Basic Concepts in 1-D - Qutline

Basics

- Formulation
- Basis functions
- Stiffness matrix

Poisson's equation

- Regular grid
- Boundary conditions
- Irregular grid

Numerical Examples
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Formulation

Let us start with a simple linear system of equations

Ax=Db | >y

and observe that we can generally multiply both sides of
this equation with y without changing its solution. Note
that x,y and b are vectors and A is a matrix.

—YAxyb yeR"

We first look at Poisson's equation

—Au(x) = f (x)
where u is a scalar field, f is a source term and in 1-D
2
A — V2 — ~ 0
OX
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Formulation - Poisson’s equation
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We now multiply this equation with an arbitrary function
v(x), (dropping the explicit space dependence)

—Auv = fv

... and integrate this equation over the whole domain. For

reasons of simplicity we define our physical domain D in
the interval [0, 1].

Das Reh springt hoch,
— _[Auv = j fv . .
das Reh springt weit,
D D

warum auch nicht,

1 1
—J‘AUVdX _ J' fvdx es hat ja Zeit.
0 0

... why are we doing this? ... be patient ...
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Discretization

As we are aiming to find a numerical solution to our problem it
is clear we have to discretize the problem somehow. In FE
problems - similar o FD - the functional values are known at a
discrete set of points.

... regular grid ...

+ + + + + + + + + + + + + + + F+ + + + +

... irreqular grid ...

-+ +H + 4+ o+ o+ + ++

A
\ 4

Domain O

The key idea in FE analysis is to approximate all
functions in terms of basis functions o, so that

N
u zU:ZCigpi

=1
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Basis functi RS

Wi |

asis runctrion v,

+ ++H + W + + + + 4+ + + +

N
i=1

where N is the number nodes in our physical domain
and c; are real constants.

With an appropriate choice of basis functions ¢, the
coefficients c, are equivalent to the actual function
values at node point i. This - of course - means, that
¢=1 at node i and O at all other nodes ...

Doesn't that ring a bell?

Before we look at the basis functions, let us ...
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Partial Integration

... partially integrate the left-hand-side of our equation ...

— jAuvdx = j fvdx
0 0

1 1
— [(V e Vu)vdx =[Vuv]+ | VvVudx
S 0

/

we assume for now that the derivatives of u at the boundaries vanish
so that for our particular problem

1 1
— j (VeVu)vdx = vaVudx
0 0
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... S0 that we arrive at ...
1 1
jVqudx = j fvdx
0 0

... with u being the unknown. This is also true for our
approximate numerical system

jVUVvdx = j fvdx
0 0

... Where ...

was our choice of approximating u using basis functions.
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Partial Integration

VYA
VAYA
SOYANAN|
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ARG

jVUVvdx = j fvdx
0 0

... remember that v was an arbitrary real function ...
if this is true for an arbitrary function it is also true if

V=§0j

... so any of the basis functions previously defined ...

... how let’s put everything together ...
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The discrete system
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The ingredients:

jVGVvdx = j fvdx
0 0

!

1 0 1
IV[Z C.o. ngokdX = j f @, dx
0 0

i=1

... leading to ...
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The discrete system ]

... tThe coefficients c, are constants so that for one
particular function o, this system looks like ...

n 1 1
ZCiIVgongpkdX =I f o, dx
=l 0 0

\ t f

... probably not to your surprise this can be written in matrix form
/

0; Ay, = 9,
Aib; =g,
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The solution

... with the even less surprising solution

i as well because of our particular choice of basis functions.

This become clear further on ...

remember that while the b.'s are really the coefficients of the
basis functions these are the actual function values at node points
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The basis functions s

&

we are looking for functions ¢, 1 for x=X

with the following property @i (X) = 0 for x= X, j#i
| | | | | | | | /
... otherwise we are 10 e
free to choose any 9 e

function ... : S
The simplest choice 7 e Sy

are of course linear 5 L A o
func-lnions: [ [ [ [ [ | [ [ [
5 SN

blue lines - basis 3 — S
functions ¢, 2 B
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The basis functions - gradient

To assemble the stiffness matrix we need the gradient (red) of the basis
functions (blue)

10

<SS O N -

Finite Elements
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The stiffness matrix S

Knowing the particular form of the basis functions we can now
calculate the elements of matrix A;; and vector g

- 1 1
iz_llci!V(ingokdx:!fgokdx - bA =g,
1

Ay :jvgoiV(DkdX Yi :j fgﬁkdX
0 0

Note that ¢, are continuous functions defined in the interval [0,1], e.g.

XX for x_,<X<X
Xi — X1
o (X) = i,y — X or % <x<x Let us - for now - assume a
| Xia =X | i regular grid ... then
0 elsewhere
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The stiffness matrix - regular grid

X=Xa  for
XV_K4
X .. —X
o.(X)=1—2 " for
&ﬂ_xi
0
O;
A
X;

X, < XX

X, < X< X4

elsewhere

—

(o~

@Ki):<1_2i

... where we have used ...

v

L+1 for —dx<X<0
dx _
for 0<X<dx
dx
0 elsewhere
X=X— Xi
dX =X —X_,
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Regular grid - Gradient R
(1/dx  for —-dx<X<0 -
- - X =X—=X
Ve (X)=1-1/dx for 0<Xx<dx
X=X —X
\ 0 elsewhere d ' i-1
O;
1/dx
dx
-1/dx
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Stiffness matix - elements

1
Ay :Iv¢iv¢kdx
0

=
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=
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... we have to distinguish various cases ... e.g. ...

