral discretization of the computational domain for
the seismic wave equation and different rheologies. Furthermore,
the approach allows for p-adaptation (local usage of higher-order
elements) as well as local time-steeping (Dumbser et al. 2007),
enhancing its flexibility and applicability for realistic, large-scale
problems.

In this paper, we extend the ADER-DG method for 2-D seismic
wave propagation problems incorporating the high-order polyno-
mial approximation of variable material inside each element. In
other words, we extend the numerical method to solve linear hyper-
bolic PDE systems with variable coefficients. The variable material
(or variable coefficients) introduces additional terms, compared to
the above mentioned papers, in the form of volume integrals and
adds further computational complexity to the calculation of flux and
stiffness matrices. In order to solve the PDE with the ADER-DG
method we discretize the computational domain with a conforming
mesh of triangular or quadrilateral elements. The size of the ele-
ments provides an initial spatial resolution, which can be further
increased by higher-degree polynomials inside each element. The
necessary combination of mesh spacing and approximation polyno-
mials for a desired level of accuracy and wave propagation distance
is investigated in previous work (Käser et al. 2008).

In contrast to previous formulations of the ADER-DG scheme,
the incorporation of the variable coefficient enables us to treat also
the material variations inside an element and its effect on the seismic
wave field more accurately. Therefore, simulations can be carried
out with coarser meshes, as subcell information about the material
is considered inside each element. Furthermore, the approximation
order for the material variation and the wave propagation can be
chosen independently to enhance computational efficiency.

The paper is structured as follows. In Section 2, we introduce the
governing equations based on the velocity–stress formulation of
the 2-D seismic wave equation with variable material. The detailed
derivation of the ADER-DG scheme providing subcell resolution
for variable coefficients is given in Section 3. Section 4 shows the
results of a convergence test to demonstrate the expected order of
convergence and accuracy. In Section 5, we perform three numerical
experiments that confirm the performance of the proposed method
for realistic applications in computational seismology. Finally, we
summarize the results in the conclusions in Section 6.

2 E L A S T I C WAV E E Q UAT I O N S

The elastic wave equations (see e.g. LeVeque 2002) describe the
linear response of solids to deformation and yield the physical back-
ground to explain wave propagation phenomena of seismic waves
produced by either earthquakes or man-made sources (see e.g. Aki
& Richards 2002; Stein & Wysession 2003). In a velocity–stress for-
mulation (Virieux 1984, 1986) the elastic wave equations are a first-
order variable-coefficients linear hyperbolic PDE system which, in
2-D, has the form

∂u p(�x, t)

∂t
+ Apq (�x)

∂uq (�x, t)

∂x
+ Bpq (�x)

∂uq (�x, t)

∂y

= Sp(u(�x, t), �x, t) , (1)

where the Einstein summation convention applies. In eq. (1) we
make use of the five-component unknown vector u p(�x, t) =
(σxx , σyy, σxy, u, v)T , where σxx and σyy are the normal stresses
in x- and y-directions, respectively, σxy is the shear stress, and u and
v are the particle velocities in x- and y-directions, respectively. The
space-dependent Jacobian matrices Apq (�x) and Bpq (�x) contain the
material properties of the elastic medium, that is, density ρ(�x) and
Lamé constants λ(�x) and μ(�x), and have the explicit form

Apq (�x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −(λ + 2μ) 0

0 0 0 −λ 0

0 0 0 0 −μ

− 1
ρ

0 0 0 0

0 0 − 1
ρ

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Bpq (�x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −λ

0 0 0 0 −(λ + 2μ)

0 0 0 −μ 0

0 0 − 1
ρ

0 0

0 − 1
ρ

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

We consider the isotropic elastic material properties to be space-
dependent, but for simplicity we omit this dependency in the next
sections. The real eigenvalues of matrices Apq and Bpq are given by

s1 = −cp, s2 = −cs, s3 = 0, s4 = cs, s5 = cp, (3)

where cp and cs are the P- and S-wave velocities, respectively, and
are defined as

cp =
√

λ + 2μ

ρ
and cs =

√
μ

ρ
.

The term Sp(u(�x, t), �x, t) in eq. (1) is a general source term repre-
senting different physical phenomena which add or subtract energy
from the system, as could be viscoelastic effects (Käser et al. 2007a)
or external sources (Käser et al. 2007b) like forces or seismic mo-
ment tensors.

3 N U M E R I C A L S C H E M E

Here we present an extension of the numerical scheme based on
the DG method coupled with an ADER high-order time integration
procedure to achieve subcell resolution of material variations. We
keep the properties of a fully explicit one-step arbitrarily high-order
accurate numerical method in space and time known as ADER-
DG method. We generate a discretization of the computational
domain � ∈ R

2 into conforming elements E (i), where (i) is the
index that uniquely identifies each element. Inside E (i) we approx-
imate the solution u p(�x, t) with a linear combination of space-
dependent basis functions �l (ξ, η) and time-dependent degrees of
freedom û(i)

pl (t). The basis functions are defined using the refer-
ence coordinate system (ξ, η). We connect physical and reference
coordinate system in each element E (i) using a mapping function
(x, y) = (x(ξ, η), y(ξ, η)), see Appendix A. The approximation to
the solution u p(�x, t) inside element E (i) reads

u p(�x, t) ≈ û(i)
pl (t)�l (ξ, η) =

N−1∑
l=0

û(i)
pl (t)�l (ξ, η) , (4)

where N is the number of degrees of freedom in each element
given by the highest polynomial degree of the basis functions d via
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N = (d + 1)(d + 2)/2. Depending on the type of element, that is
triangular or quadrilateral, the basis functions �(ξ, η) are chosen
differently as shown in detail in Appendix B.

The numerical scheme is constructed by integrating in space and
time the governing equation (1) over the physical elements E (i) and
making use of the approximation of unknowns given in eq. (4).

3.1 Semi-discrete formulation

The semi-discrete form of the scheme is obtained by multiplying
eq. (1) by a test function �k , chosen from the same set of basis
functions as in the approximation eq. (4), and integrating in space
over a physical element E (i):

∫
E (i)

�k
∂u p

∂t
dV +

∫
E (i)

�k Apq
∂uq

∂x
dV +

∫
E (i)

�k Bpq
∂uq

∂y
dV

=
∫

E (i)
�k SpdV . (5)

Note that, in this formulation, the Jacobian matrices Apq and Bpq

are not assumed to be constant inside element E (i) and therefore
cannot be taken out of the integral. This is new compared with pre-
vious formulations of the ADER-DG method applied to the seismic
wave equation (Dumbser 2003; Dumbser & Käser 2006; Käser &
Dumbser 2006).

Using the divergence theorem when integrating the second and
third terms of eq. (5) we obtain

∫
E (i)

�k
∂u p

∂t
dV +

∫
∂ E (i)

�k(Fp · �n) dS −
∫

E (i)

∂

∂x
(�k Apq )uq dV

−
∫

E (i)

∂

∂y
(�k Bpq )uq dV =

∫
E (i)

�k Sp dV , (6)

where Fp · �n = (Apq uq , Bpq uq ) · (nx , ny) is the numerical flux and
�n = (nx , ny) is the outward pointing unit normal vector with respect
to the edge of element E (i). Vector �n is uniquely defined edge-wise.
In eq. (6), Fp must be evaluated along the edge of the element and
is computed from the solution of the Riemann problem considering
the data (velocities and stresses) inside the element E (i) and its
direct neighbour.

Expanding the derivatives ∂

∂x (�k Apq ) and ∂

∂y (�k Bpq ) and ap-
plying the coordinate transformation to the reference element we
obtain∫

E (i)
�k

∂u p

∂t
dV +

∫
∂ E (i)

�k(Fp · �n) dS

−
∫

E (i)

∂�k

∂ξ
A∗

pq uq dV −
∫

E (i)

∂�k

∂η
B∗

pq uq dV

−
∫

E (i)
�k

∂ A∗
pq

∂ξ
uq dV −

∫
E (i)

�k

∂ B∗
pq

∂η
uq dV =

∫
E (i)

�k Sp dV ,

(7)

where we have introduced the star Jacobians A∗ and B∗ defined as

A∗
pq = Apq

∂ξ

∂x
+ Bpq

∂ξ

∂y
, B∗

pq = Apq
∂η

∂x
+ Bpq

∂η

∂y
. (8)

Introducing the polynomial approximation u p(�x, t) ≈
û pl (t)�l (ξ, η) and writing the volume integrals in the reference

element ER we obtain∫
ER

�k
∂ û pl

∂t
�l |J | dξdη +

∫
∂ E (i)

�k(Fp · �n) dS

−
∫

ER

∂�k

∂ξ
A∗

pq ûql�l |J | dξdη −
∫

ER

∂�k

∂η
B∗

pq ûql�l |J | dξdη

−
∫

ER

�k

∂ A∗
pq

∂ξ
ûql�l |J | dξdη −

∫
ER

�k

∂ B∗
pq

∂η
ûql�l |J | dξdη

=
∫

ER

�k Sp |J | dξdη, (9)

where |J | = |J |(i) is the determinant of the Jacobian of the metric
for each element E (i), as discussed in Appendix A. The surface
integral, which connect the discrete elements of the mesh, is treated
in Section 3.2.

As the material is allowed to be non-constant inside each element
E (i), we approximate this heterogeneity via an expansion of the
entries of the matrices A∗ and B∗ as given by eq. (4). However, as
we assume that the material is not varying in time, the degrees of
freedom for the material approximation of the linear combination
are evaluated only once at the beginning and then stored for the
full duration of the simulation. In particular, we use the same basis
functions for the material expansion as for the wave propagation
variables and for the test functions in eq. (5). Therefore, we have

A∗
pq ≈ Â pqm�m(ξ, η) and B∗

pq ≈ B̂ pqm�m(ξ, η) . (10)

Introducing this approximation into eq. (9) leads to

∂ û pl

∂t
|J |
∫

ER

�k�l dξdη +
∫

∂ E (i)
�k(Fp · �n)dS

− Âpqmûql |J |
∫

ER

∂�k

∂ξ
�l�m dξdη

−B̂ pqmûql |J |
∫

ER

∂�k

∂η
�l�m dξdη

− Âpqmûql |J |
∫

ER

�k�l
∂�m

∂ξ
dξdη

−B̂ pqmûql |J |
∫

ER

�k�l
∂�m

∂η
dξdη

= |J |
∫

ER

�k Spdξdη . (11)

Eq. (11) is the semi-discrete form of this ADER-DG scheme includ-
ing subcell resolution of material variations. Note that the degrees
of freedom that describe the material ( Âpqm and B̂ pqm) remains con-
stant during the entire simulation, whereas the degrees of freedom
of the wave propagation variables (ûql ) change in each time step.
Furthermore, the spatial integrals on the left-hand side of eq. (11)
can be pre-computed in the reference element ER where we define
the element mass matrix M and stiffness matrices K by

Mkl =
∫

ER

�k�ldξdη ,

K ξ,k
klm =

∫
ER

∂�k

∂ξ
�l�m dξdη , K η,k

klm =
∫

ER

∂�k

∂η
�l�m dξdη ,

K ξ,m
klm =

∫
ER

�k�l
∂�m

∂ξ
dξdη , K η,m

klm =
∫

ER

�k�l
∂�m

∂η
dξdη ,

(12)

where M is an N × N matrix and K are N × N × Nm tensors. Here
N is the number of degrees of freedom as introduced in eq. (4). Nm

is the number of degrees of freedom used to represent the variable
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material depending on the degree dm of the polynomial for the ma-
terial approximation via Nm = (dm + 1)(dm + 2)/2,with dm ≤ d .
The superscripts stand for the direction of the spatial derivatives,
that is, ξ or η, and the particular basis function which is derivated,
that is, �k or �m . We call the first two stiffness matrices K ξ,k

klm and
K η,k

klm the test stiffness matrices because the spatial derivatives act
on the test function �k . The other two, K ξ,m

klm and K η,m
klm , are called

the material stiffness matrices, as the spatial derivatives act on the
material basis function �m . Notice that the test and the material
stiffness matrices can be obtained from each other by a component
transposition. Moreover, if we assume constant material, the mate-
rial stiffness matrices vanish and we recover the original formulation
presented in previous work, for example, Käser & Dumbser (2006).
In the following we discuss the computation of the numerical flux
in eq. (11).

3.2 Flux evaluation

The numerical flux Fp · �n in eq. (11) is a space and time dependent
vector, computed along the boundary of the element E (i) and valid
during one time step 
t . As we are solving a linear PDE, the
structure of the numerical flux is completely determined by the
material properties. We refer to Castro (2007) or Toro (2009) for
details on Riemann problems and high-order flux computations.

At each position along the edge ∂ E (i) the numerical flux can be
expressed as

Fp · �n = Tpq

(
F L

qr T −1
rs u(i)

s + F R
qr T −1

rs u
(i j )
s

)
, (13)

with

F L
qr = A + |A|

2
, F R

qr = A − |A|
2

and

|A| =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cp 0 0 0 0
λcp

λ+2μ
0 0 0 0

0 0 cs 0 0

0 0 0 cp 0

0 0 0 0 cs

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Recall that the material parameters are space-dependent and
therefore also the flux matrices F L and F R are space-dependent.
Matrices T and its inverse T −1 are responsible for rotating the
coordinate system from the physical space to an edge-aligned sys-
tem defined by the outward normal vector �n. The vectors u(i)

s and
u

(i j )
s include the velocity and stress data of element E (i) and its

direct jth neighbour E (i j ). Writing the space-dependent matrices
F L

qr ≈ F̂ L
qrm�m and F R

qr ≈ F̂ R
qrm�m as linear combinations of ba-

sis functions like in eq. (4) we can write the boundary integral in
eq. (11) as∫

∂ E (i)
�k(Fp · �n)dS =

n j∑
j=1

T j
pq F̂ L

qrm

(
T j

rs

)−1
û(i)

sl |Sj | F j,0
klm

+
n j∑
j=1

T j
pq F̂ R

qrm

(
T j

rs

)−1
û

(i j )
sl |Sj | F j,i

klm ,

(15)

where the index j refers to the direct neighbours of the element E (i)

with n j = 3 for triangular elements and n j = 4 for quadrilateral
elements. The length of the element edge is given by

∣∣Sj

∣∣. Matrices

F j,0
klm and F j,i

klm are normalized boundary integrals over the interval

0 ≤ χ j ≤ 1 with χ j a parameter describing the jth edge. These
matrices are pre-computed once and stored at the beginning of a
simulation and have the explicit form

F j,0
klm =

∫ 1

0
�

(i)
k (χ j )�

(i)
m (χ j )�

(i)
l (χ j ) dχ j ,

F j,i
klm =

∫ 1

0
�

(i)
k (χ j )�

(i)
m (χ j )�

(i j )
l (χ j ) dχ j . (16)

Note that in contrast to previous formulations of the ADER-DG
scheme, these integrals consist of a product of three basis functions
�k, �m and �l coming from the test function, the material, and the
wave approximation, respectively.

3.3 Time integration

In order to complete the numerical scheme and to update the nu-
merical solution u p(x, tn) from time level tn to time level tn+1 we
integrate eq. (11) in time with the same order of accuracy as the
spatial integrations. This is done by following the ADER approach,
where the time evolution of the solution u p(x, t) inside the time
interval 
t = tn+1 − tn is approximated by a Taylor time-series
expansion using the governing equation, in this case eq. (1) (see
Castro & Toro 2008, and references therein for more details).

The governing eq. (1) written in the reference element’s coordi-
nates reads

∂u p(�ξ, t)

∂t
+ A∗

pq (�ξ )
∂uq (�ξ, t)

∂ξ
+ B∗

pq (�ξ )
∂uq (�ξ, t)

∂η

= Sp[u(�ξ, t), �ξ, t] , (17)

with �ξ = (ξ, η) and A∗
pq and B∗

pq defined in eq. (8). Multiplying
eq. (17) by the test function �k , integrating over the reference
element and introducing the polynomial approximation of eq. (4)
we obtain

∂ û pl (t)

∂t

∫
ER

�k�ldξdη = − Âpqmûql (t)
∫

ER

�k
∂�l

∂ξ
�mdξdη

−B̂ pqmûql (t)
∫

ER

�k
∂�l

∂η
�mdξdη

+ Ŝpl (t)
∫

ER

�k�ldξdη . (18)

Note that in eq. (18) only the degrees of freedom ûql (t) are time
dependent. At this point we can use the mass matrix and the test
stiffness matrices defined in eq. (12) and thus simplify eq. (18) to

∂ û pl (t)

∂t
= −

(
Âpqm K l,ξ

klm + B̂ pqm K l,η
klm

)
Mkl

ûql (t) + Ŝpl (t) , (19)

providing the first time derivative of the solution û pl (t). The nth
time derivative can be written in the recursive form

∂nû pl (t)

∂tn
= −

(
Âpqm K l,ξ

klm + B̂ pqm K l,η
klm

)
Mkl

∂n−1ûql (t)

∂tn−1
+ ∂n−1 Ŝpl (t)

∂tn−1
.

(20)

With these time derivatives of the degrees of freedom we can now
express the Taylor time-series expansion within the time interval
[tn, tn+1] via

û pl (t
n + τ ) =

Nt −1∑
k=0

[
∂k û pl (tn)

∂t k

]
τ k

k!
, (21)
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with τ ∈ [0 , 
t], where 
t is the explicit time step, and Nt is
the order of the Taylor series expansion. Eq. (21) can be integrated
analytically in time from time level tn to tn+1 resulting in∫ 
t

0
û pl (t

n + τ )dτ =
Nt −1∑
k=0

[
∂k û pl (tn)

∂t k

]

t k+1

(k + 1)!
. (22)

Finally we use eq. (22) to integrate in time the degrees of freedom
in the semi-discrete form of the scheme in eq. (11) and the flux
contribution in eq. (15) to obtain[
ûn+1

pl − ûn
pl

]
Mkl |J |

+
n j∑
j=1

T j
pq F̂ L

qrm

(
T j

rs

)−1 |Sj | F j,0
klm

∫ tn+1

tn
û(i)

sl (τ ) dτ

+
n j∑
j=1

T j
pq F̂ R

qrm

(
T j

rs

)−1 |Sj | F j,i
klm

∫ tn+1

tn
û(mj)

sl (τ ) dτ

− Â pqm K ξ,k
klm |J |

∫ tn+1

tn
û(i)

ql (τ ) dτ

− B̂ pqm K η,k
klm |J |

∫ tn+1

tn
û(i)

ql (τ ) dτ

− Â pqm K ξ,m
klm |J |

∫ tn+1

tn
û(i)

ql (τ ) dτ

− B̂ pqm K η,m
klm |J |

∫ tn+1

tn
û(i)

ql (τ ) dτ

= |J |
∫ tn+1

tn

∫
ER

�k Spdξdη . (23)

The expression in eq. (23) shows the fully discrete form of this
ADER-DG method. The operation to obtain the updated solution
ûn+1

pl from ûn
pl provides the same high-order approximations in space

and time including also the high-order material approximation nec-
essary for subcell resolution of variable material. We emphasize
that the volume and surface integrals are pre-computed and stored
as the mass matrix, stiffness tensors from eq. (12) and boundary
integral tensors from eq. (16). Note that the source term Sp has to
be taken into account in the update formula eq. (23) as well as in
the time evolution of the degrees of freedom in eq. (20) as shown
in the previous work of Käser & Dumbser (2006).

The time-dependent degrees of freedom û(i)
pl (t) at time t = 0

are obtained from a given initial condition u p(�x, 0) using an
L2 projection (see Appendix C) onto the N + 1 basis functions
�l (ξ, η), l = 0, . . . , N . We remind that the approximation order of
the proposed ADER-DG scheme depends on the chosen polynomial
degree d of the basis functions for the velocity and stress approx-

imation. The material approximation with polynomial degree dm ,
however, can be chosen independently such that wave and material
approximation can be treated separately. In this way, the internal
material representation automatically adapt to the local complexity
of the medium.

In the following section, we will analyse the accuracy of our
numerical method and confirm its correct implementation by per-
forming a numerical convergence test before applying the scheme to
numerical experiments of relevance to computational seismology.

4 N U M E R I C A L C O N V E RG E N C E
S T U D I E S

Here, we validate the theoretical and technical correctness of the
proposed numerical scheme by performing a numerical convergence
study. The convergence test consists of the measurement of the
numerical errors with respect to an analytic reference solution on a
series of refined meshes discretizing the computational domain as
shown in Fig. 1. Comparing these errors for different mesh spacings
h gives us the order of convergence of the numerical scheme via the
expression

O = log(Ei+1/Ei )

log(hi+1/hi )
, (24)

with hi and hi+1 indicating the mesh characteristic sizes of two
successively refined meshes and Ei and Ei+1 denoting the corre-
sponding errors.

