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FormulationFormulation

Let us start with a simple linear system of equations

| * y

and observe that we can generally multiply both sides of 
this equation with y without changing its solution. Note 
that x,y and b are vectors and A is a matrix.

bAx=

nyybyAx ℜ∈=→

We first look at Poisson’s equation

)()( xfxu =Δ−
where u is a scalar field, f is a source term and in 1-D
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Formulation – Poisson’s equationFormulation – Poisson’s equation

fvuv =Δ−

We now multiply this equation with an arbitrary function 
v(x), (dropping the explicit space dependence)

... and integrate this equation over the whole domain. For 
reasons of simplicity we define our physical domain D in 
the interval [0, 1].

∫∫ =Δ−
DD

fvuv

dxfvdxuv ∫∫ =Δ−
1

0

1

0

Das Reh springt hoch,

das Reh springt weit,

warum auch nicht,

es hat ja Zeit.

... why are we doing this? ... be patient ...
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DiscretizationDiscretization

As we are aiming to find a numerical solution to our problem it 
is clear we have to discretize the problem somehow. In FE 
problems – similar to FD – the functional values are known at a 
discrete set of points. 

... regular grid ...

... irregular grid ...

Domain D
The key idea in FE analysis is to approximate all 
functions in terms of basis functions ϕ, so that

i

N

i
icuu ϕ∑

=

=≈
1

~



Numerical Methods in Geophysics Finite Elements

Basis functionBasis function

where N is the number nodes in our physical domain 
and ci are real constants.

With an appropriate choice of basis functions ϕi, the 
coefficients ci are equivalent to the actual function 
values at node point i. This – of course – means, that 
ϕi=1 at node i and 0 at all other nodes ...

Doesn’t that ring a bell?

Before we look at the basis functions, let us ...
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Partial IntegrationPartial Integration

... partially integrate the left-hand-side of our equation ...

dxfvdxuv ∫∫ =Δ−
1

0
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0

[ ] dxuvuvdxvu ∫∫ ∇∇+∇=∇•∇−
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we assume for now that the derivatives of u at the boundaries vanish 
so that for our particular problem

dxuvdxvu ∫∫ ∇∇=∇•∇−
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... so that we arrive at ...

... with u being the unknown. This is also true for our 
approximate numerical system

dxfvdxvu ∫∫ =∇∇
1

0

1

0

... where ...
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was our choice of approximating u using basis functions.

dxfvdxvu ∫∫ =∇∇
1

0
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Partial IntegrationPartial Integration

... remember that v was an arbitrary real function ... 
if this is true for an arbitrary function it is also true if

... so any of the basis functions previously defined ...

jv ϕ=

... now let’s put everything together ... 

dxfvdxvu ∫∫ =∇∇
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The discrete systemThe discrete system

The ingredients:
kv ϕ=
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dxfvdxvu ∫∫ =∇∇
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dxfdxc kk

n
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... leading to ...
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The discrete systemThe discrete system

dxfdxc kki

n

i
i ϕϕϕ ∫∫∑ =∇∇

=
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0
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... the coefficients ck are constants so that for one 
particular function ϕk this system looks like ...

kiki gAb =
... probably not to your surprise this can be written in matrix form

ki
T
ik gbA =
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The solutionThe solution

... with the even less surprising solution

( ) k
T
iki gAb 1−

=

remember that while the bi’s are really the coefficients of the 
basis functions these are the actual function values at node points 

i as well because of our particular choice of basis functions.

This become clear further on ...
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The basis functionsThe basis functions

... otherwise we are 
free to choose any 
function ...

The simplest choice 
are of course linear 
functions:

+ grid nodes

blue lines – basis 
functions ϕi
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we are looking for functions ϕi 
with the following property ⎩
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The basis functions - gradientThe basis functions - gradient

To assemble the stiffness matrix we need the gradient (red) of the basis 
functions (blue)
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The stiffness matrixThe stiffness matrix

Knowing the particular form of the basis functions we can now 
calculate the elements of matrix Aij and vector gi

dxfdxc kki

n
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i ϕϕϕ ∫∫∑ =∇∇
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dxA kiik ∫ ∇∇=
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kiki gAb =

dxfg kk ϕ∫=
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0

Note that ϕi are continuous functions defined in the interval [0,1], e.g.

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<<
−

−

≤<
−
−

= +
+

+

−
−

−

elsewhere

xxxfor
xx
xx

xxxfor
xx
xx

x ii
ii

i

ii
ii

i

i

0

)( 1
1

1

1
1

1

ϕ
Let us – for now – assume a 

regular grid ... then
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The stiffness matrix – regular gridThe stiffness matrix – regular grid

... where we have used ...
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Regular grid - GradientRegular grid - Gradient

⎪
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Stiffness matix - elementsStiffness matix - elements

dxA kiik ∫ ∇∇=
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... we have to distinguish various cases ... e.g. ...
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Stiffness matix - elementsStiffness matix - elements

dxA kiik ∫ ∇∇=
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... and ...

... so that finally the stiffness matrix looks like ...
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Stiffness matix - elementsStiffness matix - elements

dxA kiik ∫ ∇∇=
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... so far we have ignored sources and boundary conditions ...
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Boundary conditions - sourcesBoundary conditions - sources

... let us start restating the problem ...

