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General Introduction: Why numerical methods?

Specific methods:

Finite differences
Finite elements
Finite volumes

Current challenges




Why numerical methods?

Example: seismic wave propagation

Seismometers '

homogeneous medium

In this case there

. - 0 7
explosion are analytical solutions®
Are they useful?




Why numerical methods?

Example: seismic wave propagation

Seismometers

layered medium

... In this case quasi-analytical
solutions exist, applicable for example
for layered sediments ...

explosion




Why numerical methods?

Example: seismic wave propagation

explosion

Seismometers ‘
|| ||

long wavelength
perturbations

)

... In this case high-frequency
approximations can be used
(ray theory)
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And big computers ...

#e solutions! ...

Seismometers
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Partial Differential Equations in Geophysics

0°p =c’Ap +s The acoustic
wave equation
A=(32+0%+02) e
x y z - seismology
- acoustics
P pressure - oceanography
C acoustic wave speed - meteorology
S sources
0tC=kAC-v+C-RC+p Diffusion, advection,
Reaction
C tracer concentration - geodynamics
k diffusivity - oceanography
v flow velocity - meteorology
R reactivit - geachemistry
Y - sedimentology
P OIS - geophysical fluid dynamics




Numerical methods: fields of application

Finite differences

Finite elements

Finite volumes

- time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- Maxwell’s equations

- Ground penetrating radar

-> robust, simple concept, easy to
parallelize, regular grids, explicit method

- static and time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- all problems

-> implicit approach, matrix inversion, well founded,
irreqular grids, more complex algorithms,
engineering problems

- time-dependent PDEs

- seismic wave propagation

- mainly fluid dynamics

-> robust, simple concept, irreqular grids, explicit
method




Other Numerical methods:

Particle-based
methods

- lattice gas methods

- molecular dynamics

- granular problems

- fluid flow

- earthquake simulations

-> very heterogeneous problems, nonlinear problems

Boundary element
methods

Pseudospectral
methods

- problems with boundaries (rupture)

- based in analytical solutions

- only discretization of planes

--> good for problems with special boundary conditions
(rupture, cracks, etc)

- orthogonal basis functions

- spectral accuracy of space derivatives

- wave propagation, GPR

-> reqular grids, explicit method, problems with
discontinuities




What i1s a finite difference?

Common definitions of the derivative of f(x):

f(x+dx)— f(X)

o, f =1lim
dx -0 ax

9 f =lim f(X)— f(x—dx)
dx -0 ax

9 f = lim f (x+dx)— f(x—dx)
dx 0 20X

These are all correct definitions in the limit dx->0.

But we want dx to remain FINITE




What i1s a finite difference?

The equivalent approximations of the derivatives are:

_ f (x+dx)— f(X)

d,f forward difference
dx
0, f= F(x) = T(x=dx) backward difference
0)4
f(x+dx)— f(x—dx
0 f= ( ) ( ) centered difference

4§ 2dx




The b|g guestion:

How good are the FD approximations?

A

This leads us to Taylor series....




Taylor Series

... that leads to :

f(x+d;<))(— F(x) _ dlx{dxf'(x)+d—xz f"(x)+%f3 f'"(x)+..1

2!

= f'(x) + O(dx)

The error of the first derivative using the forward
formulation is of order dx.

Is this the case for other formulations of the derivative?
Let’'s check!




Taylor Series

... with the centered formulation we get:

f(x+dx/2)— f(x—dx/2) _ 1 dxf'(x)+d—)(3f"'(x)+...
dx dx 3

= f (x) + O(dx?)
The error of the first derivative using the centered

approximation is of order dx?.

This is an important results: it DOES matter which formulation
we use. The centered scheme is more accurate!




Our first FD algorithm (acld.m) !

0°p =c’Ap + s P pressure
| 2 5 . c acoustic wave speed
A:(ax"'ay"'az) s sources

Problem: Solve the 1D acoustic wave equation using the finite
Difference method.

Solution:

p(t+ ) = S [p(x+ d) - 2p(x) + p(x - )]

+2p(t)- p(t—-dt)+ sdt ?




Problems: Stability

p(t+dt) = S [p(x+ d) = 2p(x) + p(x~ )]

+2p(t) - p(t-dt)+ st ?