The computational domain is � = [−1, 1] × [−1, 1] ∈ R
2 with

periodic boundary conditions. The numerical convergence test uses
a plane P- and S-wave propagating through spatially varying ma-
terial leading to space-dependent Jacobian matrices in eq. (2) for
each element. In order to compare the numerical result with an ana-
lytic reference solution we use the following approach. We assume
an exact solution of the wave propagation problem to be given in
space and time as u p(�x, t). Inserting this solution into the wave
eq. (1) allows us to derive the source term Sp(�x, t) which ensures
that u p(�x, t) is the exact solution of eq. (1). Therefore we define the
smooth exact solution as

u p(�x, t) = R�n
p2 sin(�k · �x − ω2t) + R�n

p5 sin(�k · �x − ω5t) , (25)

with the wavenumber vector �k = (2π, 2π )T . The vectors R�n
p2 and

R�n
p5 are the eigenvectors of matrix A rotated in the direction �n =

(1, 1) and ω2 = −cs |�k| and ω5 = +cp |�k| are defined in terms of
the eigenvalues of matrix A. The variable material is described by
a spatially periodic function in � perturbing the constant entries

x

y

-1 1
-1

1

x

y

-1 1
-1

1

x

y

-1 1
-1

1

Figure 1. Refinement of triangular meshes: (left-hand panel) h = 2/4 = 0.5, (middle panel) h = 2/8 = 0.25, and (right-hand panel) h = 2/16 = 0.125.
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ρo = 1.0, μo = 1.0, and λo = 2.0 of the matrix A by

ρ(�x) = ρo + 1

2
sin(�k · �x)

μ(�x) = μo + 1

2
sin(�k · �x)

λ(�x) = λo + 1

2
sin(�k · �x). (26)

The simulation time can now be chosen arbitrarily as we know
the exact solution at any point in space and time via eq. (25). We
set the final simulation time to tend = 2

√
2 such that the P wave

travelled one and the S wave two wavelength. The Courant number
for numerical stability is kept constant. The initial condition of
the wave propagation problem is defined by evaluating eq. (25) for
t = 0.

In Table 1, we show the resulting errors in the different norms
and the corresponding convergence orders obtained for the final
time tend for a 5th and 8th order ADER-DG scheme on triangular
meshes. We obtain analogous results using quadrangular meshes.
The results confirm that the expected orders of convergence are
reached. Furthermore, Fig. 2 (left-hand panel) shows the complete
results for convergence tests of the ADER-DG schemes from order
2 using linear P1-elements to order 8 using P7-elements for the
wave propagation and material approximations. In contrast, Fig. 2
(right-hand panel) shows the dependency of the schemes accuracy
on the material approximation. To this end, we show the results of an
ADER-DG scheme using polynomials of degree 4 (P4) for the wave
propagation and polynomials of degree 1 (M1) to 4 (M4) for the
material representation. We clearly observe how the error decreases
with improved material approximation. In fact, using a ADER-DG
scheme P4M2 reduces the accuracy of the scheme to a pure P3M3
scheme, while the results of a P4M1 scheme is comparable to a

pure P2M2 scheme. Therefore, the correct convergence order O,
that is, the slope of the error lines in Fig. 2, is only reached, if the
polynomial degree d for the wave propagation approximation and
the degree dm for the material approximation are the same, that is,
if the scheme is a PdMdm scheme with d = dm = O − 1.

5 N U M E R I C A L E X P E R I M E N T S

In the following we apply the new extended ADER-DG scheme,
with subcell resolution, to more realistic cases that typically oc-
cur in seismic wave propagation problems. The first experiment
consists of a heterogeneous velocity model with smooth variations
as provided by seismic tomography. The second experiment repre-
sents a problem typically encountered on a smaller scale, like the
shallow upper crust or sedimentary environments, with strong ma-
terial heterogeneities with short spatial wavelength. There we study
the performance of the new method by varying the mesh spacing,
the wave propagation order, and the material approximation order
to assess their influence on the computational cost. In the third
experiment we investigate the effects of the polynomial subcell res-
olution approach on the accuracy of the synthetic seismograms, if
the material shows a sharp discontinuity that is not respected in the
mesh generation process, that is, an intracell discontinuity where
the element goes across the material jump. For each experiment,
we compare our results with those obtained from other indepen-
dent codes, for example, the standard fourth-order staggered finite
differences (FD) method (Levander 1988) or the spectral element
method (SEM). We remark, that better methods, such as the im-
proved FD scheme of Moczo et al. (2002) have been developed,
however, we overcame the weakness of the standard FD-scheme by
massive oversampling. Note that the aim here is not to accomplish

Table 1. Numerical convergence results for the velocity component u by the ADER-DG
scheme of order 5 using polynomials P4M4 and order 8 using polynomials P7M7 on
irregular triangular elements for variable material.

1/h L∞ OL∞ L2 OL2 L1 OL1

2.0 8.755 × 10−4 – 6.122 × 10−4 – 1.848 × 10−3 –
3.0 1.391 × 10−4 4.54 9.725 × 10−5 4.54 5.367 × 10−4 3.05
4.0 3.629 × 10−5 4.67 2.532 × 10−5 4.68 1.358 × 10−4 4.78
5.0 1.189 × 10−5 5.00 8.614 × 10−6 4.83 8.513 × 10−5 2.09

2.0 4.154 × 10−6 – 3.560 × 10−6 – 1.814 × 10−5 –
3.0 1.310 × 10−7 8.53 1.353 × 10−7 8.06 2.296 × 10−6 5.10
4.0 1.556 × 10−8 7.41 2.016 × 10−8 6.62 2.688 × 10−7 7.46
5.0 2.596 × 10−9 8.03 1.945 × 10−9 10.48 1.967 × 10−8 11.72

0.050.10.20.40.60.81

10

10

10

10

10
0

mesh size h

L
2
 e

rr
o
r

P1M1

P2M2

P3M3

P4M4

P5M5

P6M6

P7M7

0.10.20.40.6

10

10

10

10

10
0

mesh size h

L
2
 e

rr
o
r

P2M2

P3M3

P4M1

P4M2

P4M3

P4M4

Figure 2. Left-hand panel: convergence results for ADER-DG schemes from order O = 2 to O = 8 using P1M1 to P7M7 elements for the wave propagation
and material approximation, respectively. Right-hand panel: comparison of results with reduced accuracy due to wave propagation polynomials P4 but
lower-order material approximation polynomials P4–P1.
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a competitive benchmark of the FD or the SEM method against
the ADER-DG scheme. The goal of the comparison is to validate
the new extended ADER-DG scheme in the more realistic cases
presented in the following. A detailed theoretical study comparing
the efficiency of each numerical method in comparison is beyond
the scope of this paper.

5.1 Smoothly variable material with strong
velocity gradients

This numerical experiment consists of a smoothly variable ve-
locity model typically encountered in seismic tomography with
perturbations of only a few percent. However, we create veloc-
ity perturbations with unrealistically high variations (see Fig. 3)
in order to produce strong velocity gradients that emphasize the
effect of material heterogeneity. The computational domain is
� = [−2500 m, 2500 m] × [−2000 m, 0 m] with a free surface
boundary condition at y = 0 and absorbing boundaries otherwise.
The velocity model is defined by P- and S-wave velocities described
by

cp = 2000 + 1200 sin
( xπ

3000

)
cos

(
(y − 1000)π

1500

)
,

cs = cp√
(2)

− (350 + 0.12x) . (27)

The density is kept constant at ρ = 2200 kg m−3. The maximum
and minimum for P-wave velocities are 3200 and 800 m s−1, respec-
tively, while for the S-wave velocities they are 2100 and 27 m s−1.

We place an explosive point source at position �xs =
(25,−1025) m with a Ricker source time function S(t) = a1[0.5 +
a2(t−tD)2] expa2(t−tD )2

, with delay time tD = 115 ms, a1 = 2×1011,
and a2 = −(π fc)2, where the central frequency of the wavelet is
fc = 10 Hz. We place 41 equidistant receivers every 100 m along
the free surface from x = −1975 to 2025 m to record synthetic
seismograms in a 1.6 s window.

We discretize the computational domain with regular quadrilat-
eral elements with an edge size of 16.67 m. For this mesh the
maximum percentile change within one element of the P-wave ve-
locity is 2 per cent. The order of accuracy for the wave propagation
and material approximation is 5, that is, we apply an ADER-DG
P4M4 scheme. In Fig. 4, we show a series of snapshots of the
wave field for the horizontal velocity component u. The initially
generated compressional wave propagates away from the source
following a non-radial symmetry pattern due to the heterogeneous
velocity model. Note that in low-velocity zones the wavelengths
are shorter than in high-velocity zones and the amplitudes increase
and decrease accordingly. Note also the clear reflection of the in-
cident P wave at the free surface producing also a converted P–S
wave. In Fig. 5, we compare our solution at each receiver with
two independent numerical solutions from the FD and the SEM

Figure 3. Smooth velocity models for (a) P waves and (b) S waves with strong velocity gradients between minimum and maximum values.

Figure 4. Snapshots of the horizontal velocity wave field u in the smooth model at four different times. The circle represents the location of the explosive
source while the triangles are receivers in the free surface.
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Figure 5. Comparison of the numerical solution of the particle velocity u (left-hand panel) and v (right-hand panel) on each of the 41 receivers placed on the
free surface for the smoothly variable material test case.
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Figure 6. Seismic signals of the horizontal velocity component u (left-hand panel) and vertical velocity component v (right-hand panel) recorded at receiver
25 at x = 425 m.

simulations and observe an excellent agreement between all three
numerical solutions. Furthermore, the seismograms show a weak S
wave occurring after about 1 s and propagation along the receiver
line, which is caused by the material heterogeneity. The SEM solu-
tion is obtained on exactly the same mesh using the same order of
accuracy, whereas the standard FD solution required a mesh spacing
of h = 2.5 m in order to obtain results that are compatible with the
SEM solution.

In Fig. 6, we show a detailed comparison of the numerical so-
lutions of the three methods for the receiver 25 at x = 425 m to
demonstrate their visually perfect fit, where the amplitude differ-
ences are smaller than 1.0 per cent. Thus, the test validates the accu-
rate treatment of strong gradients inside each element for smoothly
variable material and also confirms the correct implementation of
this new functionality of the ADER-DG scheme.

5.2 Strong material heterogeneity of short
spatial wavelength

Here, we apply the proposed ADER-DG scheme to a more
challenging problem, where seismic waves propagate through a
highly heterogeneous medium. The computational domain � =
[−2500 m, 2500 m] × [−2000 m, 0 m] contains a random pertur-
bation of the mean material properties ρ = 2200 kg m−3, μ =
2.295 GPa and λ = 2.295 GPa. The perturbation is created using
a random field generator based on high-cut filtering in the spa-
tial Fourier domain (e.g. see Klimeš 2002; Gallovič. & Brokešová
2004). We chose the correlation length of the material variation
to be much shorter in the vertical y-direction than in the horizontal
x-direction to produce a layered material variation typically encoun-
tered in sedimentary environments. The resulting heterogeneity of
the P-wave speed is shown in Fig. 7 where a number of thin, lens-

shaped high- and low-velocity zones are visible. The top boundary
represents the free surface while the other boundaries are absorbing.
An explosive source is located at �xs = (0, −1000) m with the same
Ricker wavelet as specified in Section 5.1 generating a wave field
of 10 Hz dominant frequency. The wave propagation is recorded at
the same 41 equidistant receivers at the free surface (y = 0 m) as
in the previous Section 5.1. Therefore, the dominant wavelength is
in the length scale as the vertical velocity variations. We use the FD
method on a very fine regular grid discretizing � with 25.6 × 106

gridpoints of grid spacing h = 0.625 m to obtain a reference solu-
tion. To check the reliability of the reference solution we compute
a further SEM solution using a square mesh with a regular element
edge length of 16 m and fifth order of accuracy. Finally, we solve the
problem on the same 16 m mesh with the new ADER-DG scheme
of order 5 using P4M4 approximation polynomials. Snapshots of
the obtained horizontal velocity field u are shown in Fig. 8, which
displays strong scattering of the seismic waves and deformation
of the wave fronts due to the highly heterogeneous material. The
comparison of recorded seismograms at the free surface is plotted
in Fig. 9. The visual fit between all three solutions is again almost
perfect even for the late arrivals of signals in the coda. We also
show a more detailed comparison of the seismic signals at receiver
15 in Fig. 10 which clearly demonstrates that all methods produce
visually the same solution. In the following we choose the over-
sampled FD solution (295 gridpoints per dominant wavelength) as
a reference.

We solve the strongly heterogeneous material problem with the
new ADER-DG scheme on four different meshes with mesh spac-
ings h = [50, 30, 20, 16] m. On each mesh we simulate the wave
propagation with a series of schemes where the approximation order
of the wave propagation and the material representation is system-
atically varied. To this end, we use polynomials P3, P4 and P5 for
the wave propagation approximation on each mesh and increase
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258 C. E. Castro, M. Käser and G. B. Brietzke

Figure 7. Spatial variation of the P-wave velocity with extreme values ranging from 1450 to 2400 m s−1. The S-wave velocity has an identical spatial
distribution, however, with extreme values ranging from 830 to 1370 m s−1.

Figure 8. Snapshots of the horizontal velocity wave field u in the randomly heterogeneous model at four different times. The circle represents the location of
the explosive source while the triangles are receivers at the free surface.
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Figure 9. Comparison of the numerical solution of the particle velocity u (left-hand panel) and v (right-hand panel) on each of the 41 receivers placed on the
free surface for the randomly heterogeneous material test case.

the degree of the material approximation successively from M0
to M3, M4 or M5 depending on the wave approximation polyno-
mial P used. Therefore, the degree of the material approximation
is always lower or equal to that of the wave propagation approx-

imation. In total this leads to (4 + 5 + 6) × 4 = 60 simulations
providing different solutions. The error of each solution is mea-
sured against the FD reference solution by calculating the rms er-
ror EL2 = (

∑
i (u

num
i − uref

i )2)1/2/(
∑

i (u
ref
i )2)1/2 of the wave field
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Figure 10. Seismic signals of the horizontal velocity component u (left-hand panel) and vertical velocity component v (right-hand panel) recorded at receiver
15 at x = −575 m.
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Figure 11. Error plot of the accuracy study versus CPU-time for the series of 60 different wave propagation simulations. Four meshes of different mesh
spacings (50, 30, 20 and 16 m) are used and indicated by different symbols. Different colours denote the degrees of the wave propagation approximations in
space and time (P3), (P4) and (P5). Each line graph shows results for an increasing degree of the material approximation from M0 to it maximum value Md
determined by Pd.

component u at time t = 0.5s over all FD gridpoints i, which ensures
that no possible boundary effects are influencing the measurement.

The results of this accuracy study are plotted in Fig. 11 versus the
CPU-time required for each simulation. Here, the symbols indicate
the used mesh and the colours indicate the degree P of the wave
propagation approximation. Each graph is then obtained by com-
puting the errors resulting from increasing degrees of the material
approximation, that is, from M0 to the corresponding maximum
Md determined by Pd, d = 3, 4, 5. Therefore, the three graphs for
each mesh consist of an increasing number of data points for an
increasing degree of the wave approximation P.

Starting from the top left-hand side of each graph we observe
that improved material approximation decreases the error. How-
ever, most graphs show a similar behaviour in the sense that they
flatten out and asymptotically seem to reach a limit where improved
material approximation by higher M does reduce the error only
slightly. Significantly smaller errors can then only be obtained by
mesh refinement or increase of the wave propagation approxima-
tion P. The only exception to this rule appears when comparing
the graph of the finest mesh (Mesh16) with highest wave approx-
imation P5 in the lower right part of the figure. Here the obtained
errors are slightly larger than those obtained from the P4 approx-
imation. We explain this effect by considering that the standard
fourth-order FD reference solution is not exact but seems to pro-
duce small errors that are comparable to the one that we try to
measure.

The general and expected observation is that refining the mesh
and increasing the approximation degree of the wave propagation
P or the material representation M reduces the error while increas-
ing the computational time. However, we recognize that increasing
P alone cannot always reduce the error significantly. This clearly
shows that a highly accurate wave propagation approximation alone
might not be sufficient, if the velocity model is not represented well
enough. In order to improve the representation of the elastic model
we can refine the mesh or increase the degree of the material ap-
proximation. Which strategy is more efficient in terms of CPU-time
is answered by Fig. 11. In fact, we observe that for coarse meshes
(Mesh50 and Mesh30), the improved material approximation can
still reduce the error significantly if the wave propagation order is
sufficiently high (e.g. for P5). Otherwise, an efficient combination
of mesh size, wave and material approximation mainly involves the
linear representation (M1) of the material inside each element as
indicated by arrows to the corresponding data points in Fig. 11.

In order to have a better understanding of the error level pre-
sented in Fig. 11, we show seismograms comparisons for the sig-
nals recorded at receiver 15 in Fig. 12. We plot four numerical
solutions, from the 60 used to construct Fig. 11, and compare them
with the reference FD solution. The maximum amplitude difference
for Mesh16 P4M4 is 6.2 per cent and 4.6 per cent for the velocity
components u and v, respectively. In Table 2, we also give the enve-
lope and phase mitfits (Kristeková et al. 2006) for the seismograms
of Fig. 12 showing a consistent error behaviour with the one of the
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Figure 12. Seismic signals of the horizontal velocity component u (left-hand panel) and vertical velocity component v (right-hand panel) recorded at receiver
15 for wave propagation order 5 (P4) for 4 of the 60 numerical simulations. We plot the direct (top panel) comparison and the difference 
u and 
v (bottom
panel) with the FD reference solution.

Table 2. Time–frequency misfit errors (enve-
lope and phase) for the seismograms presented
in Fig. 12.

Mesh Order Envelope Phase

Mesh30 P4M0 0.299 0.098
Mesh30 P4M2 0.045 0.034
Mesh30 P4M4 0.038 0.031
Mesh16 P4M4 0.022 0.017

entire wave field shown in Fig. 11 in the sense that refining the mesh
and/or increasing the order reduce the numerical error.

We conclude that in this case it is computationally most efficient
to keep the material approximation at M1 (or maximum M2) and
the wave propagation approximation at P3 or P4, and then further
reduce the numerical error by refining the mesh.

There is, of course, the issue of discrete velocity models that
needs to be considered when solving seismic wave propagation
in heterogeneous velocity models. When dealing with discrete ve-
locity models, as the one presented in this test problem, their nu-
merical representations used by different computational codes can
vary and therefore will lead to slightly different discrete physi-
cal problems. Therefore, we explain the fact, that the ADER-DG
and the FD results differ even on the finest discretization, by these
slight differences in the discrete velocity models. We believe that
with further improvements in numerical techniques and the reduc-
tion of numerical errors in the simulation of the wave propagation
process these discrepancies of discrete velocity models might be-
came even more evident. Alternatively, homogenization techniques
(Capdeville & Marigo 2007, 2008) could be applied in order to build
smooth effective media which average small-scale heterogeneities
in the original models without losing the accuracy for wave field
computations.

5.3 Intracell material discontinuity

This experiment considers an important issue often encountered
during the mesh generation process, when complex geometries of
material interfaces or very thin material layers cannot be honoured,
that is, elements cannot be edge-aligned with the interface’s ge-

ometry but extend across the material discontinuity. We are inter-
ested in the influence of this issue on the accuracy of the synthetic
seismograms and investigate the behaviour of the new high-order
polynomial material approximation of such discontinuities.

To this end, we define a computational domain � =
[−2000 m, 2000 m]×[−2000 m, 2000 m] with absorbing boundary
conditions on all sides. We subdivide � into two zones of differ-
ent material properties with a single discontinuity at y = 0 m.
The high-velocity zone (y > 0) has the material properties
ρ = 2500 m s−1, μ = 5 GPa and λ = 5 GPa, while the low-velocity
zone (y < 0) is characterized by ρ = 2000 m s−1, μ = 0.5 GPa
and λ = 0.5 GPa leading to a strong velocity contrast of a factor of
2.8. We place a point force as source acting equally on the velocity
components u and v at position �xs = (0, −400) m. The source time
function is a Ricker wavelet as defined in Section 5.1 with delay time
tD = 250 ms, a1 = 1 × 105 and a2 = −(π fc)2, where the central
frequency is set to fc = 5 Hz. We place 11 receivers equidistantly
from x = −1000 to 1000 m in each zone, that is y = 1000 and
−1000 m, to record the synthetic seismograms as shown in Fig. 13.
Furthermore, Fig. 13 visualizes snapshots of the reference solution
with the material discontinuity indicated by the black line. The low
amplitudes of the transmitted waves into the high-velocity zone are
hardly visible, while the direct P and S waves as well as the re-
flected waves due to the impedance contrast appear clearly in the
low-velocity zone.

In order to isolate the errors generated by the intracell dis-
continuity and to avoid any other numerical effects, we split
the computational domain � into �1 = [−2000 m, 2000 m] ×
[−37.5 m, 37.5 m] around the material discontinuity and the re-
maining �2 = �\�1. We discretize �2 with a regular square mesh
of h = 25 m and keep it fixed for all tests. For �1 is discretized with
the same fixed mesh spacing in x-direction, however, we generate
four different spacings in y-direction with h1 = 25 m, h2 = 15 m,
h3 = 10.71 m and h4 = 8.33 m, respectively, leading to the meshes
denoted by Mesh 1, Mesh 2, Mesh 3 and Mesh 4. Therefore, we
get a set of meshes successively refined only around the material
interface without respecting it properly by element edges to always
keep the intracell discontinuity.

