Numerical methods

Motivation

Specific methods:

*  Finite differences
High-order FD methods
Pseudospectral methods
Finite elements
Finite volumes

Applications
- Wave propagation
Rupture problems
Volcano seismology
Global wave propagation
Earthquake scenarios




Why numerical methods?

Example: seismic wave propagation

Seismometers ‘

homogeneous medium

In this case there
are analytical solutions?
Are they useful?

explosion




Why numerical methods?

Example: seismic wave propagation

Seismometers

layered medium

... In this case quasi-analytical
solutions exist, applicable for example
for layered sediments ...

explosion




Why numerical methods?

Example: seismic wave propagation

Seismometers
N ||

long wavelength
perturbations

... In this case high-frequency
explosion approximations can be used

(ray theory)
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And big computers ...

| methods
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#% solutions! ...

Seismometers
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Example: seismic wave propagation
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Spatial Scales and Memory

(back of the envelope)

Highest frequency: 0.1 Hz
Shortest wavelength: 20 km (crust)
Shortest wavelength: 50 km (mantle)
Grid points per wavelength: 5

Grid spacing: 2000 m (crust)
Grid spacing: 5000 m (mantle)

Required grid points: O(10°)
Required memory:  O(100 GBytes)




Data fitting - Inversion
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Partial Differential Equations in Geophysics

0°p =C’Ap + s

2 2 2
A= (0 +0 +0;)
P pressure
c acoustic wave speed
s sources

The acoustic
wave equation

- seismology

- acoustics

- oceanography
- meteorology

dtC=kAC-veVC-RC+p

T < X O

tracer concentration
diffusivity

flow velocity
reactivity

sources

Diffusion, advection,
Reaction

- geodynamics

- oceanography

- meteorology

- geochemistry
- sedimentology

- geophysical fluid dynamics




Numerical methods: properties

Finite differences

v

Finite elements

Finite volumes

v

v

- time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- Maxwell’'s equations

- Ground penetrating radar

-> robust, simple concept, easy to
parallelize, regular grids, explicit method

- static and time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- all problems

-> implicit approach, matrix inversion, well founded,
irreqular grids, more complex algorithms,
engineering problems

- time-dependent PDEs

- seismic wave propagation

- mainly fluid dynamics

-> robust, simple concept, irreqular grids, explicit
method




Other Numerical methods:

Particle-based
methods

- lattice gas methods

- molecular dynamics

- granular problems

- fluid flow

- earthquake simulations

-> very heterogeneous problems, nonlinear problems

Boundary element
methods

Pseudospectral
methods

- problems with boundaries (rupture)

- based on analytical solutions

- only discretization of planes

--> good for problems with special boundary conditions
(rupture, cracks, etc)

- orthogonal basis functions, special case of FD

- spectral accuracy of space derivatives

- wave propagation, GPR

-> reqular grids, explicit method, problems with
strongly heterogeneous media




What is a finite difference?

Common definitions of the derivative of f(x):

f (x+dx)— f(x)

o0, f=1Iim
dx—0 dX

5 f = lim f(x)— f(x—dx)
dx—0 dx

o f = lim f (x+dx)— f(x—dx)
dx—0 2dx

These are all correct definitions in the limit dx->0.

But we want dx to remain FINITE




What is a finite difference?

The equivalent approximations of the derivatives are:

5 x f(Xx+dx)— f(x)

N forward difference
dx

o f = f(x)—f(x—dx)
dx

backward difference

3 f f (x+dx)— f(x—dx)
’ 20X

centered difference




The blg guestion:

How good are the FD approximations?

N —

This leads us to Taylor series....
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QOur first FD algorithm (acld.m) !

0°p = C°Ap + S P pressure
| 2 > ; c acoustic wave speed
A=(0,+0) +0;) S sources

Problem: Solve the 1D acoustic wave equation using the finite
Difference method.

Solution: I
c’dt ?

p(t+dt) = = Ip(x+dx)—2p(x)+ p(x—dx)]
+2p(t)— p(t—dt)+ sdt ®




Problems: Stability

p(t+dt) = Cdftz Ip(x+dx)—2p(x)+ p(x—dx)]

+2p(t)— p(t—dt)+ sdt ?

Stability: Careful analysis using harmonic functions shows that
a stable numerical calculation is subject to special conditions
(conditional stability). This holds for many numerical problems.




Problems: Dispersion

Mumerical group welocity

1000} |

p(t+dt) = Cdftz Ip(x+dx)—2p(x)+ p(x—dx)]

+2p(t)— p(t—dt)+ sdt ?

Group velocity Dispersion: The numerical

approximation has
artificial dispersion,

in other words, the wave
speed becomes frequency
dependent.

You have to find a
frequency bandwidth
where this effect is small.
The solution is to use a
sufficient number of grid

True velocity

5 10 15 20 25 points per wavelength.
Mumber of points per wavelength




Qur first FD code!

p(t+dt)=%[p(x+dx)—2p(x)+ p(x —dx)]

+2p(t)— p(t—dt)+ sdt ?

% Time stepping
for i=1:nt,
% FD

disp(sprintf(® Time step : %i",i));

for j=2:nx-1

d2p(D=(p g+ -2*p(g)+p(-1))/dx"2; % space derivative
end
pnew=2*p-pold+d2p*dt"2; % time extrapolation
pnew(nx/2)=pnew(nx/2)+src(i)*dt"2; % add source term
pold=p; % time levels
p=pnew;
p(1)=0; % set boundaries pressure free
p(nNx)=0;
% Display

pIOt(X1p1 'b_')
title(" FD )
drawnow

end




Snapshot Example

Velocity 5 km/s
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Seismogram Dispersion
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Finite Differences - Summary

Conceptually the most simple of the numerical methods and
can be learned quite quickly

Depending on the physical problem FD methods are
conditionally stable (relation between time and space
Increment)

FD methods have difficulties concerning the accurate
Implementation of boundary conditions (e.g. free surfaces,
absorbing boundaries)

FD methods are usually explicit and therefore very easy to
Implement and efficient on parallel computers

FD methods work best on regular, rectangular grids