Stability: Careful analysis using harmonic functions shows that
a stable numerical calculation is subject to special conditions
(conditional stability). This holds for many numerical problems.




Problems: Dispersion

Mumerical group velocity

p(t+dt) = S [p(x+ d) = 2p(x) + p(x~ )]

+2p(t) - p(t-dt)+ st ?

Group velocity Dispersion: The numerical

1000 F

approximation has
artificial dispersion,

in other words, the wave
speed becomes frequency
dependent.

You have to find a
frequency bandwidth
where this effect is small.
The solution is to use a
sufficient number of grid

True velocity

5 10 15 20 25 points per wavelength.

Mumber of points per wavelenath




Qur first FD code!

p(t+dt) = S [p(x+ d) = 2p(x) + p(x~ )]

+2p(t) - p(t-dt)+ st ?

for i=1:nt,

di sp(sprintf(" Tinme step : %',i));

for j=2:nx-1
d2p(j)=(p(j +1)-2*p(j)+p(j-1))/dx"2;
end
pnew=2*p- pol d+d2p* dt *2;
pnew( nx/ 2) =pnew( hx/ 2) +src(i)*dt"2;
pol d=p;
p=pnew,
p(1)=0;
p( nx) =0;

plot(x,p," b-")
title(" FD ")
dr awnow

end




Snapshot Example
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Seismogram Dispersion

2 point - 2 order

2 point - 2 order

2 point - 2 order
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Finite Differences - Summary

Conceptually the most simple of the numerical methods and
can be learned quite quickly

Depending on the physical problem FD methods are
conditionally stable (relation between time and space
Increment)

FD methods have difficulties concerning the accurate
Implementation of boundary conditions (e.g. free surfaces,
absorbing boundaries)

FD methods are usually explicit and therefore very easy to
Implement and efficient on parallel computers

FD methods work best on regular, rectangular grids




Finite Elements - a definition

Finite elements ...

A general discretization
procedure of continuum
problems posed by
mathematically defined
statements




Finite Elements - the concept

How to proceed in FEM analysis:
- Divide structure into pieces (like LEGO)

- Describe behaviour of the physical quantities
in each element

+ Connect (assemble) the elements at the nodes

to form an approximate system of equations
for the whole structure

* Solve the system of equations involving unknown
quantities at the nodes (e.g. displacements)

» Calculate desired quantities (e.g. strains and
stresses) at selected elements




Finite Elements - Why?

FEM allows discretization of bodies with arbitrary shape.
Originally designed for problems in static elasticity.

FEM is the most widely applied computer simulation method in
engineering.

Today spectral elements is an attractive new method with
applications in seismology and geophysical fluid dynamics

The required grid generation techniques are interfaced with
graphical techniques (CAD).

Today a large number of commercial FEM software is available
(e.g. ANSYS, SMART, MATLAB, ABACUS, efc.)




Finite Elements - Examples




Finite elements - basic formulation

Let us start with a simple linear system of equations

Ax =b | *y

and observe that we can generally multiply both sides of
this equation with y without changing its solution. Note
that x,y and b are vectors and A is a matrix.

- YAX =yb y 0"
We first look at Poisson's equation

—Au(x) = f (X)

where u is a scalar field, f is a source term and in 1-D

A =[° :—2
oX*




Formulation - Poisson’s equation

We now multiply this equation with an arbitrary function
v(x), (dropping the explicit space dependence)

- Auv = fv

... and integrate this equation over the whole domain. For

reasons of simplicity we define our physical domain D in
the interval [0, 1].

—jAuv:j fv
D D
1 1
- j Auvdx = j fvdx
0 0

... why are we doing this? ... be patient ...




Partial Integration

... partially integrate the left-hand-side of our equation ...

- j Auvdx = j fvdx
0 0

1 1
—j(D o [Ju)vdx = [Duv](l) +jDvDudx
0 0

b

we assume for now that the derivatives of u at the boundaries vanish
so that for our particular problem

1

- j (e Lu)vdx = j [vOudx
0

0




... so that we arrive at ...

j Culvdx = j fvdx
0 0

... with u being the unknown. This is also true for our
approximate numerical system

j DJulvdx = j fvdx
0 0

... Where ...

was our choice of approximating u using basis functions.




Discretization

As we are aiming to find a humerical solution to our problem it
is clear we have to discretize the problem somehow. In FE
problems - similar to FD - the functional values are known at a
discrete set of points.