We run two simulations for each of the four meshes applying
an ADER-DG scheme of wave propagation approximation P4, one
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Figure 13. Snapshots of the reference solution for the material discontinuity test problem at three time levels. The black line represents the position of the
material discontinuity, the black circle the location of the source, and the black triangles the locations of the receivers. We mainly observe the direct waves as
well as the reflected and refracted waves due to the impedance contrast at the discontinuity.

with constant (M0) and one with linear (M1) material approxima-
tion polynomials. For each of these eight simulations we record the
signals at all 22 receivers and perform a time–frequency misfit anal-
ysis as suggested by Kristeková et al. (2006). The reference solution
is computed by the SEM on a regular 25 m mesh respecting the dis-
continuity which agrees excellently with our ADER-DG solution,
if we respect the discontinuity. In Figs 14 and 15, we present the
Envelope Misfits (EM) and Phase Misfits (PM) at all receivers.
The top rows of these figures show the results on receivers 1–11 in
the high-velocity zone, whereas the bottom rows show the results
for receivers 12–22 in the low-velocity zone. The plots in the left-
and right-hand columns are obtained by the constant (M0) and lin-
ear (M1) material representations, respectively. The asymmetry of
the EM and PM curves is due to the oblique orientation of the point
source with respect to the interface. Obviously, the EM and PM
decrease with mesh refinement as expected. However, increasing
the material approximation from M0 to M1 generally decreases the
misfits even more, in particular, in the low-velocity zone (bottom
rows). We believe that the explanation is the clear improvement of
the representation of the material interface that affects the accuracy
of the reflected and especially the refracted wave that travels along
the discontinuity.

To understand this improvement more clearly, Fig. 16 shows the
results obtained at the receivers 6 (left-hand column) and 15 (right-
hand column) in the high- and low-velocity zone, respectively. The
top row displays the best solutions obtained with the ADER-DG
P4M1 scheme on Mesh 4 together with the reference solutions.
The visual fit is perfect. Note also the amplitude differences of the
horizontal velocity component u in the two zones. The middle row
shows the error in form of the difference between the reference and
the numerical solutions for all four meshes with constant material
representation M0. We observe that the intracell discontinuity in-
troduces a significant error in comparison to the reference solution
computed on a mesh that respects the material discontinuity. Clearly,
the amplitudes of these difference seismograms decrease with mesh
refinement. Note also that for the first two wave arrivals of the direct
P and direct S wave on receiver 15 there is no difference amplitude
visible as these direct waves are not affected by the interface. Fi-
nally, the bottom row is similar to the middle row, just that here the
linear material approximation M1 was used. Again the differences
decrease systematically with mesh refinement. However, the abso-
lute amplitude of the error is much smaller, that is, the accuracy
using the M1 material representation for the intracell discontinuity
is significantly higher than that of the M0 representation.
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Figure 14. Envelope misfits for the intracell discontinuity problem. Results obtained for constant (left-hand panel) and linear (right-hand panel) material
approximations are compared for receivers 1-11 in the high-velocity (top panel) and for receivers 12-22 in the low-velocity (bottom panel) zone.
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different meshes using linear material representation M1. Note the clear improvement due to the better material approximation.

An important aspect to mention is that test using higher-degree
material representations than M1 to approximate the intracell dis-
continuity did generally lead to larger errors or even caused nu-
merical instabilities. This is due to the well-known problem of
high-order polynomial approximation of a discontinuity leading
to strong oscillations. Therefore, we suggest to limit the polynomial
degree for subcell resolution to M1 in the case of intracell material
discontinuities.

6 C O N C LU S I O N S

We have presented an important extension of the ADER-DG scheme
for 2-D elastic wave propagation problems including the high-order
approximation of variable material inside each element. Further-
more, we prove numerically the expected order of convergence for
smoothly varying material properties. Through different numer-
ical examples we test and compare our new method with other
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independent numerical methods, the FD and SEM, finding excel-
lent agreement of the synthetic seismograms. We conclude that the
best performance of the ADER-DG method, when simulating seis-
mic waves in heterogeneous material depends on the combination
of the mesh spacing and the degree of the approximation polyno-
mials for the wave propagation and elastic material properties. In
the investigated example, the highest efficiency is reached for rather
low, that is, linear or quadratic, material approximation as increased
accuracy is rather obtained by mesh refinement. We also observed
that for very small error levels in the numerical solution, slight dis-
crepancies in the discrete representation of the velocity model could
lead to different solutions obtained by different numerical methods.
Finally, we considered the case of sharp material discontinuities
which are not respected by the mesh. We find that in such cases
the linear approximation of the material across such interfaces also
seems to be a good choice to reduce the numerical error. More-
over, higher-order polynomial representations of a sharp material
discontinuity inside an element often cause problems possibly due
to their oscillatory behaviour in the presence of the discontinuity. A
further investigation is necessary to find a possible regularization of
the instable behaviour at intracell discontinuities. Future work will
focus on the extension of the proposed approach to anisotropic and
viscoelastic material properties as well as unstructured 3-D meshes
of tetrahedral and hexahedral elements.
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A P P E N D I X A : R E F E R E N C E E L E M E N T S
A N D M A P P I N G F U N C T I O N S

For triangular meshes we define the reference element ER as 0 ≤
ξ ≤ 1, 0 ≤ η ≤ 1 − ξ . The mapping function from the reference
element to the physical element E (i) with vertexes �xi = (xi , yi ) with
i = 1 . . . 3 is written as follows:

x(ξ, η) = x1 + (x2 − x1)ξ + (x3 − x1)η ,

y(ξ, η) = y1 + (y2 − y1)ξ + (y3 − y1)η , (A1)

where the inverse functions ξ = ξ (x, y) and η = η(x, y) can be
obtained explicitly.

For quadrangular meshes we define the reference element ER as
0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1. The mapping function from the reference
element to the physical element E (i) with vertexes �xi = (xi , yi ) with
i = 1 . . . 4 is written as follows:

x(ξ, η) = (1 − ξ )(1 − η)x1 + ξ (1 − η)x2 + ξηx3 + (1 − ξ )ηx4 ,

y(ξ, η) = (1 − ξ )(1 − η)y1 + ξ (1 − η)y2 + ξηy3 + (1 − ξ )ηy4 .

(A2)

In this case, the inverse functions can be obtained explicitly only
for parallelograms as physical elements.

We enumerate the vertices of elements in counter-clock wise
direction. The Jacobian matrix J = ∂(x, y)/∂(ξ, η) of the mapping
and its inverse are

J =
[

xξ xη

yξ yη

]
, J −1 =

[
ξx ξy

ηx ηy

]
. (A3)

Useful relations are∫
E (i)

u p(�x, t) d�x =
∫

ER

|J | u p(�ξ, t) d�ξ , (A4)

and⎡
⎢⎢⎢⎣

∂u p(�x, t)

∂x

∂u p(�x, t)

∂y

⎤
⎥⎥⎥⎦ = J −1T

⎡
⎢⎢⎢⎣

∂u p(�ξ, t)

∂ξ

∂u p(�ξ, t)

∂η

⎤
⎥⎥⎥⎦ . (A5)

A P P E N D I X B : B A S I S F U N C T I O N S

We use orthogonal hierarchical basis functions given in terms of
the Jacobi polynomials as given in Cockburn et al. (2000). Here
we show the first six basis functions for the third-order numerical
method using triangular or square meshes.

Basis functions up to third order for triangular elements.

�0 = 1 ,

�1 = −1 + 2 ξ + η ,

�2 = −1 + 3 η ,

�3 = 1 − 6 ξ − 2 η + 6 ξ 2 + 6 ξη + η2 ,

�4 = 1 − 2 ξ − 6 η + 10 ξη + 5 η2 ,

�5 = 1 − 8 η + 10 η2 . (B1)

Basis functions up to third order for square elements.

�0 = 1 ,

�1 = −1 + 2 ξ ,

�2 = −1 + 2 η ,

�3 = 1 − 6 ξ + 6 ξ 2 ,

�4 = 1 − 2 ξ − 2 η + 4 ξη ,

�5 = 1 − 6 η + 6 η2 . (B2)

A P P E N D I X C : L 2 P RO J E C T I O N

The L2 projection of a continuous function u p(�x(ξ, η), t) that al-
low us to obtain the time-dependent degrees of freedom û pl (t)
reads

û pl (t) =

∫
ER

u p(�ξ, t)�k(�ξ ) dξdη∫
ER

�l (�ξ )�k(�ξ ) dξdη

=

∫
ER

u p(�ξ, t)�l (�ξ ) dξdη

Mll
.

(C1)
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Abstract. The characterisation of seismic sources with time-
reversed wave fields is developing into a standard technique
that has already been successful in numerous applications.
While the time-reversal imaging of effective point sources is
now well-understood, little work has been done to extend this
technique to the study of finite rupture processes. This is de-
spite the pronounced non-uniqueness in classic finite source
inversions.

The need to better constrain the details of finite rupture
processes motivates the series of synthetic and real-data time
reversal experiments described in this paper. We address
questions concerning the quality of focussing in the source
area, the localisation of the fault plane, the estimation of the
slip distribution and the source complexity up to which time-
reversal imaging can be applied successfully. The frequency
band for the synthetic experiments is chosen such that it is
comparable to the band usually employed for finite source
inversion.

Contrary to our expectations, we find that time-reversal
imaging is useful only for effective point sources, where it
yields good estimates of both the source location and the ori-
gin time. In the case of finite sources, however, the time-
reversed field does not provide meaningful characterisations
of the fault location and the rupture process. This result can-
not be improved sufficiently with the help of different imag-
ing fields, realistic modifications of the receiver geometry or
weights applied to the time-reversed sources.

The reasons for this failure are manifold. They include the
choice of the frequency band, the incomplete recording of
wave field information at the surface, the excitation of large-
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amplitude surface waves that deteriorate the depth resolution,
the absence of a sink that should absorb energy radiated dur-
ing the later stages of the rupture process, the invisibility of
small slip and the neglect of prior information concerning
the fault geometry and the inherent smoothness of seismo-
logically inferred Earth models that prevents the beneficial
occurrence of strong multiple-scattering.

The condensed conclusion of our study is that the limi-
tations of time-reversal imaging – at least in the frequency
band considered here – start where the seismic source stops
being effectively point-localised.

1 Introduction

Time reversal (TR) is a universal concept that can be found in
numerous physical sciences, including meteorology (e.g.Ta-
lagrand and Courtier, 2007), geodynamics (e.g.Bunge et al.,
2003), ground water modelling (e.g.Sun, 1994) and seis-
mology. The misfitχ between observed and synthetic data
is propagated backwards in time to detect the underlying
discrepancies between the real world and its mathematical
model. TR can be approached from two closely related di-
rections: (1) the invariance of a non-dissipative physical sys-
tem with respect to a sign change of the time variable, and
(2) the computation of the gradient ofχ with the help of the
adjoint method.

From a seismological perspective, the time-invariance of
perfectly elastic wave propagation provides the intuitive jus-
tification for the TR imaging of seismic sources: Seismo-
gramsu0(x

r ,t) recorded at positionsxr (r = 1,...,n) are re-
versed in time, re-injected as sources at their respective re-
ceiver locations and the resulting wave fieldu(x,t) is then
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propagated backwards in time through an appropriate Earth
model. When the receiver configuration is sufficiently dense,
the time-reversed wave fieldu approximates the original
wave fieldu0. Focussing ofu then occurs at the time and
location whereu was excited, thus, providing information
on the original earthquake source.

While being mathematically more rigorous, the adjoint
method (e.g.Tarantola, 1988; Tromp et al., 2004; Fichtner
et al., 2006; Fichtner, 2010) leads to a similar result: The
gradient of the misfitχ with respect to the source parameters
is given in terms of the time-reversed wave field generated
by adjoint sources that radiate the misfit from the receiver
positions back into the Earth model. In the case of a moment
tensor point source, for instance, the derivative ofχ , with
respect to the moment tensorM, is given by

∂χ

∂Mij

= −

∫
εij (x

s,t)dt , (1)

whereεij andxs denote the strain tensor computed from the
time-reverse fieldu and the source position, respectively. In
this sense, TR can be interpreted as the first step in an itera-
tive gradient-based source inversion (e.g.Tromp et al., 2004;
Hjörleifsd́ottir, 2007; Fichtner, 2010).

The history of TR imaging is likely to have started in ocean
acoustics (e.g.Parvulescu and Clay, 1965; Derode et al.,
1995; Edelmann et al., 2002), from where it migrated to med-
ical imaging (e.g.Fink, 1997; Fink and Tanter, 2010), non-
destructive testing (e.g.Chakroun et al., 1995; Sutin et al.,
2004) and many other fields. One of the earliest seismic ap-
plications can be found in the work ofMcMechan(1982)
who introduced TR source imaging as a modified version of
migration. The time-reversed wave equation is used to image
earthquake sources instead of subsurface structures (Artman
et al., 2010). Kennett(1983) pinpointed the advantages of
TR as early as 1983: (1) no prior interpretation of the time-
series is needed and (2) the full elastic wave field is used
to obtain the best image of the source. Early applications
were limited to structurally simple or acoustic models (e.g.
McMechan et al., 1985; Rietbrock and Scherbaum, 1994;
Fink, 1996), but recent advances in numerical modelling en-
abled applications in more complex scenarios with different
types of seismic sources, including the classic double couple
point source (Gajewski and Tessmer, 2005), extended faults
(Ishii et al., 2005; Larmat et al., 2006; Allmann and Shearer,
2007), micro-seismic tremor (Steiner et al., 2008) and vol-
canic long-period events (O’Brien et al., 2011). Larmat et al.
(2009) demonstrate the need to use specific imaging fields
such as divergence or strain to distinguish sources from low
velocity zones.
While TR imaging of effective point sources is now well-
understood, little has been done to explore its potential to
detect the details of finite rupture processes. This is sur-
prising because classical finite-source inversions (e.g.Cot-
ton and Campillo, 1995; Cesca et al., 2010) are known to be

highly non-unique (Mai et al., 2007). The urgent need to im-
prove finite-source inversions motivates this study where we
attempt to answer several key questions with the help of both
synthetic and real-data experiments: (1) How well does the
time-reversed field focus in the source area? (2) Does TR
imaging provide constraints on the source volume? (3) Can
regions with large slip (asperities) be identified? (4) Can the
rupture speed be estimated? (5) Up to which level of com-
plexity does TR imaging provide useful information on the
rupture process?

This paper is organised as follows: In a first series of syn-
thetic tests, we study TR imaging of single and multiple point
sources under nearly ideal conditions. We then extend our
experiments to synthetic data computed from a finite-rupture
model. To improve the focussing of the time-reversed field,
we investigate the influence of the station configuration and
the weighting of the adjoint sources. Finally, we provide
an application to the strong-motion data recorded during the
2000 Tottori (Japan) earthquake.

2 Numerical method

For our TR experiments, we employ a spectral-element algo-
rithm to model wave propagation in 3-D elastic media (Ficht-
ner and Igel, 2008; Fichtner et al., 2009a,b). The model
volume is divided into equal-sized hexahedral elements, and
Perfectly Matched Layers (PML) are used to avoid reflec-
tions from the nonphysical model boundaries. In the inter-
est of simplicity, we restrict ourselves to isotropic and non-
dissipative media.

The model used in our synthetic tests is 160×170×40 km
wide. It comprises 60×60×16 elements, which corresponds
to ∼ 3 million grid points when the polynomial degree is 4.
This setup allows us to model wave fields with frequencies up
to 2 Hz. Both the receiver configuration (Fig.1, left) and the
structural model (Fig.1, right) in most of our simulations are
the same as in the SPICE source inversion benchmark (Mai
et al., 2007) that was intended to mimic the circumstances
of the 2000 Tottori (Japan) earthquake. For the real data
experiment, we use the Japanese KiK-net stations (Fig.11)
and the layered velocity model ofSemmane(2005). As we
intend to work in the frequency range of kinematic source
inversions (f = 0.1− 1 Hz) the velocity models were cho-
sen alike. Even if the models seem dramatically smooth for
time-reversal purposes, we argue that no unknown complex-
ity should be added.

To generate the time-reversed wave field, the displacement
is recorded at the surface receivers, flipped in time and then
re-injected as three-component adjoint sources. For the prop-
agation of the reverse field we use the same algorithm, setup
and velocity model as for the forward simulation.
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Fig. 1. Left: Geographic model setup. Stations are marked by trian-
gles. The red line and the star mark the fault trace and the epicentre
for the finite-fault simulations in Sect.4. Right: Velocity and den-
sity model used in all synthetic simulations.

3 Synthetic points source simulations

3.1 Single point source

Our first series of tests with one single double couple point
source is deliberately simplistic. It is intended to serve as
a reference for TR under near-ideal conditions. The TR
method should be able to recover the point source, because
otherwise there would be little hope for success in finite-
source imaging.

The moment tensor point-source, with onlyMxy different
from zero, is at 12.5 km depth. As source time function, we
use a Gaussian wavelet with a dominant frequency of 1 Hz.
The wave field is computed for the 33 receivers shown in the
left panel of Fig.1. To illustrate the characteristics of the
waveforms, a selection of N–S-component synthetic seismo-
grams is shown in Fig.2.

As suggested by Eq. (1), we monitor the time-reversed
strain componentεxy . Snapshots ofεxy at different times
are shown at the point-source depth (12.5 km) in Fig.3. The
adjoint field starts to propagate from the stations with the
largest epicentral distance and then focusses at the hypocen-
tre ast approaches 0. Weaker or no focussing was observed
for the other components of the strain tensor, as expected.
While the focussing ofεxy near the source can clearly be
observed,εxy |t=0 is still significantly different from zero in
other regions of the model volume that are distant from the
source. These “ghost waves” result from the imperfect re-
construction of the forward wave field by a finite number of
irregularly spaced adjoint sources located at the surface. De-
pending on the particular setup, ghost waves may dominate
the reverse field, thus, masking the focussing at the source
location.

Fig. 2. N–S-component synthetic seismograms recorded at the 33
stations for a moment tensor point source with onlyMxy 6= 0. The
stations are sorted by distance to the epicentre and the traces are
scaled to the maximum amplitude.

The influence of ghost waves can be reduced by using, for
instance, the energyE =

1
2v2 to image the source (Fig.3,

lower right). This leads to the suppression of contributions
far from the source, but also to a less optimal focussing di-
rectly at the source location. In numerous experiments, a
similar trade-off could be observed for other functionals of
the time-reversed field, including the different components of
the rotation vector∇ ×u and the rotation energy12(∇ ×u)2.
This suggests that time-reversal imaging always involves a
compromise between the focussing at the source and the sup-
pression of ghost waves.

Our test with a point source moment tensor demonstrates
that focussing in space and time can indeed be observed, at
least under the previously described circumstances. This re-
sult motivates the study of more complex scenarios. In the
following, we focus our attention on thexy-component of
the time-reversed strain field,εxy . This restriction effectively
corresponds to the injection of the prior information that the
displacement on the infinitesimal or finite faults is a pure
strike-slip.

3.2 Multiple point sources

Based on the encouraging results from the previous section,
we add complexity to the source model and now consider
three double couple point sources (onlyMxy 6= 0) that are
positioned along the fault of the SPICE Tottori benchmark
(Fig.1, left). The point sources have different initiation times

www.solid-earth.net/2/95/2011/ Solid Earth, 2, 95–105, 2011



98 S. Kremers et al.: Exploring the potentials and limitations of the time-reversal imaging of finite seismic sources

Fig. 3. Snapshots at the point-source depth (12.5 km) of the time-
reversed strain fieldεxy at different times, and the energy12v2

(lower right) att = 0.

Fig. 4. Snapshots of the time-reversed strain fieldεxy at 12.5 km
depth. Receiver and source locations are indicated by+ and◦, re-
spectively. Focussing at all three source locations can be observed
with an uncertainty of∼ 5 km in space and∼ 1 s in time. The ob-
served hypothetical rupture velocity is 2±0.3 km s−1, compared to
2 km s−1 used to generate the forward wave field.

Fig. 5. Left: Time evolution of the normalisedSV =
∫
V ε2

xy d3x
for the single point source experiment from section3.1. A pro-
nounced peak occurs at the focal timet = 0.0 s. Right: The same
as to the left, but for the multiple point source experiment from
Sect.3.2. Peaks can be observed at the focal times of the different
point sources.

that correspond to a hypothetical rupture velocity of 2 km s−1

along the fault. The objective of this test is to reveal whether
each of the three point sources can be resolved individually
in both time and space.

Snapshots of thexy-component reverse strain,εxy , are
shown in Fig.4. Circles mark the point source locations.
Moving from the upper left to the lower right corner, we ob-
serve focussing at each of the three source locations around
their respective initiation times of 16.9 s, 4.1 s and 0.0 s, with
an uncertainty of∼ 1 s. The width of the regions where
focussing can be observed is∼ 5 km, which is close to
the wavelength of the surface waves (∼ 3 km). From this
we infer that the observed hypothetical rupture velocity is
2±0.3 kms−1. We have, thus, obtained a first, and probably
optimistic, estimate of the achievable space-time resolution
in the subsequent finite-source imaging experiments.