)()( xfxu =Δ−

... which we turned into the following formulation ...

dxfdxc kki
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... assuming ...
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where u(0) and u(1) are the values at the  boundaries of the domain 
[0,1]. How is this incorporated into the algorithm? 
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Boundary conditions - sourcesBoundary conditions - sources

)()( xfxu =Δ−

... which we turned into the following formulation ...

dxfdxc kki
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... in pictorial form ...
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boundary condition 

boundary condition 

source heterogeneity (f) 

... the system feels the boundary conditions through the (modified) source term

AT b = g



Numerical Methods in Geophysics Finite Elements

Numerical example – regular gridNumerical example – regular grid

)()( xfxu =Δ−

Domain: [0,1]; nx=100; 
dx=1/(nx-1);f(x)=δ(1/2)
Boundary conditions:
u(0)=u(1)=0

f(nx/2)=1/dx;

for it = 1:nit,

uold=u;

du=(csh(u,1)+csh(u,-1));

u=.5*( f*dx^2 + du );

u(1)=0;

u(nx)=0;

end

Matlab FD code

% source term
s=(1:nx)*0;s(nx/2)=1.;
% boundary left  u_1 int{ nabla phi_1 nabla phij }
u1=0;   s(1) =0;
% boundary right  u_nx int{ nabla phi_nx nabla phij }
unx=0; s(nx)=0;

% assemble matrix Aij

A=zeros(nx);

for i=2:nx-1,
for j=2:nx-1,

if i==j, 
A(i,j)=2/dx;

elseif j==i+1
A(i,j)=-1/dx;

elseif j==i-1
A(i,j)=-1/dx;

else
A(i,j)=0;

end
end

end
fem(2:nx-1)=inv(A(2:nx-1,2:nx-1))*s(2:nx-1)';
fem(1)=u1;
fem(nx)=unx;

Matlab FEM code
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Numerical example – regular gridNumerical example – regular grid

)()( xfxu =Δ−

Domain: [0,1]; nx=100; 
dx=1/(nx-1);f(x)=δ(1/2)
Boundary conditions:
u(0)=u(1)=0

Matlab FD code (red)

Matlab FEM code (blue)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

x

u(
x)

 FD (red) - FEM (blue) 
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Regular grid – non-zero b.c.Regular grid – non-zero b.c.

)()( xfxu =Δ−

Domain: [0,1]; nx=100; 
dx=1/(nx-1);f(x)=δ(1/2)
Boundary conditions:
u(0)=0.15
u(1)=0.05

Matlab FD code (red)

Matlab FEM code (blue)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

u(
x)

 FD (red) - FEM (blue) -> Regular grid 

% Quelle

s=(1:nx)*0;s(nx/2)=1.;

% Randwert links  u_1 int{ nabla phi_1 nabla 
phij }

u1=0.15;   s(2) =u1/dx;

% Randwert links  u_nx int{ nabla phi_nx nabla 
phij }

unx=0.05; s(nx-1)=unx/dx;
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Stiffness matrix - irregular gridStiffness matrix - irregular grid

1

2

3

4

5

6

7

8

9

10

dxA kiik ∫ ∇∇=
1

0

ϕϕ

21
10

2

11
21

1

0
2112

11

11

1

1

11

1

11

1

A
h

dx
h

dx
hh

dxdxA

h

hx

x

hx

x

=
−

=
−

=

−
=∇∇=∇∇=

∫

∫∫∫
++

ϕϕϕϕ

ii
ii hh

A 11

1

+=
−

i=1     2     3     4     5      6     7
+     +     +     +     +     +     +

h1     h2       h3      h4      h5      h6



Numerical Methods in Geophysics Finite Elements

Numerical example – irregular gridNumerical example – irregular grid

)()( xfxu =Δ−

Domain: [0,1]; nx=100; 
dx=1/(nx-1);f(x)=δ(1/2)
Boundary conditions:
u(0)=u0; u(1)=u1

for i=2:nx-1,

for j=2:nx-1,

if i==j,

A(i,j)=1/h(i-1)+1/h(i);

elseif i==j+1

A(i,j)=-1/h(i-1);

elseif i+1==j

A(i,j)=-1/h(i);

else

A(i,j)=0;

end

end

end

i=1   2       3      4   5      6        7
+   +      +      +   +      +       +

h1    h2       h3      h4     h5       h6

Stiffness matrix A
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Irregular grid – non-zero b.c.Irregular grid – non-zero b.c.

)()( xfxu =Δ−

Domain: [0,1]; nx=100; 
dx=1/(nx-1);f(x)=δ(1/2)
Boundary conditions:
u(0)=0.15
u(1)=0.05

Matlab FD code (red)

Matlab FEM code (blue)

+ FEM grid points 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.35

0.4

x

u(
x)

 FD (red) - FEM (blue) 

FEM on Chebyshev grid



Numerical Methods in Geophysics Finite Elements

Finite elements – summary of the basicsFinite elements – summary of the basics

In finite element analysis we approximate a function 
defined in a Domain D with a set of orthogonal basis 
functions with coefficients corresponding to the functional 
values at some node points. 

The solution for the values at the nodes for some partial 
differential equations can be obtained by solving a linear 
system of equations involving the inversion of (sometimes 
sparse) matrices. 

Boundary conditions are inherently satisfied with this 
formulation which is one of the advantages compared to 
finite differences.

In finite element analysis we approximate a function 
defined in a Domain D with a set of orthogonal basis 
functions with coefficients corresponding to the functional 
values at some node points. 

The solution for the values at the nodes for some partial 
differential equations can be obtained by solving a linear 
system of equations involving the inversion of (sometimes 
sparse) matrices. 

Boundary conditions are inherently satisfied with this 
formulation which is one of the advantages compared to 
finite differences.