... regular grid ...
+ + + + + 4+ + + + + + + + 4+ 4+ + + + + +

... irregular grid ...

+ I + 4+ o+ + - + o+

Domain O

The key idea in FE analysis is o approximate all
functions in terms of basis functions ¢, so that

N

u=d=> ce

=1




The discrete system

The ingredients:
V=9,

\

jDUDvdx = j fudx
0 0

|

i D(Zn: Co, jD¢kdX = j f@, dx

i=1

.. leading to ...




The discrete system

... the coefficients c, are constants so that for one
particular function ¢, this system looks like ...

Zn:(),j‘D¢iD¢kdx:j‘ f @, dx

0
A A f

... probably not to your' sur'pr'ise this can be wr'i‘r‘ren in matrix form

oA, =0
AT<b| — Uy




The solution

... with the even less surprising solution

remember that while the b/'s are really the coefficients of the
basis functions these are the actual function values at node points
i as well because of our particular choice of basis functions.

This become clear further on ...




The basis functions

we are looking for functions ¢,
with the following property

. 10
... otherwise we are

free to choose any 9
function ...

8
The simplest choice 7
are of course linear 5
functions:

5
+ grid nodes 4
blue lines - basis 3
functions ¢, 2

1

5 (% 1 for x=x

A X) = ] ]

| 0 for x=x,]#i
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rectangles: linear elements

With the linear Ansatz
U(<,n7) =C, +C¢ +Cf7 + i8N

we obtain matrix A as
(1 0 0 O
-1 1 0 O
-1 0 0 1

1 -1 1 -1

and the basis functions

N,(¢,77) =(1-¢)A-7n)
N,(<$,77) =¢(d-7)
N;($.77) =¢n

N,(<,77) = (A=)




NN
: RS
rectangles: quadratic elements

With the quadratic Ansatz

u(&,n) =c +c,é +egr+c,Ee +eén+cyn’ +c,&n +c,én’
we obtain an 8x8 matrix A ... and a basis function
look e.g. like
N, (<,77) =(1-¢)A-7)A-2¢ - 27)
Ns(<,77) =4¢(1-$)A-7n)

N




triangles: linear basis functions

from matrix A we can calculate the linear basis
functions for triangles

Nl(f;’?) = 1_5_,7
N ($.m= ¢
NS(QT’,?) = ,7




triangles: quadratic basis functions

N NN

The first three quadratic basis functions ...




triangles: quadratic basis functions Lo
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.. and the rest ...
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The Acoustic Wave Equation 1-D HEE

How do we solve a time-dependent problem such
as the acoustic wave equation?

0°u—v°Au = f

where vis the wave speed.
using the same ideas as before we multiply this equation with

an arbitrary function and integrate over the whole domain, e.g. [0,1], and
after partial integration

1 1 1
[9fugdx~v? [ Oudgdx= [ f¢,dx
0 0 0

.. we now introduce an approximation for u using our previous
basis functions...




The Acoustic Wave Equation 1-D

u=0=36(0¢,(

note that now our coefficients are time-dependent!
..and ...

N
07 =070 =07 6 (11, ()
=1

together we obtain

7

_ZatZQj¢i¢jdX_ +V2_ZC|_TD¢iD¢jdX_

[
O ey

which we can write as ...




Time extrapolation

_ZatZQj¢i¢jdX_ +V2_ZQjD¢iD¢jdX_

[
O e

fp.

1 b

M A b

mass matrix stiffness matrix

... in Matrix form ...

MTé+v?A'c=g

... remember the coefficients ¢ correspond to the

actual values of u at the grid points for the right choice
of basis functions ...

How can we solve this time-dependent problem?




FD extrapolation

MTE+v°A'c=g

... let us use a finite-difference approximation for
the time derivative ...

—2c+
MT(Ck+1 dzti Ck_lj-l-VZATCk — g

... leading to the solution at time t,:

Chs1 — \_(M )™(g _VZATCk)JdtZ +2C —C

we already know how to calculate the matrix A but
how can we calculate matrix M?




Matrix assembly




Numerical example - regular grid

FDO —blue; FEWM — red; Time = Q.02008003 =
0.0 T T T T

Q.02

0.m

0.