3.3 Quantitative assessment of focussing for
point sources

So far, a purely visual analysis of the time-reversed wave
fields was sufficient to observe focussing. However, in an-
ticipation of more complex finite-source scenarios, we ex-
amine the usefulness of a more quantitative criterion for
the focal time within a pre-defined test volume: starting
with the point source simulations we determine the quantity
SV =

∫
V

ε2
xy d3x within a test volumeV around the source

locations, and then consider the time when the maximum oc-
curs as an estimate of the focal time. Since the wavelengths
range between 4 and 20 km, we letV extend 10 km in all di-
rections around the hypocentre location. As we seek a quan-
titative comparison of the focussing for various setups, we
normaliseSV by S⊗ =

∫
⊗

ε2
xy d3x, where⊗ denotes the re-

maining model volume outsideV .

Figure5 shows the normalisedSV for the single and multiple
point source scenarios from Sects.3.1 and3.2, respectively.
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Fig. 6. Synthetic slip (top) and rupture time (bottom) distributions
of the SPICE Tottori benchmark (Mai et al., 2007). Both the rupture
speed and the rise time are constant atvr = 2.7 km s−1 and 0.8 s,
respectively.

Distinct peaks at the expected source times are clearly visible
in both cases. In the multiple point source experiment, we
observe that the peaks for the first two sources (at 0.0 s and
4.1 s) are comparatively low, probably due to their spatial
proximity and overlapping test volumes.

We conclude that the analysis ofSV is, at least for point
sources, a useful diagnostic that allows us to estimate focal
times and to compare the quality of focussing for different
experimental setups.

Considering the multiple point source test successful, we
now increase the complexity and make the transition to finite
source models.

4 Synthetic finite source simulations

The SPICE kinematic source inversion blind test offers the
opportunity to analyse the performance of TR finite source
imaging. The blind test mimics the 2000 Tottori (Japan)
earthquake that was recorded by a large number of strong-
motion sensors. Figure1 (left) shows the receiver configu-
ration, the fault trace and the epicentre location. Synthetic
seismograms for the 33 receivers are part of the benchmark
package. They were generated by pure strike slip motion and
with the slip and rupture time distributions shown in Fig.6.
The excited wave field has a maximum frequency of 3 Hz.

Snapshots of the corresponding time-reversed strain com-
ponentεxy are shown in the top panel of Fig.4. In reverse
time, the rupture propagates in NW–SE direction. However,
a clear focus restricted to the fault plane cannot be observed
– in contrast to our expectation. The wave field remains dif-
fuse, compared to the previous point source simulations. A
robust inference concerning the hypocentre location and the
initiation time is not possible.

Fig. 7. Top: Snapshots of the time-reversed strain componentεxy

at 12.5 km depth. The fault trace is indicated by the black line. All
snapshots are shown in the same amplitude range. Bottom: Cumu-
lative squared strainST =

∫
T ε2

xy dt plotted on the fault plane (left)
and integrated over depth (right).

In an attempt to facilitate the visual identification of both
the fault and the rupture process, we analyse the cumulative
squared strainST =

∫
T
ε2
xy dt . Based on physical intuition

one would expectST to be large only in those regions where
significant strain occurs consistently over a longer period of
time, i.e., along the fault. However, neitherST directly on the
fault plane norST integrated over depth allow any meaning-
ful inference concerning the location of the fault or the origi-
nal slip distribution (see the bottom panels of Fig.4). In fact,
ST is largest near the surface, which reflects the dominance
of surface waves in the time-reversed wave field. Moreover,
ST on the fault plane reaches a local maximum where the
original slip distribution (Fig.6) is close to zero. The depth-
integratedST is largest far off the fault trace.
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Similar efforts to enhance the focussing on the fault by
integrating, for instance,εxy or 1

2v2 over time, did not lead
to any significant improvements. We are, therefore, led to
the early conclusion that no obvious functional of the time-
reversed field allows us to identify the fault plane or the slip
distribution unambiguously. In what follows, we try to im-
prove our results by (1) modifying the station distribution,
and (2) weighting the adjoint sources.

4.1 Modifications of the station distribution

4.1.1 Dense regular grid of stations

The results from the previous section suggest that the number
of stations and their spatial distribution provided insufficient
information for the reconstruction of the original wave field.
This motivates a synthetic test with a larger number of re-
ceivers (225 instead of 33) that are regularly spaced. While
this scenario may be too optimistic in the near future, it pro-
vides valuable insight into TR finite source imaging under
idealistic conditions.

For this experiment, we computed synthetic seismograms
with the help of a Discontinuous Galerkin method (Käser
and Dumbser, 2006) that allows us to model the discontinu-
ous displacement on the fault with high accuracy. Snapshots
of the resulting time-reversed strain componentεxy are dis-
played in Fig.8.

Compared to Fig.4 (original station distribution), we ob-
serve a sharper peak. Most of the energy propagates along
the fault plane and in a direction that is consistent with the
rupture time distribution (6, bottom). However, the focus is
still elongated perpendicular to the fault, which complicates
its unambiguous identification. Any inference on the details
of the original slip distribution (Fig.6) remains clearly im-
possible.

To obtain more useful results, we again explored a variety
of functionals of the time-reversed field, including the time-
integrated strain, the kinetic energy and the rotation ampli-
tude. Neither of these functionals provided significant im-
provements, thus, confirming our earlier conclusion that the
overall quality of the focussing is rather independent of the
field used for imaging.

4.2 Station arrays

As an alternative to the previous densification of the receiver
configuration, we investigate the installation of several small
sub-arrays that are composed of four stations that form a
2 km by 2 km quadrangle. This geometry is intended to have
a beam-forming effect that hopefully improves the focussing
of the time-reversed field.

The corresponding time-reversed strain fieldεxy is shown
in Fig.9. The use of small sub-arrays clearly results in a more
pronounced concentration of energy along the fault than with

Fig. 8. Snapshots of the time-reversed strain componentεxy at
12.5 km depth for the dense array of 225 regularly spaced receivers.
The fault trace is indicated by the black line. All snapshots are
shown in the same amplitude range.

the original station setup (Figs.1 and4). However, the prob-
lem of unambiguously identifying the fault itself remains un-
resolved also with this configuration. Again, the use of var-
ious functionals of the time-reversed field does not lead to
significantly better results.

The previous experiments seem to imply that modifica-
tions of the receiver geometry are unlikely to improve the
reconstruction of the original wave field to an extent that is
sufficient to infer the slip distribution on the fault or even the
fault itself.

4.3 Weighting of adjoint sources

A visual analysis of this failure (see Figs.4 and9) reveals
that the highly unequal contributions from different receivers
may be part of the problem. While receivers close to the fault
dominate the time-reversed field due to the high amplitudes
of the recorded waveforms, receivers at larger distances make
only negligible contributions. This suggests that the recon-
struction of the original wave field may be improved by as-
signing weights to the adjoint sources at positionxr that com-
pensate for the geometric amplitude reduction with increas-
ing propagation distance. In the following, we examine the
effects of two different schemes where the weights are pro-
portional to (1) the squared epicentral distance, and (2) the
inverse energy of the recorded waveforms, i.e., 2/

∫
v(xr)2dt .

It is important to note that the weighting scheme based on the
distance from the epicentre corresponds to the incorporation
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Fig. 9. Snapshots of the time-reversed strain componentεxy at
12.5 km depth for the 9 sub-arrays composed of 4 receivers each.
The fault trace is indicated by the black line. All snapshots are
shown in the same amplitude range.

of prior information that may not be available in applications
where the epicentral coordinates are among the unknowns.

Contrary to our expectations, the adjoint source weighting
deteriorates the focussing of the time-reversed strain field, as
can be seen in Fig.10. The negative effect is strongest for
the inverse energy weight. In both cases, neither the details
of the rupture process nor the fault trace can be inferred from
the images.

5 Time-reverse imaging of the Tottori earthquake
source

One of the original motivations for this study was to use time
reversal imaging in order to reveal the rupture details of the
2000 Tottori (Japan) earthquake. However, following the
negative results of our finite-source synthetic experiments,
we are forced to revise our ambitious goals, and to limit our-
selves to the detection of the epicentre and the focal time.

For this real-data experiment, we use 111 surface record-
ings from the Japanese KiK-net (Fig.11, http://www.kik.
bosai.go.jp/), band-pass filtered between 0.03 and 0.5 Hz
which is similar to the frequency range commonly used in
kinematic source inversions. The dominant wavelength of
the surface wave-dominated field is around 20 km, which
is close to the estimated fault length of∼ 30 km (Sem-
mane, 2005). We, therefore, expect to resolve only a point

Fig. 10. Snapshots of the time-reversed strain componentεxy

at 12.5 km depth andt = 0 for the weighted adjoint sources.
Left: weight proportional to the squared epicentral distance.
Right: weight proportional to the inverse energy 2/

∫
v(xr )2dt .

source. The amplitude at all adjoint sources was set equal to
one to remove the strong influence of stations close to the
source. For the time-reversed field wave propagation, we
use the layered Earth model described inSemmane(2005).
All data processing was done using ObsPy, a newly devel-
oped python-based toolbox for seismology (Beyreuther et al.,
2010).

Figure12 shows the propagation of the time-reversed strain
componentεxy from t = 30 s tot = −30 s. We observe clear
focussing around the focal time and epicentre location as
estimated bySemmane(2005). The uncertainty in time is
∼ 3 s, and the uncertainty in space is around 50 km, which
is close to the dominant wavelength. The identification of
the focal depth is not possible due to the comparatively
long wavelengths and the presence of large-amplitude sur-
face waves that mask the focussing of lower-amplitude body
waves at greater depth. For negative times, i.e., prior to the
initiation of the rupture, the time-reversed field propagates
away from the epicentre, therefore, attesting to the appropri-
ateness of the structural model. A very similar focussing and
defocussing could be observed for the other strain compo-
nents and various functionals of the time-reversed field.

To obtain a more quantitative estimate of the focal time,
we proceed as in Sect.3.3, where we computed the quan-
tity SV =

∫
V

εxy d3x for a volumeV surrounding the inferred
point-source location. The time evolution ofSV , shown in
Fig. 13, reveals a pronounced peak that serves as an estimate
of the focal time. Our estimate positions the focal time at
+3 s relative to the initiation time of the rupture as inferred
by Semmane(2005). This discrepancy is likely to be related
to the inferred location of the Tottori hypocentre within an
area of a small amount of final slip (e.g.Semmane, 2005; Pi-
atanesi et al., 2007). Taking the corresponding rise times into
account, this may explain a weak detectability by means of
TR for the hypocentral parameters of the Tottori event. The
peak in Fig.13 is, therefore, likely to approximate the rup-
ture time of the first large-slip region, or the centroid time
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Fig. 11. Source-receiver geometry of the real-data TR experiment
for the 2000 Tottori earthquake. Red triangles mark the positions of
the 111 stations used in the experiment, and the black star indicates
the epicentre as inferred bySemmane(2005). The seismograms
shown are vertical component velocities in the chosen frequency
band.

Fig. 12.Snapshots of the time-reversed strain componentεxy at the
surface for the Tottori data recorded at the 111 stations shown in
Fig. 11. The coastlines are omitted to enhance the visibility of the
time-reversed field. Estimates of both the focal time (t = 0 s) and
the epicentre location (black dot) are taken fromSemmane(2005).

of the whole event (both at about+4 s, according toSem-
mane(2005) or Piatanesi et al.(2007) rather than the precise
initiation time of the finite-size rupture.

Fig. 13. Time evolution of the normalisedSV =
∫
V ε2

xy d3x for a
volumeV that extends 20 km by 20 km around the epicentre as es-
timated from the time-reversal images from Fig.12. The peak oc-
curs at+3 s relative to the focal time estimated bySemmane(2005)
(t = 0).

6 Discussion

In the previous sections, we explored the potentials and lim-
itations of the TR imaging of seismic sources on regional
scales. For this we studied a variety of scenarios with both
synthetic and real data.

The potential of the method clearly lies in the estimation
of the location and the timing of point sources. In a series of
synthetic experiments, we were able to observe the focussing
of the time-reversed field in the vicinity of the original point
source location and the original focal time. The uncertainties
in the source location and time are governed by the frequency
content and the receiver configuration. Our point source sce-
narios provide a proof of principle, but they are idealistic in
the sense that we disregarded errors in the data and the as-
sumed Earth model.

Our primary interest was in the detection of finite-rupture
processes. Unfortunately, however, neither the rupture de-
tails nor the position of the fault itself could be inferred
from the properties of the time-reversed wave field. To im-
prove this result, we analysed various functionals of the wave
field (strain, energy, rotations), modified the receiver geome-
try (densification, sub-arrays) and applied weights to the ad-
joint sources in order to compensate for geometric spreading.
None of these strategies can be considered successful.

The reasons for this failure are manifold:

1. Incomplete information: Firstly and most importantly,
the information recorded at the surface is plainly insuf-
ficient to reconstruct the original wave field with an ac-
curacy that allows for the unambiguous identification of
the rupture process. For instance, the body wave energy
radiated downwards is entirely disregarded. This distin-
guishes TR on regional scales from TR on global scales
where information is lost only through dissipation.
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2. Large-amplitude surface waves: Partly as a conse-
quence of the previous item, the time-reversed field
from stations that are distant from the fault is dominated
by large-amplitude surface waves. The surface waves
tend to mask the focussing of the lower-amplitude body
waves that are primarily contributed by the stations
closer to the fault. This effect results in a weak depth
resolution, which means, in particular, that the focal
depth can hardly be constrained.

3. The missing sink: An even more profound and general
reason for failure is the incompleteness of the TR pro-
cedure. Our interest is in the seismic wave equation

ρ ü(x,t)−∇ ·σ (x,t)= f (x,t) (2)

whereu, σ andf denote the seismic displacement field,
the stress tensor and an external force density. A com-
plete time reversal of equation2 would require the im-
plementation of a sinkf (x,−t) that acts as the coun-
terpart of the sourcef (x,t) in the forward direction,
and that absorbs elastic energy so that the time-reversed
field is zero fort < 0. The sink, however, is disregarded
simply because it is unknown. The missing sink poses a
serious problem for finite-source inversions when fault
segments are active at different times. The energy from
segments that act late in the rupture process is not ab-
sorbed by the sink and, therefore, continues to propa-
gate. The unabsorbed energy masks the focussing at the
fault segments that act early in the rupture process. The
immediate implication is that TR for finite sources is al-
ways dominated by those fault segments with large slip
near the end of the rupture time.

4. Invisibility of small slip: A corollary of the previ-
ous item is that no information can be obtained about
the rupture details on segments of the fault with small
amount of final slip. This means, in particular, that
the hypocentral parameters cannot be detected in those
cases where the rupture initiation is associated with
small slip.

5. Lack of prior information: The poor performance of
TR finite-source imaging as compared to the classical
kinematic source inversions is also due to the neglect
of an apparently essential piece of prior information:
The rupture occurs along a fault and is not diffusely dis-
tributed throughout the model volume.

6. Incomplete knowledge of the 3-D Earth structure:
While excluded a priori in the synthetic experiments,
inaccurate Earth models can prevent focussing in real-
data applications. The focussing observed in our ex-
periment with Tottori data suggests that the model is
sufficient to explain at least the arrival times of the di-
rect waves. However, the absence of horizontal het-

erogeneities in the model does not allow for the cor-
rect back-propagation of scattered or even multiple-
scattered waves. This issue is closely related to

7. The insufficient complexity of 3-D Earth models that
results either from the inherent smoothness of the Earth
or the limited resolution of seismic tomography. The
presence of strong multiple scattering is known to en-
hance focussing in laboratory experiments, but cannot
be exploited in seismology where the knowledge about
sub-wavelength heterogeneities is too inaccurate.

7 Conclusions

The principal conclusions to be drawn from our work are
as follows: (1) Time-reversal imaging is well-suited to infer
both the location and the timing of point sources. (2) Time-
reversal imaging in the used frequency range is not able to
detect the details of finite rupture processes. Neither mod-
ifications of the receiver configuration (within reasonable
bounds) nor the weighting of adjoint sources lead to suffi-
cient improvements. (3) The dominant causes for this failure
are the incomplete recordings of wave field information at
the surface, the presence of large-amplitude surface waves
that deteriorate the depth resolution, the missing sink that
should absorb energy radiated during the later stages of the
rupture process, the invisibility of small slip and the neglect
of prior information.

While our experiments are certainly not exhaustive, they
nevertheless suggest that the limitations of TR imaging start
where the source stops being point-localised.
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S U M M A R Y
We present a Discontinuous Galerkin finite element method using a high-order time integration
technique for seismic wave propagation modelling on non-conforming hybrid meshes in two
space dimensions. The scheme can be formulated to achieve the same approximation order
in space and time and avoids numerical artefacts due to non-conforming mesh transitions or
the change of the element type. A point-wise Gaussian integration along partially overlapping
edges of adjacent elements is used to preserve the schemes accuracy while providing a higher
flexibility in the problem-adapted mesh generation process. We describe the domain decompo-
sition strategy of the parallel implementation and validate the performance of the new scheme
by numerical convergence test and experiments with comparisons to independent reference so-
lutions. The advantage of non-conforming hybrid meshes is the possibility to choose the mesh
spacing proportional to the seismic velocity structure, which allows for simple refinement or
coarsening methods even for regular quadrilateral meshes. For particular problems of strong
material contrasts and geometrically thin structures, the scheme reduces the computational
cost in the sense of memory and run-time requirements. The presented results promise to
achieve a similar behaviour for an extension to three space dimensions where the coupling
of tetrahedral and hexahedral elements necessitates non-conforming mesh transitions to avoid
linking elements in form of pyramids.

Key words: Numerical solutions; Numerical approximations and analysis; Computational
seismology; Wave propagation.

1 I N T RO D U C T I O N

Current research in seismology often relies upon appropriate com-
putational methods to model particular wave phenomena with
sufficient accuracy. In addition, with the increasing computational
resources more realistic scenarios can be modelled and inves-
tigations can be carried out with higher resolution. Therefore,
many different numerical methods have been developed, for exam-
ple the finite-difference (FD) schemes (Madariaga 1976; Virieux
1984, 1986; Moczo et al. 2002; Saenger & Bohlen 2004; Geller
& Takeuchi 1998; Kristek & Moczo 2006), the Fourier pseu-
dospectral (PS) methods (Fornberg 1975; Carcione 1994; Fornberg
1996), finite-element (FE) approaches (Marfurt 1984; Bielak et al.
2003; Koketsu et al. 2004; Moczo et al. 2007), boundary integral
equation methods (BIEM) and boundary element methods (BEM)
(Bouchon & Sánchez-Sesma 2007) and spectral element meth-
ods (SEM) (Seriani & Priolo 1994; Komatitsch & Vilotte 1998;
Komatitsch et al. 2004; Chaljub et al. 2003, 2007). Rather recently,
the Discontinuous Galerkin Finite-Element method using a time in-
tegration based on Arbitrarily high-order DERivatives (ADER-DG)
concepts (Titarev & Toro 2002) has been introduced into numeri-
cal seismology (Käser & Dumbser 2006; Dumbser & Käser 2006)

and extended to viscoelastic (Käser et al. 2007) and anisotropic
(de la Puente et al. 2007) media. Furthermore, important technical
improvements concerning adaptive approximation orders and local
time stepping have been achieved (Dumbser et al. 2007). The DG
method has the advantage, that it can be formulated with arbitrary
high-orders of accuracy in space and time, while at the same time
unstructured meshes can be used to model complex geometries.
However, regarding the CPU time, it turns out to be more efficient
to compute on regular meshes instead of unstructured ones to reach
a desired error level. Therefore, the performance of the ADER-DG
method can be increased by combining different mesh types, that is
creating hybrid meshes, similarly to certain FE methods (Ichimura
et al. 2007, 2009) or to the combination of FE and FD methods
(Moczo et al. 1997).

Furthermore, the mesh spacing—and therefore the stability-
constrained maximal time step for explicit time stepping schemes—
is usually determined by the shortest wavelength to be propagated.
In fact, when waves propagate through different materials, their
wavelengths might change and it is suitable to adapt the mesh
spacing to the local velocity structure to optimize accuracy with
respect to run time. This issue was studied in detail for the 2-D
spectral-element method computing spherical-earth seismograms
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(Nissen-Meyer et al. 2008). In this work, we propose an ADER-DG
scheme that achieves high-order approximation properties on hy-
brid meshes consisting of regular quadrilateral and unstructured
triangular elements where appropriate. In this context, we also
introduce a straight forward refinement and coarsening strategy
for velocity-adapted quadrilateral meshes. However, this procedure
leads to non-conforming element interfaces. To this end, the pre-
sented ADER-DG scheme is able to treat both, hybrid meshes and
non-conforming interfaces, using the same numerical methodol-
ogy. Furthermore, this work serves as a feasibility study to analyse
the correctness and performance of this new ADER-DG approach
before extending it to tetrahedral and hexahedral meshes in three
space dimensions. In this case, non-conformity of the mesh will be
necessary to avoid pyramids as an additional element type that links
tetrahedral with hexahedral meshes.