1 Xq +0x
A= [VoVedi= [VoVedx=
0 Xq
1 X5
Ay, = j Vo,V e,dx = I Vo,V ,dx+
0 Xy —dX
1 0 1 dx
— .2 j dX + 2 j dX — i
dx® =, dx” 4 dx

Xq +dX 1 dx
—1—1dx = iz j dx = 1
y  dxdx dx” ; dx
X5 +dX
IV(ongpzdx
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Stiffness matix - elements

=
o

L : —
0 . e
e
1 t+ : :
and
1 X +0x x1+dx_1 1
=|Vo,Vp,dx= |Vo.Ve,dx = — —dXx
A, ! oV 0, f oV o, f =

dx
:__];J- dXZ_—l
dx” ¢ dx

Ay = Ay

... 0 that finally the stiffness matrix looks like ...
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Stiffness matix - elements

=
o

1 : ==
Alk:J-V¢,V(0kdX ; LLL |
0 ° | ‘ b -
.
1 T
1 -1
1 -1 2 -1
Aﬁj:& )
-1 2 -1
-1 1

... so far we have ignored sources and boundary conditions ...
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Boundary conditions - sources

... let us start restating the problem ...
—Au(x) = f (x)

... which we turned into the following formulation .

n 1 1
ZCiJVgongokdX = j f o, dx
=1 0 0

... assuming ...

N N -1
U=>ce  withbe U=)
i =2

Cio; +Uu(0)p, +u)e,

where u(0) and u(1) are the values at the boundaries of the domain
[0,1]. How is this incorporated into the algorithm?
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Boundary conditions - sources

1 1

Zn:CiJV¢iV¢kdX = j f o, dx

i=1 0 0

—Au(x) = f(x)

... which we turned into the following formulation ...

n-1
Ci
i=2

1 1 1 1
jw,wkdx:j f¢kdx+u(0)jv¢1v¢kdx+u(1)jv¢nv¢kdx
0 0 0 0
... in pictorial form ...
boundary condition

AT b = g /
- ]
source heterogeneity (f)
— &
boundary condition
= L]

... the system feels the boundary conditions through the (modified) source term
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Numerical example - regular grid

Matlab FEM code

—Au(x) = f(x)

Domain: [0,1]; nx=100;
dx=1/(nx-1);f(x)=5(1/2)
Boundary conditions:
u(0)=u(1)=0

Matlab FD code
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Numerical example - regular grid

—Au(x) = f(x)

Domain: [0,1]; nx=100;
dx=1/(nx-1);f(x)=5(1/2)
Boundary conditions:
u(0)=u(1)=0

Matlab FD code (red)

Matlab FEM code (blue)

u(x)

0.25

FD (red) - FEM (blue)

0.2

0.15 -

0.1

0.05 +

1
0.1

1
0.2

1
0.3

1
0.4

1
0.6

1
0.7

1
0.8

1
0.9
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Regular grid - non-zero b.c.

—Au(x) = f(x)

Domain: [0,1]; nx=100; 04 FD ‘(red) - FEM (bltJe) -> R‘egular ?rid

dx=1/(nx-1);f(x)=5(1/2)

Boundary conditions: . |

u(0)=0.15 ' y

u(1)=0.05 | // |
% Quelle
s=(1:nx)*0;s(nx/2)=1.; 1
% Rand t link 1 int bl hi_1 bl

Matlab FD code (r'ed) IC;Jhi;m}wer inks u_1 int{ nabla phi_1 nabla |

ul=0.15; s(2) =ul/dx;

% Randwert links u_nx int{ nabla phi_nx nabla
phij } 1
Matlab FEM code (blue) | Unx=0-05; sCnx-1)=unx/dx;

0.05 -
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Stiffness matrix - irregular grid e
1 Z S
Ac=[VoVedd —
0 5 | | | | |
4 T
3 — T —
2 4/Ju 1 —
L T - -
1 X +hy X, +hy _1 1
A12:_!-V¢1V(02dx: lev%V(ngX: ! h—lﬁdx
~17 —1
:FJ‘ dX:h—:A21 -
1 0 1 =1 2 3 4 5 6 7
1 1 + + 4+ + + + o+
Ai:EJrh_i h, h, hy hy hs hg
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Numerical example - irregular grid AR

—Au(x) = f(x)

Domain: [0,1]; nx=100;
dx=1/(nx-1);f(x)=8(1/2)
Boundary conditions:
u(0)=u0; u(1)=ul

Numerical Methods in Geophysics

Stiffness matrix A
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Irregular grid - non-zero b.c.

—Au(x) = f(x)

Domain: [0,1]; nx=100;
dx=1/(nx-1);f(x)=5(1/2)
Boundary conditions:
u(0)=0.15

u(1)=0.05

Matlab FD code (red)

Matlab FEM code (blue)

+ FEM grid points

u(x)

0.4

0.35+

0.3+

0.25

0.2

FEM on Chebyshev grid

FD (red) - FEM (blue)

0.154#

0.1

0.05 -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.9 1
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Finite elements - summary of the basics

In finite element analysis we approximate a function
defined in a Domain D with a set of orthogonal basis
functions with coefficients corresponding to the functional
values at some node poinfts.

The solution for the values at the nodes for some partial
differential equations can be obtained by solving a linear
system of equations involving the inversion of (sometimes
sparse) matrices.

Boundary conditions are inherently satisfied with this
formulation which is one of the advantages compared to
finite differences.
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