This is a movie obtained with the sample Matlab program: femfd.m




Finite Elements - Summary

FE solutions are based on the “weak form” of the partial
differential equations

FE methods lead in general to a linear system of equations
that has to be solved using matrix inversion techniques
(sometimes these matrices can be diagonalized)

FE methods allow rectangular (hexahedral), or triangular
(tetrahedral) elements and are thus more flexible in terms of
grid geometry

The FE method is mathematically and algorithmically more
complex than FD

The FE method is well suited for elasto-static and elasto-
dynamic problems (e.g. crustal deformation)




Finite volumes

Finite volumes ...

A numerical method based on a discrete version of
Gauss’ theorem.

- The theoretical basis
- FV for hexagonal and irregular grids

.. this part is based on :
Dormy E. and Tarantola A., J. Geophys. Res., 100, 2123-2133, 1995.




Finite volumes - basic theory

---------
...........
..........

.. as the figure suggests, the FV method is based on the
idea of knowing a 3D field at the sides of a surface
surrounding a finite volume. Is there a mathematical
theorem relating the (vector) fields inside a volume with
the values at its surface? ... Yes, it s Gauss”™ theorem




Finite volumes - Gauss’ theorem

Gauss’ theorem:

(by the way one of the most important
results on mathematical physics)

LdVGiWi = L}dSnivvi

1 1
OiVik... =~ A—SZAL" ny Vix... OVik.. =~ HZAS" ny Vi .
o o

S boundary surrounding V

v volume inside S

w, vector field

n; unitary normal to the surface
(pointing outwards)




Finite volumes - 3D

We simply need to turn
Gauss’ theorem into a
discrete versionl

Assumption: smoothly

varying W, V... ™ ALSZM* nfVi. V.= —A—IVZAS" n Vi
_ 1 NN
oW, =— » AS n
17 Tk a Kk
AV 7

W, arbitrary tensor field
AV total volume
AS, surface segment

unitary normal to the surface
o number of surface segments




Finite volumes - 2D

1 1
Vi, ~ A5 Z ALY ny VJ';’, OiVi.. =~ AV z AS?n? er;:...
o (2 4

Wi, arbitrary tensor field

AS total surface

AL, boundary segment

n; unitary normal to the surface
o number of surface segments

How can we use these ideas to solve p.d.e.”s ?




Finite volumes - space grids

2D Euclidian space
- Lozenges

- staggered grid

2D Euclidian space
- hexagons
- minimal grid




Finite volumes

o W

WL-{B) - Vij...

(A)

2A

' j - 2(V4y..(B) + V5. (A
(0, Vi O) e L) $(Vy..(B) +Vij..(4)

B

Minimal grid for finite volumes

V3a




Finite volumes - space grids

Voronoi cell for FD grid

. S = i
T Gt

» 3
=10
—= /%%wf?/_/t
T X fr™ f ™ T} ;/?/

AT
o /*T’/T

Classic FD grid in 3D

other.

The Voronoi diagrams of an unstructured set of
nodes divides the plane into a set of regions, one
for each node, such that any point in a particular
region is closer to that regions node than to any




Voronoi cells
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Finite volumes - volumes and surfaces




Voronoi Cells in Nature
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Waves with finite volumes
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Kdser, Igel, Sambridge, Braun, 2001
Kdser and Igel, 2001




Finite volumes: summary

The finite volume method is an elegant approach to solving partial
differential equations on unstructured grids.

The finite volume method is based on a discretization of
Gauss’ theorem.

The FV method is frequently applied to flow problems. High-order
approaches have been recently developed.

The FV method requires the calculation of volumes and surfaces for

each cell. This may involve the calculation of Voronoi cells and
triangulation.




Numerical methods — current challenges

Most numerical methods have been applied to problems in Earth
sciences, but ...

... often there is not one particular method that solves all
problems with the same efficiency ...

e ... there are still problems when complex shapes are involved
(grid generation) ...
e ...oOftenitis useful to combine the “good” properties of

various methods (e.g. FE with FV, pseudospectral methods

with FE, etc.) for specific applications ...
e ... forrealistic problems the methods need to work well on

parallel computers ...




Numerical methods ... in all fields of Earth sciences

Seismology

PKiKP

Granular media -
rupture

Global dynamics

Mixing -
Geochemistry

i

Earth’s magnetic field

Regional earthquakes