This paper is structured as follows: We first introduce the ADER-
DG method focusing on the necessary changes in the flux computa-
tion across interfaces between adjacent elements which are needed
to handle non-conforming boundaries. Then we present informa-
tion on the parallelization strategy related to this new type of model
discretization based on non-conforming hybrid meshes. In the fol-
lowing, we show results of convergence tests for validation of the
parallel implementation of our scheme and present two different nu-
merical examples of seismic wave propagation problems. Finally,
we illustrate an application to a realistic scenario in the area of the
city of Grenoble.

2 T H E N U M E R I C A L S C H E M E

We solve the elastic wave equation in two space dimensions using
its velocity–stress formulation leading to the first-order hyperbolic
system of partial differential equations (PDE) of the form

∂ Q p

∂t
+ Apq

∂ Qq

∂x
+ Bpq

∂ Qq

∂y
= Sp , (1)

where Q = (σ xx, σ yy, σ xy, u, v)T is the vector of unknown stress
components (σ xx, σ yy, σ xy) and particle velocities (u, v), A and B
are the square Jacobian matrices including the material properties,
and S is a source term. Note that the space–time dependency of
Q = Q(�x, t) and S = S(�x, t) as well as the space dependency
of A = A(�x) and B = B(�x) are omitted to simplify the notation,
where �x = (x, y). Furthermore, we use the Einstein summation
convention over indices. The pth component of the solution, Qp, is

numerically approximated inside each element (m) by (Q(m)
h )p via

a linear combination of only space-dependent orthogonal polyno-

mial basis functions θ l(ξ , η) of degree N and only time-dependent
degrees of freedom Q̂(m)

pl (t), that is(
Q(m)

h

)
p

(ξ, η, t) = Q̂(m)
pl (t) θl (ξ, η) , (2)

where index (ξ , η) denote the coordinates in reference space.
As we are using hybrid meshes, these general basis functions

θ l(ξ , η) defined in reference space can be different depending on
the element type of the particular element E (m) (Fig. 1) and we
introduce the following notation to distinguish them as

θl (ξ, η) =
{

�l (ξ, η) if E = ET (element type is triangular),

�l (ξ, η) if E = EQ (element type is quadrilateral).
(3)

Explicit expressions for the basis functions �l(ξ , η) on the triangular
reference element ET and for the basis functions � l(ξ , η) on the
quadrilateral reference element EQ are given in Appendix A. For
simplification, we will use the general notation E for an element and
θ for the basis functions in the following. Therefore, depending on
the particular element type the corresponding basis functions have
to be substituted.

The derivation of the numerical Discontinuous Galerkin (DG) fi-
nite element scheme for the simulation of seismic wave propagation
on purely triangular meshes has already been published in previous
work (Käser & Dumbser 2006). Therefore, we avoid the repetition
of a comprehensive derivation and refer the reader to this work for
details. In brief, the multiplication of the eq. (1) by test functions θ k

and integrating over a finite element E (m) gives∫
E (m)

θk
∂ Q p

∂t
dV +

∫
E (m)

θk

(
Apq

∂ Qq

∂x
+ Bpq

∂ Qq

∂y

)
dV

=
∫

E (m)
θk SpdV . (4)

Note that in the DG approach the test functions θ k are chosen
from the same space as the basis functions θ l for the numerical
approximation of the vector Q in (2). Then, integration of (4) by
parts yields∫

E (m)
θk

∂ Q p

∂t
dV +

∫
∂ E (m)

θk Fp dS

−
∫

E (m)

(
∂θk

∂x
Apq Qq + ∂θk

∂y
Bpq Qq

)
dV =

∫
E (m)

θk Sp dV, (5)

where a so-called numerical flux Fp has been introduced in the
surface integral because Qq may be discontinuous at an element
boundary. The main result of the derivation of the DG method for

Figure 1. Definition of the triangular reference element ET (left) and the quadrilateral reference element EQ (right) in the ξη-reference space.
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the purpose of our work presented here is the occurrence of the flux
term∫

∂ E (m)
θk Fp dS . (6)

A key ingredient for the implementation of the DG scheme is the
computation of these numerical fluxes that exchange information
across element interfaces ∂ E (m) to extrapolate the numerical solu-
tion of stresses and velocities from one time level to the next one
using an explicit time step scheme. In other words, the flux term
represents a line integral along the boundary ∂ E (m), that is along
the edges, of an element E (m) over the product of the test function
θ k and the numerical flux Fp.

The subject of this work is now to construct a DG-scheme that
allows for the usage of non-conforming hybrid meshes. Hence, we
concentrate on the treatment of the flux term in (6). In fact, all other
terms in (5), that is the computation of the volume integrals and the
high-order time integration using Arbitrarily high-order DERiva-
tives (ADER) (see Käser & Dumbser 2006), originally introduced
in the framework of finite volume methods (Toro et al. 2001; Titarev
& Toro 2002), remain unchanged. We just have to utilize the cor-
rect set of basis and test functions θ corresponding to the particular
element type as specified in (3).

Now, considering the flux term in (6) the line integral can be
decomposed into a sum of integrals over the element edges such
that∫

∂ E (m)
θk Fp dS =

n∑
j=1

|S( j)|
∫ 1

0
θk F ( j)

p dχ . (7)

Here we integrate over the unit interval χ ∈ [0, 1] and therefore
introduce the length of the jth edge |S(j) | as a scaling factor due
to the interval transformation from the physical into the reference
space. The number n of edges depends on the element type, that
is n = 3 for triangles and n = 4 for quadrilaterals. The flux term
F (j)

p also depends on the particular edge j and can be decomposed
into an outgoing and an incoming part as shown in Chapter 4.14 in
(LeVeque 2002) or in (Käser & Dumbser 2006). The explicit form
of the flux term at edge j of element (m) can be written as

F ( j)
p = 1

2
T ( j)

pq

(
A(m)

qr + ∣∣A(m)
qr

∣∣) (
T ( j)

rs

)−1
Q̂(m)

sl θ
(m)
l

+1

2
T ( j)

pq

(
A(m)

qr − ∣∣A(m)
qr

∣∣) (
T ( j)

rs

)−1
Q̂

(m j )
sl θ

(m j )
l , (8)

where (mj) is the index of the adjacent elements, that share edge ( j)
of element (m). As the flux terms are computed in an edge-aligned
coordinate system such that the x-axis is perpendicular to the edge
( j) only the local Jacobian matrix Aqr responsible for the x-direction
is required while the solution vectors of the adjacent element edges
(mj) are needed. The necessary rotation matrices T (j)

pq and (T (j)
rs )−1

for the forward and backward transformation of the edge-alignment
are given explicitly in B.

Substituting (8) into (7) leads to∫
∂ E (m)

θk Fp dS =
n∑

j=1

1

2
T ( j)

pq

(
A(m)

qr + ∣∣A(m)
qr

∣∣) (T ( j)
rs )−1 |S( j)| Q̂(m)

sl F ( j),0
kl

+
n∑

j=1

1

2
T ( j)

pq

(
A(m)

qr − ∣∣A(m)
qr

∣∣) (T ( j)
rs )−1 |S( j)| Q̂

(m j )
sl F ( j),i

kl , (9)

with the so-called flux matrices

F ( j),0
kl =

∫ 1

0
θ

(m)
k θ

(m)
l dχ (10)

and

F ( j),i
kl =

∫ 1

0
θ

(m)
k θ

(m j )
l dχ . (11)

Here, the index 0 in (10) denotes that the integral uses test func-
tions θ

(m)
k and basis functions θ

(m)
l from the same element (m) and

local edge ( j). These integrals can be computed exactly in a pre-
processing step and stored in the n different flux matrices F (j),0

kl ,
with j = 1, . . . , n, for later flux calculations. So for triangular
elements there are n = 3, for quadrilaterals n = 4 matrices to store,
whereas the size of these square matrices depends on the number
L of basis functions used and therefore on the order of the DG
scheme, that is the degree N of the approximation polynomials.
This relation is given by L = (N + 1)(N + 2)/2 and therefore
k, l = 0, . . . , L − 1. As F (j),0

kl only contains information about the
element (m) itself, we can compute the outgoing flux given by the
first line in (9) for the non-conforming hybrid meshes in exactly the
same way as in previous DG approaches. We just have to make sure
that the appropriate functions θ are used according to the element
type.

If we consider the incoming flux given by the second line in (9)
the situation is slightly more complicated. The index i in (11) is the
local index of the edge of the adjacent element (mj). In previous
formulations of our ADER-DG schemes, the entire mesh had to
consist of one element type and the meshes had to be conforming.
In that case, two adjacent elements always shared exactly one entire
edge between two element vertices and the matrices given by (11)
could be computed exactly via a pre-processing step and stored for
later flux calculations. In total there were n2 matrices of size L × L
to store as each of the n edges of an element (m) can share one of the
n edges of the adjacent elements (mj). Nevertheless, the storage of
these few and rather small matrices was negligible compared to the
storage requirement of the degrees of freedom Q̂(m)

pl for all elements
in the computational domain.

Now, in the case of non-conforming boundaries as shown in
Fig. 2, two adjacent elements do not have to share exactly one com-
mon edge. Therefore, the flux matrices in (11) involving neighbour
information have to be computed differently.

In fact, we calculate these integrals numerically by using
Gauss–Legendre integration with a sufficiently high number of
Gaussian integration points along the edge ( j) of element (m) that
ensures the exact integration of the product of the two polynomial
basis functions θ . This is achieved by

∫ 1

0
θ

(m)
k θ

(m j )
l dχ =

N+1∑
c=1

θ
(m)
k (ξc, ηc)θ

(m j )
l (ξ ′

c, η
′
c)wc , (12)

with N being the polynomial degree of the used basis functions
θ , (ξ c, ηc) and (ξ ′

c, η′
c)the reference coordinates of the Gaussian

integration points in the elements (m) and (mj), respectively, and wc

the Gaussian weights.
According to (3), there are basically four different combinations

of element pairs for such non-conforming hybrid meshes as shown
in Fig. 2. Explicitly, this can lead to the following products of basis
functions in (12) depending on the element types on either side of the

interface: �
(m)
k �

(m j )
l , �

(m)
k �

(m j )
l , �

(m)
k �

(m j )
l and �

(m)
k �

(m j )
l . In con-

trast to conforming meshes, the number of neighbouring elements
across non-conforming boundaries can be larger than one. The ex-
act number is determined by the locations of Gaussian integration
points. As shown in Fig. 2 each Gaussian point, in general, might
fall into a different neighbour or several Gaussian points might
fall into the same neighbour. In the special case that a Gaussian
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Figure 2. Examples of non-conforming mesh coupling for (a) purely triangular, (b,c) hybrid or (d) purely quadrilateral meshes. In all different cases, the
numerical flux entering an element (m) over its edge ( j) can be determined by Gauss–Legendre integration. This integration involves all adjacent elements
(mν

j ) that include a Gaussian integration point (red dots) along edge ( j) of element (m).

integration point falls directly on a vertex belonging to two adja-
cent neighbour elements, our search algorithm for identifying the
neighbours will simply use the one which is found first in the ele-
ment list. The other one is neglected. Note, that the variation in the
number of neighbours also affects the amount of information to be
communicated from one processor to another in the case of parallel
computing, if the non-conforming interface happens to be a bound-
ary between two partitions of the computational mesh. Therefore,
we present a brief description of our parallelization strategy in the
following.

3 PA R A L L E L I Z AT I O N

Concerning the parallelization of the ADER-DG method it is only
the numerical flux that requires information from neighbouring
elements. Similar to the ADER-DG scheme working with conform-
ing meshes (Käser & Dumbser 2006), we need the time-integrated

degrees of freedom Q̂
(m j )
sl and the basis functions θ

(m j )
l of the neigh-

bour element for computing the flux over an edge ( j) according
to (9). However, we now might have one or more neighbouring
elements across a non-conforming interface and it is possible that
some or even all of these neighbours do not belong to the same sub-
domain due to mesh partitioning. Therefore, the neighbour search
carried out in a pre-processing step is based on the location of the

Gaussian integration points used for flux integration. In the case
of more than one neighbour across one edge the amount of MPI
communication increases compared to conforming meshes. How-
ever, this increase in communication is negligible with respect to
the computation time. Furthermore, in the mesh partitioning pro-
cess non-conforming meshes have to be treated slightly different
from conforming ones. As we are using the Metis software package
(Karypis & Kumar 1998) to partition a mesh we have to parti-
tion the conforming triangular and quadrilateral parts of the hybrid
mesh separately into the desired number of MPI subdomains that are
then processed by different CPUs. To reduce the length of internal
MPI-boundaries between different subdomains, we try to connect
separate subdomains by minimizing the distances of their centres of
gravity which we approximate by the sum of all element barycentres
of subdomain divided by the corresponding number of elements be-
longing to this subdomain. We remark that this connection approach
only works well for rather small numbers of subdomains. However,
it does not significantly affect the efficiency of the scheme if the
total number of elements inside a subdomain is large compared to
the number of elements at the MPI boundary. For a visual example
of the mesh partitioning strategy we refer to the following section of
numerical tests. Nevertheless, it might be worth testing other mesh
partitioners with respect to their capabilities of partitioning hybrid
meshes more efficiently.
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4 R E S U LT S

4.1 Convergence tests

Here, we validate the expected order of approximation and the
implementation of our new ADER-DG approach with hybrid non-
conforming meshes by performing a numerical convergence test.
To this end, we solve the 2-D homogeneous elastic wave eq. (1) for
S = 0 on a square shaped domain � = [−1, 1]× [−1, 1] ∈ R

2 with
periodic boundaries. We consider the initial condition

Q0 = Q(�x, 0) = R An
2 sin(k · �x) + R An

5 sin(k · �x) , (13)

with the wave number

k = (kx , ky)T = 2π

25
(1, 1)T . (14)

The vectors R An
2 and R An

5 denote the second and the fifth right
eigenvectors of the normal Jacobian A in (1) oriented in direction
n = (1, 1)T normal to the wave front. Therefore, the initial condition
(13) creates a plane sinusoidal P-wave travelling along the diagonal
direction of � and a plane sinusoidal S-wave travelling into the
opposite direction.

We use homogeneous material parameters in the matrices A and
B (Käser & Dumbser 2006), that is Lamé constants λ = 2 and
μ = 1, and density ρ = 1 throughout the computational domain
� leading to the constant wave propagation velocities cp = 2 and
cs = 1 for the P and S waves, respectively. The final simulation
time T is set to T = 20

√
2, such that the exact solution Qe at

simulation time t = T is given by the initial condition, that is
Qe(�x, T ) = Q0. This way, the P- and S-wave travel 40 and 20 times,
respectively, through the computational domain. The computations
are performed on a sequence of 12 hybrid meshes (Fig. 3). We
use the following notation: MESH M , with M = 4s, s = 1, . . .,
12 contains M quadrilateral elements along each boundary of �

leading to mesh spacings hs = 2/M . Therefore, the mesh spacings
hs cover a range from h1 = 0.5 to h12 = 0.0417. The spacing of the
triangular mesh scales with the same factors.

We then compute the errors of the numerical solution Qhs in the
L∞ and in the L2 norm, given by

Es
L∞ = max

�
|Qhs − Qe| (15)

and

Es
L2 =

√∑
�

|Qhs − Qe|2 , (16)

where index hs denotes the numerical solution depending on the
mesh spacing.

The numerical convergence orders OL∞ and OL2 can then be
determined by two successively refined meshes and the convergence
order is computed via

OL∞ = log

(
Es

L∞

Es−1
L∞

) /
log

( hs

hs−1

)
. (17)

For an arbitrarily chosen component σ xx of the solution vector Q,
Table 1 shows the errors measured by (15) and (16) together with
the convergence orders, total number Nd of degrees of freedom, and
the required CPU time for running the code on four processors of
the SGI Altix 4700 (HLRB II) of the Leibniz-Rechenzentrum.

In Fig. 4, we illustrate the results in the L∞ norm in dependence
of the degrees of freedom, the mesh spacing h and the CPU time.
It is clear from Table 1 that our implementation of the ADER-DG
schemes reaches the expected convergence orders even on non-
conforming hybrid meshes. Furthermore, Fig. 4 shows that the
errors decrease with refining the mesh or increasing the order of
polynomials. Furthermore, it is important to note that for a particu-
lar accuracy level the total number of degrees of freedom is always
less for higher-order ADER-DG schemes, as typically found in other
convergence test (Käser & Dumbser 2006; Dumbser & Käser 2006).
This number depends on the amount of elements and the approxi-
mation order and is directly proportional to the required computer
storage. In addition, we observe that the ADER-DG schemes reach
a certain accuracy level faster by using a high-order approximation
on coarse meshes.

4.2 Homogeneous material

After validating the convergence properties of the new ADER-DG
scheme on non-conforming hybrid meshes we test its accuracy for
a typical wave propagation problem using a point force as a source
and compare the results to those obtained by the previous ADER-
DG method on a conforming mesh as well as to an independent
SEM method. For this test case, we take again a square shaped
domain � = [−1, 1] × [−1, 1] ∈ R

2 and use homogeneous ma-
terial parameters λ = 1, μ = 1 and ρ = 1 of an ideal Poisson
solid.

This way, possibly occurring numerical artefacts can only be
caused by the transition of waves through the non-conforming
mesh boundaries. As source term we put a single force acting in x-
direction at position (0.31, −0.35) with a Ricker-pulse source time
function of 8 Hz dominant frequency. Three receivers, located at

Figure 3. Three of the 12 different meshes for convergence tests showing successive refinements of the triangular and quadrilateral elements. All meshes are
hybrid meshes with non-conforming interfaces between two mesh types.
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Table 1. Errors and convergence rates of σ xx, degrees of freedom and CPU-times from ADER-DG schemes of order O2 to O9 on
non-conforming hybrid meshes.

h EL∞ OL∞ EL2 OL2 Nd CPU [s]

7.14 × 10−2 2.6354 × 100 – 3.6131 × 100 – 4410 2.90 × 102

6.25 × 10−2 2.2751 × 100 0.8 3.1501 × 100 0.8 5760 3.43 × 102

5.00 × 10−2 1.5622 × 100 2.4 2.2096 × 100 2.3 9000 7.51 × 102

4.17 × 10−2 1.0490 × 100 3.0 1.5245 × 100 2.8 12960 1.35 × 103

1.00 × 10−1 2.4524 × 10−1 – 3.5994 × 10−1 – 4500 2.11 × 102

8.33 × 10−2 1.2126 × 10−1 3.9 1.8288 × 10−1 3.7 6480 3.61 × 102

7.14 × 10−2 6.7487 × 10−2 3.8 1.0307 × 10−1 3.7 8820 5.44 × 102

6.25 × 10−2 4.0985 × 10−2 3.7 6.4898 × 10−2 3.5 11520 8.44 × 102

1.67 × 10−1 8.0675 × 10−2 – 1.4083 × 10−1 – 2700 1.05 × 102

1.25 × 10−1 1.6277 × 10−2 5.6 3.3277 × 10−2 5.0 4800 1.86 × 102

1.00 × 10−1 5.0019 × 10−3 5.3 1.2019 × 10−2 4.6 7500 3.51 × 102

8.33 × 10−2 2.0084 × 10−3 5.0 5.4290 × 10−3 4.4 10800 5.68 × 102

7.14 × 10−2 9.6098 × 10−4 4.8 2.7815 × 10−3 4.3 14700 9.19 × 102

2.50 × 10−1 2.9958 × 10−2 – 7.2238 × 10−2 – 1800 5.27 × 101

1.67 × 10−1 1.7515 × 10−3 7.0 6.3241 × 10−3 6.0 4050 1.63 × 102

1.25 × 10−1 3.5419 × 10−4 5.6 1.3255 × 10−3 5.4 7200 3.38 × 102

1.00 × 10−1 1.1372 × 10−4 5.1 4.2085 × 10−4 5.1 11250 7.10 × 102

2.50 × 10−1 9.3617 × 10−4 – 5.0878 × 10−3 – 2520 1.03 × 102

1.67 × 10−1 1.0519 × 10−4 5.4 5.4015 × 10−4 5.5 5670 3.33 × 102

1.25 × 10−1 1.8534 × 10−5 6.0 1.1989 × 10−4 5.2 10080 6.84 × 102

1.00 × 10−1 4.1622 × 10−6 6.7 3.4222 × 10−4 5.6 15750 2.70 × 103

2.50 × 10−1 6.9493 × 10−5 – 6.8803 × 10−4 – 3360 2.74 × 102

1.67 × 10−1 4.3120 × 10−6 6.9 3.7859 × 10−5 7.2 7560 8.82 × 102

1.25 × 10−1 5.8470 × 10−7 6.9 5.0051 × 10−6 7.0 13440 1.78 × 103

1.00 × 10−1 1.2294 × 10−7 7.0 1.1322 × 10−6 6.7 21000 3.61 × 103

2.50 × 10−1 8.4521 × 10−6 – 6.8741 × 10−5 – 4320 5.08 × 102

1.67 × 10−1 3.8038 × 10−7 7.6 3.1907 × 10−6 7.6 9720 1.67 × 103

1.25 × 10−1 3.8508 × 10−8 8.0 4.0066 × 10−7 7.2 17280 3.19 × 103

1.00 × 10−1 6.8260 × 10−9 7.8 6.6945 × 10−8 8.0 27000 6.39 × 103

2.50 × 10−1 6.1153 × 10−7 – 7.0857 × 10−6 – 5400 8.02 × 102

1.67 × 10−1 1.6421 × 10−8 8.9 1.8870 × 10−7 8.9 12150 4.31 × 103

1.25 × 10−1 1.2834 × 10−9 8.9 1.7835 × 10−8 8.2 21600 8.49 × 103

Figure 4. Errors in L∞ norm in dependence of degrees of freedom, mesh spacing and CPU time on HLRB II.

(−0.8, 0.0), (−0.9, 0.4) and (−0.9, 0.9) register the passing P and
S waves during a 3 s simulation. We note that the source or receiver
locations can be arbitrary and are also placed on a non-conforming
interface. The non-conforming mesh and source and receiver lo-
cations are illustrated in Fig. 5(a). The mesh contains boundaries
between non-conforming hybrid meshes as well as non-conforming
boundaries between equal mesh types. The coarsest mesh spacing

of h = 0.06 is taken for the innermost area. The conforming mesh
used for the ADER-DG reference solution only consists of quadri-
laterals of h = 0.06 which represents about half the S wavelength.
Thus, a simulation with an approximation order 7 provides sufficient
accuracy (Käser et al. 2008).

The differently colored elements in Fig. 5(a) show the eight sub-
domains for the parallel computation. As explained in Section 3 the
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Figure 5. (a) Mesh of non-conforming boundaries with eight colour-coded partitions for parallel computations including the source (white circle) and three
receiver locations (red triangles). (b,d) Comparisons of synthetic signals obtained by the DG method using a conforming and the hybrid mesh of (a) together
with and independent SEM reference solution at the three different receivers. Difference seismograms between the non-conforming hybrid approach and the
conforming or SEM reference amplified by a factor of 5 are shown as black lines.

partitioning routine attempts to assemble neighbouring subdomains
of different zones. Starting with the dark blue part of processor 1
it performs well. However, combining the red parts for processor
8 does not permit any more freedom and the residual subdomains
of each zone have to be gathered which might lead to non-compact
subdomains increasing the number of edges requiring communica-
tion.

Figs 5(b)–(d) show time series of the velocity component u
in x-direction computed with the ADER-DG method on a non-
conforming, hybrid (red) and on a conforming (blue) mesh together
with an independent reference solution obtained by the SEM on a
regular quadrilateral mesh (dashed green). The comparison shows
a visually perfect match between all signals and no numerical arte-
facts appear due the non-conforming boundaries that the waves
propagate across. Seismograms showing the differences between
the hybrid DG solution, the conforming DG solution, or the SEM
reference are amplified by a factor of 5 and shown for each re-
ceiver. The small errors are acceptably small and might be mainly
due to the different mesh spacings and time steps for each calcula-
tion. However, no spurious oscillations due to the non-conformity
of the mesh is observed. This further validates the correctness of

our approach and implementation of our new ADER-DG scheme
for non-conforming hybrid meshes.

In the following, we treat a more challenging problem of a thin
surface layer which is particularly important in computational seis-
mology.

4.3 Thin layer

Here we present the performance of the proposed scheme in compar-
ison to the previous approach with conforming meshes for a more
sophisticated test case which considers a strong material contrast
between a thin surface layer and an elastic half-space as presented
similarly in previous work (Capdeville & Marigo 2008). The thin
layer significantly influences the seismic wave field even if its thick-
ness is small compared to the wave length. We use the computational
domain � = [0, 35] × [ −15, 0] km2 and a Ricker pulse of peak
frequency 2 Hz as source time function acting as single force in
x-direction at (15, −0.2) km. We put one receiver on the free sur-
face at (25, 0) km and the other one into the half-space at (25, −2)
km. The elastic parameters of the only 20-m-thick surface layer and
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Figure 6. Meshes for thin layer test case with their zoomed sections to visualize the thin layer. Top: the conforming mesh, where the mesh spacing gradually
grows from 80 to 225 m. Bottom: the non-conforming mesh with a sudden change in mesh spacing from 80 to 225 m.

Table 2. Definition of the elastic material parameters for the thin layer
test case.

Zone ρ(kg m−3) μ(Pa) λ(Pa) cp(m s−1) cs(m s−1)

Thin layer 2000 5.0e8 5.0e8 866 500
Half-space 2500 5.0e9 5.0e9 2449 1414

the underlying elastic half-space are given in Table 2. The wave
velocities in the half-space are 2.8 times faster than in the thin
low-velocity surface layer. Note that the dominant S wavelength in
the half-space is 707 m and therefore about 35 times larger than
the layer thickness. To solve the problem with sufficient resolution
(Käser et al. 2008) with an ADER-DG scheme of order O6 in space
and time, we choose an element edge length of 80 m in the thin
layer, corresponding to about three elements per dominant S wave-
length in this layer. However, due to the thickness of only 20 m of
the layer, that has to be respected by the mesh, the triangular ele-
ments are slightly elongated as shown in the zoomed parts of Fig. 6.
We also see the difference of the two meshes in the connection
of the thin layer to the half-space. Although the non-conforming
mesh has to adapt its elements in the high velocity half-space to
the finely meshed interface, the non-conforming mesh allows for
a mesh spacing proportional to the velocity structure immediately
below the interface between the two layers. This leads to a reduction

Table 3. Comparison of the conforming (CF) and non-conforming (NC)
meshes for the thin layer test case computed on eight processors.

Mesh Elements Time step (s) Restrictive layer Run-time (s)

CF 13540 4.15 × 10−4 Half-space 6737
NC 10010 5.52 × 10−4 Thin layer 4881

of the number of mesh elements, an increase in the critical time step
length, and therefore a reduction of 27 per cent in total simulation
time as summarized in Table 3. It is interesting that in the con-
forming mesh the time step is restricted by the high wave velocity
and the small elements directly below the material interface in the
half-space. The elements could be chosen larger from an accuracy
point of view but the mesh conformity forces them to be small at
the interface. By contrast, in the non-conforming approach the time
step is restricted by the small elements in the thin layer which is
due to the physics and geometry of the problem. The domain below
2 km basically serves as an enlargement to avoid any possible ef-
fects from the boundaries. Therefore, both the conforming and the
non-conforming mesh are gradually coarsened to keep the compu-
tational cost low. Furthermore, we compute the same test case with
an SEM code of spatial accuracy O6 and time accuracy O2 on a
regular quadrilateral mesh with 20 m mesh spacing due to the thin
layer.
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Figure 7. Seismograms of the horizontal and vertical velocity components u and v, respectively, of ground motion at the two receivers. The receiver at the
surface (top) shows a clear and highly oscillating Rayleigh wave arriving after the direct wave. The burried receiver (bottom) exhibits the direct P wave and the
interference of surface-reflected P and S waves.

The results in form of seismograms at the two receivers are
presented in Fig. 7. Visually all three methods provide almost the
same solutions except slight amplitude differences in the surface
waves. The strong Rayleigh wave at the free surface receiver show
some slight differences between the ADER-DG solutions and the
independent SEM reference which is due to its extremely high
resolution and accuracy using the regular 20 m mesh in the entire
computational domain leading to 1 312 500 elements. However, we
only detect a small amplitude misfit in this surface wave due to this
enormous difference in mesh resolution, whereas the phases and all
other waves fit perfectly.

In addition, we computed the same test case with the conforming
mesh, but treating the element edges at the material interface as
non-conforming to estimate the computational overhead due to the
point-wise Gaussian flux integration (12) in comparison to the pre-
computed flux matrices (11). The computational overhead seems
to be negligible as the computing time due to the non-conforming
treatment of the conforming mesh increased only by 0.8 per cent. For
truely non-conforming meshes this increase is clearly dominated by
the reduction of the computational cost due to a smaller number of
elements and the possible increase of the time step. Therefore, the
new ADER-DG method for non-conforming meshes seems to be
particularly suited for such challenging wave propagation problems
and gives additional flexibility as shown in the following more
realistic example.

4.4 Grenoble—2-D

In this example we apply the new ADER-DG scheme to a more
realistic scenario based on a modified benchmark (Chaljub et al.
2010). We are simulating seismic wave propagation in an east–west
cross-section north of the city of Grenoble, France, using 50 km
width, 27 km depth and 3 km height to include the mountain to-
pography. This 2-D section is shown in Fig. 8 and cuts through two
valleys filled with alluvial sediments. The wave speeds in these two
basin structures are extremely slow compared to the surrounding
solid bedrock as shown by the material parameters in Table 4. To
account for the very slow wave speeds in the basin, we apply an
extremely fine mesh on them which is visualized in the zoomed
section in Fig. 8. Generating the mesh that adapts to the free surface
topography and the two basin–bedrock interfaces has been achieved
with a triangular mesh of varying mesh spacing. With increasing
velocities in the deeper layers we adapt the mesh spacing of the
quadrilaterals non-conformingly, but proportionally to the velocity
structure to achieve an optimally large time step length. In Fig. 8 we
show the colored mesh partition that is applied to the different zones
first. Then different subdomains are collected from each zone and
gathered on one processor for computation, that is each partition
with the same colour is treated by the same processor.

We use an explosive source with a Ricker pulse of 3 Hz dominant
frequency just below the Belledonne massif at location (35, −2.5)
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Figure 8. Non-conforming hybrid mesh for the wave propagation scenario of Grenoble with strongly variable material. Each colour indicates the mesh partition
handled by one of the eight processors.

Table 4. Material parameters for the east–west cross-section north of Grenoble. The computational domain is divided into seven zones,
the two basins and five layers of bedrock.

Zone ρ(kg m−3) μ(Pa) λ(Pa) cp(m s−1) cs(m s−1)

Basin 1 (west) 2.2 × 103 7.0 × 108 4.8 × 109 1.7 × 103 5.7 × 102

Basin 2 (east) 2.1 × 103 1.9 × 108 4.1 × 109 1.5 × 103 3.0 × 102

Layer 1 (top) 2.7 × 103 3.0 × 1010 3.0 × 1010 5.8 × 103 3.3 × 103

Layer 2 2.7 × 103 3.3 × 1010 3.3 × 1010 6.0 × 103 3.5 × 103

Layer 3 2.8 × 103 3.6 × 1010 3.3 × 1010 6.2 × 103 3.6 × 103

Layer 4 2.8 × 103 3.8 × 1010 3.8 × 1010 6.3 × 103 3.7 × 103

Layer 5 (bottom) 2.9 × 103 4.1 × 1010 4.1 × 1010 6.5 × 103 3.8 × 103

km. Fig. 9 illustrates snapshots for the horizontal velocity compo-
nent of the seismic wave field at times 1.5, 3.0, 4.5 and 6.0 s. We ob-
serve the strong direct wave as well as reflected and converted waves
from the free surface. In particular, there is a remarkable scattering
of the seismic wave field due to the rough free surface topography.
The maximum amplitude and longest duration of ground motion is
obtained inside the basin as expected from the strong impedance
contrast between the sediments and the bedrock. Looking especially
at the downward propagating waves, no spurious numerical effects
due to the non-conforming meshes can be observed in the snapshots,
suggesting the use of the proposed ADER-DG with its additional
flexibility of non-conforming and hybrid meshes and showing its
potential for modelling problems with similar complexity or mesh-
ing requirements.

5 D I S C U S S I O N

We have presented an extension of the high-order accurate Dis-
continuous Galerkin (DG) finite element scheme with ADER-time

integration for non-conforming hybrid meshes in two space dimen-
sions. The key issue is the modified computation of the flux integral
between adjacent elements that do not need to share a common
edge. The applied point-wise Gaussian integration preserves the
scheme’s high approximation order in space and time as confirmed
by numerical convergence tests up to ninth order. Tests on differ-
ent wave propagation problems show an excellent agreement with
reference solutions and can lead to a clear reduction in computa-
tional cost due to an optimal adaptation of the mesh spacing to
the physical and geometrical properties of the problem. We do not
observe numerical artefacts caused by the non-conformity of the
mesh and provide a simple mesh refinement or coarsening strategy
for regular quadrilateral meshes to use an optimal time step length.
Also the parallel implementation of the ADER-DG approach for
non-conforming unstructured meshes performs well. The results
are encouraging and promise to achieve similar benefits from the
mesh coupling of tetrahedral and hexahedral elements in three space
dimensions which is subject to our current research and develop-
ments.
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Figure 9. Snapshots of the horizontal seismic velocity component u in the 2-D section north of Grenoble for four different times. Note the strong scattering
of the wave field due to the rough free surface topography.
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Dumbser, M., Käser, M. & Toro, E.F., 2007. An arbitvary high order dis-
continuos Galerkin method for elastic waves on unstructured meshes V:
Local time stepping and p-adaptivity, Geophys. J. Int., 171(2), 695–717.

Fornberg, B., 1975. On a Fourier method for the integration of hyperbolic
equations, Soc. Industr. Appl. Math., J. Num. Anal., 12, 509–528.

Fornberg, B., 1996. A Practical Guide to Pseudospectral Methods, Cam-
bridge University Press, Cambridge.

Geller, R. & Takeuchi, N., 1998. Optimally accurate second-order time-
domain finite difference scheme for the elastic equation of motion: one-
dimensional case, Geophys. J. Int., 135, 48–62.

Ichimura, T., Hori, M. & Kuwamoto, H., 2007. Earthquake motion simula-
tion with multiscale finite-element analysis on hybrid grid., Bull. seism.
Soc. Am., 97, 1133–1143.

Ichimura, T., Hori, M. & Bielak, J., 2009. A hybrid multiresolution meshing
technique for finite element three-dimensional earthquake ground mo-
tion modelling in basins including topography., Geophys. J. Int., 177,
1221–1232.

Karypis, G. & Kumar, V., 1998. Multilevel k-way partitioning scheme for
irregular graphs, J. Parallel Distrib. Comput., 48, 96–129.
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A P P E N D I X A : O RT H O G O NA L B A S I S
F U N C T I O N S

We use orthogonal hierarchical basis functions as given in
(Cockburn et al. 2000). The basis functions are given in terms
of the Jacobi polynomials Pα,β

n (x) which are solutions of the Jacobi
differential equation:(
1 − x2

)
y′′ + [β − α − (α + β + 2) x] y′

+ n (n + α + β + 1) y = 0 . (A1)

They are given on the interval [−1; 1] by

Pα,β
n (x) = (−1)n

2nn!
(1 − x)−α (1 + x)−β

× dn

dxn

[
(1 − x)α+n (1 + x)β+n

]
. (A2)

For α = β = 0 the Jacobi polynomials P0,0
n (x) reduce to the Leg-

endre polynomials. The Discontinuous Galerkin basis functions are
then constructed using the primal functions

�a
i (x) = P0,0

i (x) , (A3)

�b
i j (x) =

(
1 − x

2

)i

P2i+1,0
j (x) , (A4)

�c
i jk (x) =

(
1 − x

2

)i+ j

P2i+2 j+2,0
k (x) . (A5)

The sets of basis functions θ l used in eq. (3) constitute orthogonal
basis systems with respect to the inner product on the respective
reference elements ET or EQ.

A1 Triangular elements

For triangles the reference element ET is defined as

ET = {
(ξ, η) ∈ R

2 | 0 ≤ ξ ≤ 1 ∧ 0 ≤ η ≤ 1 − ξ
}

. (A6)

The basis functions �l (ξ, η) are defined on this reference element
as the following product of the primal functions:

�l(p,q) (ξ, η) = �a
p (α) × �b

pq (β) , (A7)

with

α = 2 ξ

1 − η
− 1 , β = 2 η − 1 . (A8)

The mono-index l = l(p, q) is again a function of the index couple
(p, q).

The two-dimensional basis functions up to degree three for a
fourth order scheme are:

�0 = 1 ,

�1 = −1 + 2 ξ + η ,

�2 = −1 + 3 η ,

�3 = 1 − 6 ξ + 6 ξ 2 − 2 η + 6 ξη + η2 ,

�4 = 1 − 2 ξ − 6 η + 10 ξη + 5 η2 ,

�5 = 1 − 8 η + 10 η2 ,

�6 = −1 + 12 ξ − 30 ξ 2 + 20 ξ 3 + 3 η − 24 ξη + 30 ξ 2η

−3 η2 + 12 ξη2 + η3 ,

�7 = −1 + 6 ξ − 6 ξ 2 + 9 η − 48 ξη + 42 ξ 2η − 15 η2

+ 42 ξη2 + 7 η3 ,

�8 = −1 + 2 ξ + 13 η − 24 ξη − 33 η2 + 42 ξη2 + 21η3 ,

�9 = −1 + 15 η − 45 η2 + 35 η3 . (A9)

A2 Quadrilateral elements

For quadrilaterals the reference element EQ is defined as

EQ = {
(ξ, η) ∈ R

2 | 0 ≤ ξ ≤ 1 ∧ 0 ≤ η ≤ 1
}

. (A10)

The basis functions �l (ξ, η) are defined on this reference element
as the following product of the primal functions:

�l(p,q) (ξ, η) = �a
p (α) × �b

q (β) , (A11)

with

α = 2 ξ − 1, β = 2 η − 1 . (A12)

The mono-index l = l(p, q) is again a function of the index couple
(p, q).
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The two-dimensional basis functions up to degree three for a
fourth-order scheme are:

�0 = 1 ,

�1 = −1 + 2 ξ ,

�2 = −1 + 2 η ,

�3 = 1 − 6 ξ + 6 ξ 2 ,

�4 = 1 − 2 ξ − 2 η + 4 ξη ,

�5 = 1 − 6 η + 6 η2 ,

�6 = −1 + 12 ξ − 30 ξ 2 + 20 ξ 3 ,

�7 = −1 + 6 ξ − 6 ξ 2 + 2 η − 12 ξη + 12 ξ 2η ,

�8 = −1 + 2 ξ + 6 η − 12 ξη − 6 η2 + 12 ξη2 ,

�9 = −1 + 12 η − 30 η2 + 20 η3 . (A13)

A P P E N D I X B : RO TAT I O N M AT R I C E S
F O R E D G E - A L I G N E D F LU X E S

The flux can be derived for a coordinate system which is aligned
with the outward pointing unit normal vector �n( j) = (n( j)

x , n( j)
y )T of

the jth edge of an element E. Omitting the edge index j for the 2-D
elastic wave equations the transformation matrices Tpq and (Tpq)−1

used in eq. (8) read as

Tpq =

⎛
⎜⎜⎜⎜⎜⎜⎝

n2
x n2

y −2nx ny 0 0

n2
y n2

x 2nx ny 0 0

nx ny −nx ny n2
x − n2

y 0 0

0 0 0 nx −ny

0 0 0 ny nx

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(Tpq )−1 =

⎛
⎜⎜⎜⎜⎜⎝

n2
x n2

y 2nx ny 0 0

n2
y n2

x −2nx ny 0 0

−nx ny nx ny n2
x − n2

y 0 0

0 0 0 nx ny

0 0 0 −ny nx

⎞
⎟⎟⎟⎟⎟⎠ .

(B1)
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Abstract. Accurate and efficient numerical methods to simulate dynamic earthquake rup-
ture and wave propagation in complex media and complex faultgeometries are needed to ad-
dress fundamental questions in earthquake dynamics, to assimilate seismic and geodetic data
in emerging approaches for dynamic source inversion and to generate realistic physics-based
earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and
seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with
an Arbitrarily high-order DERivatives (ADER) time integration method was introduced in 2D
by de la Puente et al.[2009]. The ADER-DG method enables high accuracy in space and time
and discretization by unstructured meshes. Here we extend this method to three-dimensional
dynamic rupture problems. In the resulting discrete formulation of the elastic wave equations
the physical variables are naturally discontinuous at the interfaces between elements. A Rie-
mann solver provides well defined values of the variables at the discontinuity itself. This holds
in particular for dynamic fault interfaces at which non-linear friction relations between trac-
tion and slip have to be evaluated. The high geometrical flexibility provided by the usage of
tetrahedral elements and the lack of spurious mesh reflections in ADER-DG allows to refine
the mesh close to the fault, to model the rupture dynamics adequately while concentrating com-
putational resources only where needed. Moreover, ADER-DGdoes not generate spurious high-
frequency perturbations on the fault and hence does not require artificial damping. We ver-
ify our three-dimensional implementation by comparing results of the SCEC TPV3 test prob-
lem with two well established numerical methods, Finite Differences and Spectral Boundary
Integral. The superior accuracy of the ADER-DG scheme is exemplified by the enabled iden-
tification of subtle effects of the friction law in the resulting slip rate time series. Furthermore,
a convergence study is presented to demonstrate the systematic consistency of the method. To
illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes
we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes
curved faults, fault branches and surface topography.

1. Introduction

Strong ground motion simulations of earthquakes require, in
order to describe natural phenomena, the proper description and
modeling of several features, e.g. seismic source representation,
geometry of fault systems, material properties of the bedrock
and sediment, topography. A highly accurate solution of the

Copyright 2011 by the American Geophysical Union.
0148-0227/11/$9.00
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resulting wave field is also essential. The seismic source can
be described through a prescribed evolution of slip along the
fault or by prescribing physical criteria for earthquake rupture
and letting the fault slip be a spontaneous consequence of the
state of the fault. The two approaches are called kinematic and
dynamic fault representation, respectively. The advantage of
dynamic source modeling is that one can investigate how the
fault interacts with the surrounding conditions such as confin-
ing stress, free-surface or transient wavefields. As a drawback,
dynamic rupture modeling is much more challenging computa-
tionally and results in more uncertainties than kinematic source
modeling, due to the non-linear nature and large uncertainties
of the underlying physics.

Many numerical algorithms have been tested in the past
to model dynamic earthquake rupture, such as finite differ-
ences (FD) [Andrews, 1973;Day, 1982;Madariaga et al., 1998;
Andrews, 1999; Day et al., 2005; Dalguer and Day, 2007;
Moczo et al., 2007], boundary integral (BI) [Das, 1980; An-
drews, 1985; Cochard and Madariaga, 1994; Geubelle and
Rice, 1995;Lapusta et al., 2000;Tada and Madariaga, 2001],
finite volume (FV) [Benjemaa et al., 2007, 2009], finite element
(FE) [Oglesby et al., 1998, 2000;Aagaard et al., 2001;Galis
et al., 2008] or spectral element (SE) [Ampuero, 2002;Vilotte
et al., 2006;Kaneko et al., 2008;Galvez et al., 2011] meth-
ods. All these methods provide certain advantages, but have
also disadvantages. For instance, FD schemes can be imple-
mented efficiently to solve very large problems but have diffi-
culties in modeling non-planar faults and strong material con-
trasts, like in sedimentary basins with extremely low wave ve-
locities, which require grid adaptivity. The BI method is one
of the most accurate and computationally efficient methods but
is impractical in heterogeneous media and non-linear materi-
als. FV and FE methods can be implemented on unstructured
meshes, which gives flexibility to describe realistic fault and
crustal model geometries. However, they are usually formulated
as low-order accurate operators that are very dispersive, which
affects the small-scale resolution in the near-field and in turn
the rupture front evolution. In contrast, SE methods are high-
order accurate for seismic wave propagation, but are limited to
hexahedral elements, which penalizes geometrical flexibility: it
remains challenging to generate hexahedral meshes for complex
three dimensional branched fault systems with smooth element
refinement or coarsening that adapts to material properties. Fur-
thermore, all approaches suffer from spurious high-frequency
oscillations, most notably in the slip-rate time series. Several
approaches have been proposed in order to reduce these oscilla-
tions, e.g. spatial low-pass filtering [Ampuero, 2002], adding an
ad-hoc Kelvin-Voigt damping term to the solution [Day et al.,
2005] or adaptive smoothing algorithms [Galis et al., 2010].
None of these solutions is completely satisfactory and high-
frequency oscillations remain an unsolved nuisance in the nu-
merical modeling of dynamic rupture.

A new approach to overcome these issues was first pre-
sented byde la Puente et al.[2009]. They incorporated the
earthquake source physics into a discontinuous Galerkin (DG)
scheme linked to an arbitrary high-order derivatives (ADER)
time integration [Titarev and Toro, 2002;Käser and Iske, 2005;
Dumbser and K̈aser, 2006]. The DG method combines ideas
from high-order FV and FE methods, where a polynomial basis
approximates the physical variables of the elastic wave equa-
tions inside each element. This formulation enables the use of
fully unstructured meshes, i.e. triangles (2D) or tetrahedrons
(3D), to better represent the geometrical constrains of a given
geological setting and in particular the fault. The fault is hon-
ored by the mesh and can be sampled with small elements in
order to capture small-scale rupture phenomena. Fast mesh
coarsening with increasing distance from the fault reduces the
computational cost without introducing significant spurious grid
reflections. Between any two elements the approximated vari-
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ables of the elastic wave equation are discontinuous in a DG
discretization. In our case, fluxes are defined by the exact solu-
tion of the elastic wave equations at a discontinuity (Godunov
state) to exchange information between elements. Such kind of
problem is known as the Riemann problem [Toro, 1999;LeV-
eque, 2002]. At a fault,de la Puente, Ampuero, and Käser
[2009] showed how the exact solution of the Godunov state
has to be modified to take the frictional boundary conditions
into account. An important result of their study was that the
ADER-DG solution is very smooth and free of spurious high-
frequency oscillations. Therefore, it does not require artificial
damping or filtering. The superior numerical dispersion prop-
erties of the DG method [Käser et al., 2008], the possibility of
using unstructured meshes [Pelties et al., 2010], and the nat-
ural representation of variables’ discontinuities with Godunov
fluxes [de la Puente et al., 2009] might be key features for accu-
rate and efficient dynamic rupture simulations in very complex
scenarios.

The main goal of this paper is the extension of the ADER-
DG rupture modeling scheme to three-dimensional problems
on tetrahedral meshes. We present the Riemann problem for
the three-dimensional case and show how its solution is used
to compute high-order accurate numerical fluxes. We further
use these fluxes together with a DG discretization of the elas-
todynamic system to build up a highly accurate fault model-
ing and wave propagation algorithm. The accuracy and conver-
gence properties of the method are shown in convergence tests.
Further verification is obtained by comparing the results of our
novel 3D DG dynamic rupture scheme with other well estab-
lished numerical solutions in a standard community test prob-
lem of fault rupture. Finally, a large earthquake simulation in-
cluding complex fault systems, inspired from the 1992 Landers
earthquake, shows the potential of the method in dealing with
complicated geometrical constrains both in the rupture process
and in the wave propagation itself.

2. Dynamics of Fault Rupture

In the classical three-dimensional dynamic rupture models
considered here a fault is represented by a 2D plane of arbitrary
shape (or a set of planes in a fault system with branches) across
which fault coplanar displacements can be discontinuous. The
kinematics of the sliding process are described by the spatio-
temporal distribution of the slip vectorΔd = d+ − d−, or the
slip rate vectorΔv = Δḋ, whered± are the displacements on
each side of the fault, in the directions tangential to the fault
plane (see Fig. 1a). Earthquakes may involve small-scale fault
opening, especially at shallow depth but, for simplicity, here we
consider only examples in which both sides of the fault remain
in contact. On any point of the fault surface,�n > 0 represents
the compressive normal stress and� the shear traction vector
resolved on the+ side of the fault. The dynamics of the sliding
process are governed by friction relations between traction and
slip [Andrews, 1976a, b;Day et al., 2005]. The shear traction
is bounded by the fault strength�f�n, which is proportional to
the normal stress via the friction coefficient�f . Active slip re-
quires the shear traction to reach and remain at the fault strength
level, with a direction anti-parallel to the slip rate. These condi-
tions are encapsulated in the following equations for Coulomb
friction:

∣� ∣ ≤ �f�n ,
(∣� ∣ − �f�n) ∣Δv∣ = 0 ,

Δv∣� ∣+ ∣Δv∣� = 0 .
(1)

The evolution of the friction coefficient with ongoing slip is
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described by the following linear slip weakening friction law:

�f =

⎧



⎨



⎩

�s −
�s − �d

Dc

� if � < Dc ,

�d if � ≥ Dc .

(2)

where� =
∫ t

0
∣Δv∣dt′ is the slip path length. With increasing

� the friction coefficient�f drops linearly from the static value
�s to the dynamic value�d over the critical slip distanceDc,
as shown in Fig. 1b. The linear slip weakening friction law is
capable of modeling initial rupture, arrest of sliding and reac-
tivation of slip. Since it is very simple and easy to implement,
it is well suited to verifying numerical methods with dynamic
rupture boundary condition. More advanced, realistic friction
laws, incorporate rate-and-state effects [Dieterich, 1979; Ru-
ina, 1983] and thermal phenomena such as flash heating and
pore pressure evolution [Lachenbruch, 1980;Mase and Smith,
1985, 1987;Rice, 1999]. We do not expect any fundamental
issue in the implementation of other friction laws in the ADER-
DG method and leave that for future work.

3. Fault Dynamics within the Discontinuous
Galerkin Framework

In contrast to other numerical dynamic rupture implementa-
tions, like the traction-at-split-node (TSN) approach [Andrews,
1973, 1999;Day, 1982],de la Puente et al.[2009] followed a
new idea employing the concept of fluxes. A detailed descrip-
tion of the adopted DG scheme can be found inDumbser and
Käser [2006]. The mathematical and technical analysis of dy-
namic rupture boundary conditions in a high-order DG formu-
lation was presented byde la Puente et al.[2009] in 2D. There-
fore, in this section we will explain only the basic ideas and
show the extension to three-dimensional spontaneous rupture
problems.

3.1. Discretization of the Linear Elastic Wave

Equation

The three-dimensional elastodynamic equations for an
isotropic medium are written in velocity-stress form as the lin-
ear hyperbolic system

∂

∂t
�xx − (�+ 2�)

∂

∂x
u− �

∂

∂y
v − �

∂

∂z
w = 0 ,

∂

∂t
�yy − �

∂

∂x
u− (�+ 2�)

∂

∂y
v − �

∂

∂z
w = 0 ,

∂

∂t
�zz − �

∂

∂x
u− �

∂

∂y
v − (�+ 2�)

∂

∂z
w = 0 ,

∂

∂t
�xy − �(

∂

∂x
v +

∂

∂y
u) = 0 ,

∂

∂t
�yz − �(

∂

∂z
v +

∂

∂y
w) = 0 ,

∂

∂t
�xz − �(

∂

∂z
u+

∂

∂x
w) = 0 ,

�
∂

∂t
u− ∂

∂x
�xx − ∂

∂y
�xy − ∂

∂z
�xz = 0 ,

�
∂

∂t
v − ∂

∂x
�xy − ∂

∂y
�yy − ∂

∂z
�yz = 0 ,

�
∂

∂t
w − ∂

∂x
�xz −

∂

∂y
�yz −

∂

∂z
�zz = 0 ,

(3)

where� is the first Laḿe constant,� is the shear modulus,� is
the density,�ij are the components of the stress tensor andu,
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v andw are the components of the particle velocity in thex, y,
andz directions, respectively. Grouping stresses and velocities
into a vectorQ = (�xx, �yy, �zz, �xy, �yz, �xz, u, v, w)T , we
write the system of equations (3) in a more compact form:

∂Qp

∂t
+Apq

∂Qq

∂x
+Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z
= 0 , (4)

where the space-dependent Jacobian matricesA, B andC in-
clude the material properties. Classical tensor notation and Ein-
stein’s summation convention are assumed.

The computational domainΩ is divided into conforming
tetrahedral elementsT (m) identified by an indexm. The phys-
ical variablesQ are approximated within each tetrahedral ele-
mentT (m) by high-order polynomials

Qm
p (�, t) = Q̂m

pl(t)Φl(�) , (5)

whereΦl are orthogonal basis functions and� = (�, �, �)
are the local coordinates in a canonical reference elementTE ,
where all the computations are done. The physical variables
are expressed by a linear combination of these basis functions
with time-dependent coefficientŝQm

pl(t). The indexp is asso-
ciated with the unknowns in the vectorQ. The indexl indi-
cates thel-th basis function and ranges from0 to L− 1, where
L = (N+1)(N+2)(N+3)/6 is the number of required basis
functions for a polynomial degreeN . The numerical approxi-
mation order isO = N + 1.

The elastic wave equation is solved in the weak form. We
multiply equation (4) by a test functionΦk and integrate over
an elementT (m) and over a time increment of sizeΔt:

t+Δt
∫

t

∫

T (m)

Φk
∂Qp

∂t
dV dt

+

t+Δt
∫

t

∫

T (m)

Φk

(

Apq
∂Qq

∂x
+Bpq

∂Qq

∂y
+ Cpq

∂Qq

∂z

)

dV dt = 0.

(6)
Integration by parts of equation (6) yields

t+Δt
∫

t

∫

T (m)

Φk
∂Qp

∂t
dV dt+

4
∑

j=1

ℱj
pk

−
t+Δt
∫

t

∫

T (m)

(

∂Φk

∂x
Apq +

∂Φk

∂y
Bpq +

∂Φk

∂z
Cpq

)

Qq dV dt = 0 .

(7)
Equation (7) provides the values ofQp at time t + Δt, fol-
lowing the procedures explained byKäser and Dumbser[2006]
andDumbser and K̈aser[2006]. In those papers the integration
of the first and third terms in equation (7) are fully elaborated.
The second term is the sum of numerical fluxesℱj

pk across the
four faces,j = 1, 2, 3, 4, of a tetrahedral element, accounting
for the discontinuity ofQ. The incorporation of dynamic rup-
ture boundary conditions is based on a modification of these
flux terms. Thus, we will have a closer look at them in the next
section.

3.2. Flux computation

For simplicity, we consider a single tetrahedral face with its
normal aligned with thex axis. The flux term in (7) can then be
written as

ℱpk = Apr

∫ t+Δt

t

∫

S

ΦkQ̃r dS dt, (8)
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whereQ̃ stands for a suitable approximation of the unknowns
on the fault and the integral covers the faceS and a time inter-
val of sizeΔt. In order to solve the integrals numerically, we
evaluateQ at a set of space-time Gaussian integration points on
the tetrahedral face at space locations�i = (�i, �i, �i), with
i = 1, . . . , (N + 2)2, and along the time axis at time lev-
els �l ∈ [t, t + Δt], with l = 1, . . . , N + 1. We define
Qp,il = Qp(�i, �l). We solve the flux locally at each space-
time integration point while ensuring causality by updating the
time levels in a sequential way. At special boundaries, such as
the free-surface or faults, the values ofQ̃ in (8) might be im-
posed in order to satisfy the physical boundary conditions. In
the particular case of dynamic faults, we impose values derived
from the Coulomb friction model (1).

A suitable temporal expansion of the variables at a given
tetrahedral element is obtained via a Taylor expansion near time
t. At time t+Δt the expansion of orderO = N + 1 is

Qp(�, t+Δt) ≈
N
∑

k=0

Δtk

k!

∂kQq(�, t)

∂tk
. (9)

The high-order time derivatives in (9) are substituted by spatial
derivatives using the expression (4) in an iterative way

∂kQp(�, t)

∂tk
= (−1)k

(

Apq
∂

∂x
+Bpq

∂

∂y
+ Cpq

∂

∂z

)k

Qq(�, t).

(10)
This yields

Qp(�, t+Δt) ≈

N
∑

k=0

Δtk

k!
(−1)k

(

Apq
∂

∂x
+Bpq

∂

∂y
+ Cpq

∂

∂z

)k

Qq(�, t) .

(11)
The expansion (11) is performed separately for the states
Q+(�, t) andQ−(�, t) of the two elements on the+ and the−
side of the face across which the flux is evaluated (see Fig. 1a).
As mentioned above, between any two elements the variables
of the elastic wave equations are in general discontinuous. Such
partial differential equation problem with discontinuous initial
conditions is called the Riemann problem. The solution of the
Riemann problem at an element interface is the Godunov state
and can be written in terms of explicit values as [Toro, 1999;
LeVeque, 2002;de la Puente et al., 2009]

2�G
xx,il = (�+

xx,il + �−

xx,il) + cp�(u
−

il − u+
il) ,

2�G
xy,il = (�+

xy,il + �−

xy,il) +
�

cs
(v−il − v+il ) ,

2�G
xz,il = (�+

xz,il + �−

xz,il) +
�

cs
(w−

il − w+
il ) ,

2uG
il = (u+

il + u−

il ) +
1

cp�
(�−

xx,il − �+
xx,il) ,

2vGil = (v+il + v−il ) +
cs
�
(�−

xy,il − �+
xy,il) ,

2wG
il = (w+

il + w−

il ) +
cS
�
(�−

xz,il − �+
xz,il) .

(12)

The variables�yy, �zz, �yz are associated to the so-called zero
wave speeds and do not contribute to the Godunov state. The
equations (12) together with the flux (8) are used to exchange
information between elements, similar to FV methods. A major
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advantage of the flux concept, besides its numerical properties,
is that it favors data locality: the temporal update of the so-
lution inside one element depends only on its direct neighbors.
Therefore, the method is well suited for massively parallel high-
performance facilities, in addition to providing a high-order ac-
curate approximation of the physical variables.

The equations (12) are used for wave propagation simula-
tions. In order to honor the Coulomb friction model (1), we have
to impose the shear stresses�xy,il and�xz,il at the fault accord-
ingly to obtain new traction values̃�xy,il and�̃xz,il, which are
different from�G

xy,il and�G
xz,il when there is active slip. In

turn, this provides boundary conditions for the fault parallel-
velocities. Multiplying the second and third equations of (12)
by cs/� and subtracting the fifth and sixth equations, respec-
tively, leads to

ṽ+il = v+il +
cs
�

(

�̃xy,il − �+
xy,il

)

and ṽ−il = v−il −
cs
�

(

�̃xy,il − �−

xy,il

)

,

w̃+
il = w+

il +
cs
�

(

�̃xz,il − �+
xz,il

)

and w̃−

il = w−

il −
cs
�

(

�̃xz,il − �−

xz,il

)

,

(13)
when we substitute�G

xy,il and�G
xz,il with their imposed values

�̃xy,il and �̃xz,il. ṽ−il and w̃−

il are obtained by summing the
equations instead of subtracting them.

These expressions are crucial for the understanding of fault
dynamics using fluxes, as they state that an imposed traction
instantly and locally generates an imposed velocity parallel to
the fault. By subtracting them, the slip rates for each possible
slip direction are obtained:

Δṽil =
2cs
�

(

�̃xy,il − �G
xy,il

)

,

Δw̃il =
2cs
�

(

�̃xz,il − �G
xz,il

)

.

(14)

These expressions capture explicitly the analytical form of the
immediate slip velocity response to changes in fault tractions,
also known as radiation damping [Cochard and Madariaga,
1994;Geubelle and Rice, 1995]. A consequence of the equa-
tions in (14) is that slip (non zeroΔṽil or Δw̃il) occurs only
if �̃xy,il ∕= �G

xy,il or �̃xz,il ∕= �G
xz,il. The remaining Go-

dunov’s variables, normal velocity and normal stress, can be
computed using (12) as they are independent of�̃xy,il and
�̃xz,il. All equations are evolved at each Gaussian integration
point in space and time. Using the shear stresses�̃xy,il and
�̃xz,il and the velocities from (13) all values of̃Q at the in-
terface are known and the flux (8) can be computed with the
discrete expression

ℱpk = Apr

(N+2)2
∑

i=1

N+1
∑

l=1

!S
i !

T
l Φk(�i)Q̃r,il . (15)

where!S
i and!T

l are the weights of the spatial and temporal
Gaussian integration, respectively.

Finally, the slipΔd̃il is obtained by integrating (14). In a last
step, we apply the linear slip weakening friction law (2) to get
the time-updated value of the friction coefficient�f,il+1 as

�f,il+1 = max

{

�d, �s −
�s − �d

Dc

Δd̃il

}

. (16)

4. Verification

For geophysically relevant dynamic rupture problems no an-
alytical solution exists that could be used as a reference for
code verification. Therefore, the Southern California Earth-
quake Center (SCEC) created the Dynamic Earthquake Rup-
ture Code Verification Exercise, in which different codes and
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methodologies are compared on a suite of benchmark problems
of increasing complexity [Harris et al., 2004]. Here, we verify
our method with the Test Problem Version 3 (TPV3). Addition-
ally, in section 4.2 the convergence of the ADER-DG method is
discussed.

4.1. Code verification on the SCEC TPV3

The TPV3 problem involves rupture on a30 km long by
15 km deep vertical strike-slip fault embedded in a homoge-
neous elastic full-space. The fault is governed by linear slip
weakening friction and bounded by unbreakable barriers. The
initial fault stresses are homogeneous except on a nucleation
zone of higher initial shear stress (Fig. 2). The friction pa-
rameters and background stresses can be found in Table 1.
The medium has density� = 2670 kg/m3, P-wave velocity
cp = 6000 m/s and S-wave velocitycs = 3464 m/s. We use
a conservatively large computational domain, a cube of edge
length72 km, to avoid spurious reflections from non-perfectly
absorbing boundaries.

We compare ourO4 ADER-DG solution with the results
of the Spectral Boundary Integral Equation (SBIE) method
of Geubelle and Rice[1995] and of a second-order staggered-
grid Finite Difference method with traction at split nodes [Day
et al., 2005]. In particular, we considered two codes that
have been verified during the SCEC exercises, the SBIE im-
plementation of E.M. Dunham (MDSBI: Multidimensional
spectral boundary integral, version 3.9.10, 2008, available at
http://pangea.stanford.edu/˜edunham/codes/codes.html) and the
Finite Difference code DFM (Dynamic Fault Model) ofDay
et al. [2005]. Both codes were run with a50 m grid spac-
ing. DFM incorporates artificial Kelvin-Voigt viscosity [Day
and Ely, 2002].

We discretize the fault plane by a uniform mesh of equilat-
eral triangles with edge lengthℎ = 200 m, but we allow the
size of the tetrahedral elements in the bulk to increase gradu-
ally to 3000 m edge length, to reduce the computational effort.
No artificial reflections possibly caused by the mesh coarsening
are observed. To facilitate a fair comparison between the meth-
ods we define an equivalent mesh spacingΔx = ℎ/(N + 1),
which accounts for the sub-cell resolution of our high-order DG
scheme. AlthoughΔx is not consensually accepted as an exact
measure of the spatial resolution it is often used for comparing
different discretization techniques. The relatively large element
size of our ADER-DG simulation,ℎ = 200 m, corresponds to
an equivalent mesh spacing ofΔx = 50 m, the same as in the
DFM and MDSBI computations considered here.

Figs. 3a, b, c and d show, for all three schemes, the time se-
ries of the shear stress and slip rate at the two fault locations
indicated as PI and PA in Fig. 2, which probe the in-plane
and anti-plane rupture fronts, respectively, at hypocentral dis-
tance7500 m and6000 m, respectively. The ADER-DG solu-
tion (black) is in excellent agreement with the results produced
by MDSBI (blue) and DFM (red). The signal amplitudes, the
arrival time of the rupture front and stopping phases and the
subsequent stress relaxation are mutually consistent. A closer
inspection of these results (Figs. 3e and f) reveals that the rup-
ture front arrives slightly earlier in DFM than in the other two
methods, whereas the rupture times of MDSBI and ADER-DG
are more similar. These differences could be due to the Kelvin-
Voigt damping in DFM or to different implementations of the
non-smooth initial stress conditions.

Spurious high-frequency oscillations are visible in the slip
rates produced by MDSBI and DFM, especially around the slip
rate peak at the PA station. These are identified clearly in the
spectra in Figs. 3g and h: the MDSBI slip rates have a signif-
icant spectral peak around25 Hz and DFM has peaks between
10 and40 Hz, especially at PA. Such spurious peaks are absent
from the slip rate spectra of ADER-DG, which are smoother and
follow the theoretically expected frequency decay [Ida, 1973].
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Therefore, no artificial Kelvin-Voigt damping has to be applied
in ADER-DG, which would further reduce the time step size
and increase the computational cost. Our DG method is based
on upwind numerical fluxes, which are intrinsically dissipative.
In particular, in our high-order DG approach the amount of nu-
merical dissipation increases very steeply as a function of fre-
quency, beyond an effective high-frequency cutoff that depends
on the element size [Hesthaven and Warburton, 2008, p.90, Fig.
4.1]. Hence, the very short wavelengths that are poorly resolved
by the mesh elements are adaptively damped, without perturb-
ing the longer, physically meaningful wavelengths.

The absence of spurious oscillations in ADER-DG enables
the observation of interesting details of the solution. For in-
stance, the ADER-DG solution reveals a slope discontinuity of
the slip velocity shortly after the peak (at3.15 s in Fig. 3c and
at3.07 s in Fig. 3d). This coincides with the time when the slip
reachesDc and is due to the slope discontinuity in the slip weak-
ening friction law. In the other methods this feature is masked
by the spurious oscillations.

4.2. Convergence test

In section 4.1 the good agreement between our ADER-DG
method and other numerical methods has been shown. How-
ever, since there is no analytical solution available, one can-
not determine which numerical method solves the proposed test
better. A commonly used technique in computational science to
verify the performance of a code is a convergence test. Thereby,
we measure the error of the method by the root mean square
(RMS) difference of rupture time, peak slip rate and final slip
between the finest grid solution and the solutions for coarser
grids. The particular RMS metrics we use in this chapter are
taken fromDay et al.[2005].

We solved the SCEC TPV3 with five different mesh spac-
ings, ℎ = 1061, 707, 530, 424 and 354 m, defined as the
longest triangular edge length on the fault plane, and four dif-
ferent orders of accuracy ranging fromO2 to O5. Some of the
coarsest meshes at low orders lead to unphysical results and are
ignored (ℎ = 707 and1061 m forO2 andℎ = 1061 m forO3).
We obtained uniform meshes on the fault plane by first gener-
ating a regular mesh of quadrilateral elements of edge length
ℎ/

√
2, then dividing each quadrilateral into two triangles. We

used mesh coarsening by increasing the element edge length by
10% per element with increasing distance from the fault, up to a
maximum edge length of10ℎ. Our reference solution was ob-
tained withℎ = 354 m andO6. We sampled the solution with
400 randomly distributed receivers along the fault plane. The
rupture time is defined as the first time sample at which the slip
rate exceeds1 mm/s. The15 receivers located in the nucleation
zone are excluded for the rupture time measurement since their
rupture time is exactly the first time step.

The results are summarized in Table 2 and visualized in
Fig. 4. The RMS difference in rupture time, final slip and
peak slip rate decrease with increasing mesh refinement and in-
creasing order. This implies that a low-order approximation can
achieve the accuracy of high-order approximations only when
using a much smaller element size. Except forO2, the RMS
rupture time difference is low (Fig. 4a) and all chosen resolu-
tions capture the rupture front evolution reasonably well with
respect to the reference solution. The difference between the
finest test solution and the reference solution is indeed very
small,0.04% (Table 2). The time step sizeΔt, shown by dashed
lines in Fig. 4a, is much smaller than the RMS rupture time dif-
ferences, hence temporal sampling does not bias our measure-
ment of rupture times. The RMS difference of the final slip is
also low, around1% at best (Fig. 4b). The RMS difference of
peak slip rate is larger (Fig. 4c), as usually found for this very
sensitive error metrics based on extreme values of a spiky sig-
nal. Overall, the error levels are similar to those obtained by
methods such as DFM [Day et al., 2005]. The ADER-DG solu-
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tions achieve numerical convergence with respect to the applied
order and element size reduction.

The convergence of the errors as a function ofℎ is well
described by power laws. The small scattering of the error
data around their power law regressions (Fig. 4) is expected
when using structured mesh refinement strategies, like “red-
refinement” (split a triangle into four geometrically similar tri-
angles), but is remarkable given our fully unstructured meshes.
The smooth convergence to the reference solution confirms the
robustness and reliability of the method. The exponent of the
power laws, or convergence rate, is given in Table 3. The
O2 simulations achieve the highest convergence rates but they
also have the largest errors, as mentioned above. BetweenO3
andO5 the convergence rate saturates. In general, the conver-
gence rate of a numerical solution improves when increasing
the order of the method only if the exact solution is sufficiently
smooth [Godunov, 1959; Krivodonova, 2007; Hesthaven and
Warburton, 2008, p.87]. Dynamic rupture problems contain
non-smooth features. Linear slip weakening friction guarantees
continuity of slip velocity and shear stress but slip acceleration
remains singular at the leading and trailing edges of the pro-
cess zoneIda [1973]. Moreover, the initial stress conditions
and the stopping barriers are not smooth in the TPV3 problem.
However, in smoother rupture problems involving rate-and-state
friction and smooth initiation conditions improvements of con-
vergence rate with increasing order have not been observed [Ro-
jas et al., 2009], only reduced rupture time errors below the
time sampling precision [Kaneko et al., 2008]. In Table 3 the
convergence rates of DFM and of a boundary integral method
(from Day et al.[2005]) are included for comparison. Whereas
the convergence rates of the rupture time agree for the different
methods, DFM and BI converge slightly faster than ADER-DG
with O > 2 for the other error metrics, final slip and peak slip
rate.

Fig. 4d shows the convergence of the rupture time misfit
as a function of CPU time, the actual duration of the simu-
lation multiplied by the number of processors involved. The
number of processors ranges from256 to 8192 since the prob-
lem size varies so much that the smallest simulation will not
run efficiently on the maximum number of processors and the
largest problem cannot be solved with fewer processors. Al-
though the scalability of our DG code is in general good, it is
still not perfect over this range of number of processors, which
affects our measurements of CPU time. From Fig. 4d higher
order methods are not more efficient for solving the test prob-
lem at a given accuracy. For a givenℎ, high-order methods are
more computationally demanding as they store and update more
unknowns per element, and this cost is not significantly offset
by their improved accuracy. However, the smoothness of the
slip rate time series (Section 4.1) and the quality of the wave
propagation away from the fault are not quantified by the er-
ror metrics considered here. Both aspects are an important part
of the overall quality and accuracy of the solution. It has been
demonstrated that a high-order approximation in a DG scheme
is much more efficient for wave propagation problems than a
low-order approximation, i.e. it requires lower computational
cost to achieve a given error level [Käser et al., 2008]. The
flexibility of the ADER-DG method allows the resolution to be
optimized (ℎ- andp-adaptivity) independently for the fault and
for the surrounding media based on different criteria, the cohe-
sive zone size and the maximum target frequency, respectively.
A high-order approximation is advantageous in strong ground
motion simulations based on dynamic rupture scenarios because
it provides an accurate wave field at lower cost.

5. The Landers 1992 Earthquake

To demonstrate the potential of the introduced ADER-DG
method on unstructured meshes for simulations of rupture dy-
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namics in complex fault geometries we consider the June 28th
1992MW 7.3 Landers, California, earthquake as an example.
Our purpose here is not to re-examine the dynamics of this event
in detail, as in many previous studies [e.g.,Olsen et al., 1997;
Aochi and Fukuyama, 2002; Aochi et al., 2003; Fliss et al.,
2005], but rather to illustrate the potential of our method for
future studies. We hence follow the simplified setup introduced
by de la Puente et al.[2009] and extend it to three dimensions,
including topography.

The Landers earthquake occured on a60 km long com-
plex fault system along the western edge of the Eastern Cali-
fornia Shear Zone. Its surface rupture involved at least parts
of four major right-lateral strike-slip fault segments, breaking
successively from south to north the Johnson Valley, Home-
stead Valley, Emerson and Camp Rock faults [Hauksson et al.,
1993]. These sub-parallel main segments are curved, overlap-
ping and connected by shorter faults (e.g. the Kickapoo, or Lan-
ders fault, connecting the Johnson Valley and Homestead Valley
faults). A fault geometry comprising six non-planar fault seg-
ments (Fig. 5) was adopted from [Aochi and Fukuyama, 2002].
Studies based on guided waves [Li et al., 1994] and analysis
of the aftershock distribution [Hauksson et al., 1993] show that
the surface geometry continues to a depth of at least10 km.
Source inversion results indicate a vertical dip of the fault
planes [Wald and Heaton, 1994;Cohee and Beroz, 1994;Cotton
and Campillo, 1995]. We hence model the three-dimensional
fault system geometry by extending the surface fault traces ver-
tically into depth. The fault plane starts below the surface at sea
level (thus surface rupture is not allowed) and extends to15 km
below sea level.

The model domain is a polygon of lateral extension of
180 km times220 km and depth of50 km. Fig. 5 shows a
map of the model area and its topography. The fault system is
enclosed in the south by the San Bernardino mountains, with
a maximum elevation of3505 m, and in the north by smaller
dissected mountain ranges.

Since our purpose is to focus on the rupture process on a ge-
ometrically complex fault system, we assume a homogeneous
medium (vp = 6200 m/s,vs = 3520 m/s and� = 2700 kg/m3)
and a homogeneous initial stress field with horizontal principal
stresses�1 = 300 MPa and�2 = 100 MPa. The assumed
direction of the largest principal stress, N22∘E, is representa-
tive of the northern part of the rupture in the model ofAochi
and Fukuyama[2002] and is indicated by a red double arrow
in Figs. 5 and 7. Although the stress field is homogeneous, the
varying fault strike generates a heterogeneous stress state along
the fault. The nucleation is initiated by a lower principal stress
value of�2 = 70 MPa in a square patch of edge length3 km
around the hypocenter, located on the southern portion of the
Johnson Valley fault. Table 4 contains the frictional parameters
of the fault. We compute the spontaneous rupture for a total
duration of10 s.

Fig. 6 shows the fault discretized by triangles of sizeℎ =
500 m (edge length). The horizontal plane below the fault
shows the mesh coarsening up toℎ = 2500 m in the closer
neighborhood of the fault. The surface mesh above the fault has
ℎ = 500 m to ensure an accurate representation of the topogra-
phy. This high-resolution area is surrounded by a much coarser
mesh consisting mainly ofℎ = 5 km elements, but we allow
for ℎ = 10 km at the outer borders of the domain. The fast
mesh coarsening does not affect the rupture propagation, it only
damps the high-frequency content of the wave field in areas of
larger mesh spacing [de la Puente et al., 2009]. This allows to
concentrate the computational effort on the rupture area, where
it is needed. The domain boundaries are located far enough
away from the fault to avoid the effect of possible artificial re-
flections.

The resulting mesh contains587,585 elements. Using an
O5 approximation this model size is relatively inexpensive and
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can be computed on a small scale cluster of approximately100
nodes, which can be currently found in many research institu-
tions. We used the BlueGene/P machineShaheenof the King
Abdullah University of Science and Technology, Saudi Arabia.
Our 10 s long simulation ran for20 hours on512 processors.
This relatively large number of processors was conditioned by
the low frequency of the BlueGene/P CPUs (850 MHz) and, for
standard CPUs, it can be reduced by a factor of4 to6. The entire
discretization process including topography and fault geometry
definition, mesh generation, and boundary specifications took
less than two days due to the flexibility and robustness of tetra-
hedral mesh generation. Hence the manual effort and related
cost in terms of expert working hours are kept at a minimum.

Fig. 7 shows the amplitude of the particle velocity generated
by the earthquake at four different times on a horizontal cross-
section of the nucleation area at a depth of5 km below sea
level. Initially, the rupture propagates bilaterally on the John-
son Valley fault (Fig. 7a). At time1.5 s the northern rupture
front approaches the first branching point (Fig. 7b). It then
continues into the Kickapoo fault, without breaking the north-
ern portion of the Johnson Valley fault (Fig. 7c). The rupture
breaks the complete Kickapoo segment and continues on the
Homestead Valley fault where it stops approximately at time6 s
(Fig. 7d). This rupture branching to the extensional side is con-
sistent with the 2D study ofde la Puente et al.[2009] and with
theoretical considerationsPoliakov et al.[2002]. While some
interesting features of the Landers earthquake rupture, like the
backward branching to the southern segment of the Homestead
Valley fault [Poliakov et al., 2002;Fliss et al., 2005], are not
reproduced by our simulation, it achieves our main intention
to conceptually illustrate the capabilities of the 3D ADER-DG
method.

Fig. 8 shows the surface wave field developing with time
from 2.5 s to4.5 s. There is a clear directivity effect: most of
the energy is traveling northwards, like the rupture front. From
visual inspection, the topography seems to increase the com-
plexity of the wave field. However, we expect stronger site ef-
fects when incorporating a more realistic geological model with
low velocity layers in the valley and stiffer material in the moun-
tains.

6. Conclusions

We successfully incorporated 3D earthquake rupture dynam-
ics in the ADER-DG scheme by modifying the Riemann prob-
lem according to the Coulomb friction model. Although we
considered here linear slip weakening friction, the method al-
lows for the implementation of more advanced friction laws,
e.g. rate-and-state friction. Accuracy was verified by compar-
ing results of the SCEC TPV3 benchmark problem for spon-
taneous rupture to well established methods. The ADER-DG
solution is notably free of spurious high-frequency oscillations,
most likely owing to the high-order frequency dependence of
the intrinsic dissipation of the DG method. Hence, no artifi-
cial viscous damping mechanism has to be applied which could
potentially affect the rupture process. The robustness and sys-
tematic correctness of the ADER-DG method was proved by
a convergence test, which showed that mesh refinement or in-
creasing the order leads to smaller errors.

An example of dynamic rupture simulation on a complex
fault system, inspired by the surface rupture geometry of the
Landers earthquake, demonstrates the the great benefits of the
proposed method based on unstructured tetrahedral meshes that
can be aligned into merging faults under shallow angles. Areas
of interest, here the topography and the fault, can be modeled
adequately by small elements while mesh coarsening can be ap-
plied elsewhere to reduce the computational cost. This is of
interest in particular for dynamic rupture studies which require
a fine sampling of the fault in order to capture the cohesive zone



PELTIES ET AL.: DYNAMIC RUPTURE WITH A HIGH-ORDER DG METHOD X - 13

for a correct simulation of the rupture process while adapting
the resolution to the dispersion requirements of wave propaga-
tion at lower frequencies far from the fault. We do not observe
any artificial reflection due to mesh coarsening in ADER-DG.
In methods based on structured grids the mesh refinement is
instead applied uniformly in the entire computational domain,
propagating frequencies much higher than required for strong
ground motion investigations, or through grid-doubling tech-
niques, which could generate artificial reflections.

We conclude that the combination of meshing flexibility and
high-order accuracy of the ADER-DG method will make it a
very useful tool to study earthquake dynamics on complex fault
systems. Future steps in the development include the incorpo-
ration of bimaterial fault interfaces, more realistic friction laws
and non linear bulk rheologies.
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Figure 1. In (a) is depicted a fault segment discretized as the
contact surface of two tetrahedral elements. The different fault
sides are indicated by plus and minus. In (b) we plot the friction
coefficient�f vs. the slipΔd for the linear slip weakening
friction law.
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Figure 2. Sketch of the SCEC test case with the nucleation
zone (grey shaded). The fault is surrounded by a box with an
edge length of72 km. The black triangles indicate the in-plane
receiver (PI) and the anti-plane receiver (PA).
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Parameter Nucleation zone Outside nucleation zone
Initial shear traction (MPa) 81.6 70.0
Initial normal stress (MPa) 120.0 120.0
Static friction coefficient 0.677 0.677
Dynamic friction coefficient 0.525 0.525
Critical slip distance (m) 0.4 0.4

Table 1. Parameters describing the fault for the SCEC test case.
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Figure 3. In all subfigures, MDSBI (blue) represents the solu-
tion obtained by the boundary integral method with a grid inter-
val ofℎ = 50 m and DFM (red) indicates the FD staggered-grid
split node method with grid intervalℎ = 50 m. All results are in
good agreement with the solution produced by our ADER-DG
scheme (black) with an equivalent mesh spacing ofΔx = 50 m
at the fault. Shown are the shear stresses (a),(b) and the slip
rates (c),(d). The panels (e) and (f) provide a clearer image of
the slip rate peaks. PI and PA denote the in-plane and the anti-
plane receiver as shown in Fig. 2. In the bottom row (g),(h) the
spectra of the slip are shown. The ADER-DG solution does not
produce spurious high-frequency oscillations.
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ℎ (m) O RMS rupture time (%) RMS final slip (%) RMS peak slip rate (%) CPUtime (s)
1061 4 2.79 2.88 14.52 2288640

5 0.95 2.35 12.58 7280640

707 3 3.05 2.38 13.48 2764800

4 0.74 1.85 11.39 8386560

5 0.31 1.42 8.36 26081280

530 2 37.32 54.31 37.98 1474560

3 1.44 1.61 10.84 4945920

4 0.43 1.31 8.00 14991360

5 0.19 1.22 6.87 49827840

424 2 15.34 39.62 25.84 2580480

3 0.69 1.35 9.18 8847360

4 0.20 1.20 6.76 29675520

5 0.08 1.03 6.20 99901440

354 2 9.99 29.74 21.38 3993600

3 0.44 1.20 7.65 14499840

4 0.12 0.98 5.95 45772800

5 0.04 1.03 5.84 163553280

Table 2. Convergence results for the 3D TPV3 SCEC test case.
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Figure 4. Convergence results for the 3D TPV3 SCEC test case.
Dots are the simulation results colored by their order of accu-
racy. The solid lines represent the regression and the dashed
lines denote the levels determined by the timestepΔt. Misfits
are shown for the rupture time (a), final slip (b), and peak slip
rate (c). Panel (d) shows the convergence of the rupture time
misfit as a function of its CPU time.
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Method Rupture time Final slip Peak slip rate
ADER-DGO2 3.28 1.48 1.43
ADER-DGO3 2.84 0.99 0.80
ADER-DGO4 2.83 0.97 0.85
ADER-DGO5 2.83 0.75 0.70
DFMa 2.96 1.58 1.18
BIa 2.74 1.53 1.19

Table 3. Error convergence exponents for ADER-DG schemes of dif-
ferent order.aThe convergence rates of DFM and BI are fromDay et al.
[2005].

Parameter Nucleation zone Outside nucleation zone
Principal stress�1 (MPa) 300.0 300.0
Principal stress�2 (MPa) 70.0 100.0
Static friction coefficient 0.6 0.6
Dynamic friction coefficient 0.4 0.4
Critical slip distance (m) 0.8 0.8

Table 4. Frictional parameters for the test case of the Landers fault
system.
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longitude
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Figure 5. Map view of the 1992 Landers earthquake fault sys-
tem with topography. The red double arrow indicates the as-
sumed principal stress direction of N22∘E. The lateral center of
the model domain is the location of the epicenter at34.20∘N
and116.43∘W.
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70 km

15 km

Figure 6. Discretization of the Landers fault system with trian-
gles of500 m edge length. In the area indicated by a red line
the topography is decribed by a fine mesh of500 m edge length.
The box below is filled by2500 m elements with only moderate
mesh coarsening away from the fault.
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Figure 7. Snapshots of absolute particle velocity at (a)1, (b)
1.5, (c) 2.5, (d) 4.5 s after rupture initiation on a horizontal cut
of the nucleation area at a depth of5 km below sea level. The
red double arrow indicates the assumed principal stress direc-
tion.
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T = 3.0s

T = 2.5s

T = 3.5s

T = 4.0s

T = 4.5s

Figure 8. Development of the ground velocity field with time.
The topography is scaled by a factor of3. v represents the
absolute particle velocity inm/s. The viewing direction is
roughly from southeast to northwest. The directivity effect can
be clearly observed.




