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The Elastic Wave EquationThe Elastic Wave Equation

• Elastic waves  in infinite homogeneous isotropic media

Numerical simulations for simple sources

• Plane wave propagation in infinite media 

Frequency, wavenumber, wavelength

• Conditions at material discontinuities

Snell’s Law
Reflection coefficients
Free surface

• Reflection Seismology: an example from the Gulf of Mexico
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Equations of motionEquations of motion
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What are the solutions to this equation? At first we look
at infinite homogeneous isotropic media, then:
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Equations of motion – homogeneous mediaEquations of motion – homogeneous media
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We can now simplify this equation using the curl and div operators
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and u-uu ×∇×∇•∇∇=∆
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… this holds in any coordinate system …

This equation can be further simplified, separating the wavefield into 
curl free and div free parts 
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Equations of motion – P wavesEquations of motion – P waves
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Let us apply the div operator to this equation, we obtain
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P wave velocity

Acoustic wave 
equation
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Equations of motion – shear wavesEquations of motion – shear waves
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Let us apply the curl operator to this equation, we obtain
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we now make use of and define0=∇×∇ θ

iiu ϕ=×∇ Shear wave
velocity
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Wave equation for 
shear waves
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Elastodynamic Potentials Elastodynamic Potentials 

Any vector may be separated into scalar and vector potentials

Ψ×∇+Φ∇=u
where P is the potential for Φ waves and Ψ the potential for shear waves

∆Ψ−=Ψ×∇×∇=×∇=⇒ uϕ∆Φ=⇒ θ

P-waves have no rotation Shear waves have no change in volume
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Seismic Velocities Seismic Velocities 

Material and Source P-wave velocity (m/s) shear wave velocity (m/s)
Water 1500 0

Loose sand 1800 500

Clay 1100-2500

Sandstone 1400-4300

Anhydrite, Gulf Coast 4100

Conglomerate 2400

Limestone 6030 3030

Granite 5640 2870

Granodiorite 4780 3100

Diorite 5780 3060

Basalt 6400 3200

Dunite 8000 4370

Gabbro 6450 3420
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Solutions to the wave equation - generalSolutions to the wave equation - general

Let us consider a region without sources 

ηη ∆=∂ 22 c
t

Where n could be either dilatation or the vector potential and c is 
either P- or shear-wave velocity. The general solution to this equation 
is: 

)(),( ctxaGtx jji ±=η

Let us take a look at a 1-D example
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Solutions to the wave equation - harmonicSolutions to the wave equation - harmonic

Let us consider a region without sources 

ηη ∆=∂ 22 c
t

The most appropriate choice for G is of course the use of 
harmonic functions:
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Solutions to the wave equation - harmonicSolutions to the wave equation - harmonic

… taking only the real part and considering only 1D we obtain
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c wave speed
k wavenumber

λ wavelength

T period

ω frequency

A amplitude
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Spherical WavesSpherical Waves

Let us assume that η is a function 
of the distance from the sourceηη ∆=∂ 22 c

t

ηηηη t
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where we used the definition of the 
Laplace operator in spherical coordinates
let us define

to obtain r
ηη =
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with the known solution )( trf αη −=
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Geometrical spreadingGeometrical spreading

so a disturbance propagating away with spherical 
wavefronts decays like

r
trf

r
1)(1

≈−= ηαη
r

... this is the geometrical spreading for 
spherical waves, the amplitude decays 
proportional to 1/r.

If we had looked at cylindrical waves the result would have 
been that the waves decay as (e.g. surface waves) 

r
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≈η
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Plane wavesPlane waves

... what can we say about the direction of displacement, the
polarization of seismic waves?

Ψ×∇+Φ∇=u SPu +=⇒

Ψ×∇=SΦ∇=P
... we now assume that the potentials have the well known form 

of plane harmonic waves

)(exp tiA ω−•=Φ xk )(exp tiB ω−•=Ψ xk
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shear waves are transverse 
because S is normal to the wave 

vector k

P waves are longitudinal as P is 
parallel to k
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HeterogeneitiesHeterogeneities

.. What happens if we have heterogeneities ?

Depending on the kind of 
reflection part or all of the signal 
is reflected or transmitted.

• What happens at a free surface?
• Can a P wave be converted in an S wave 

or vice versa?
• How big are the amplitudes of the     

reflected waves?
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Boundary ConditionsBoundary Conditions

... what happens when the material parameters change?

ρ1 v1

welded interface

ρ2 v2 At a material interface we 
require continuity of 

displacement and traction

A special case is the free surface condition, where the surface 
tractions are zero.
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Reflection and Transmission – Snell’s LawReflection and Transmission – Snell’s Law

What happens at a (flat) material discontinuity?

Medium 1: v1

Medium 2: v2
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v
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But how much is reflected, how much transmitted?
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Reflection and Transmission coefficientsReflection and Transmission coefficients

Let’s take the most simple example: P-waves with normal 
incidence on a material interface

Medium 1: r1,v1

Medium 2: r2,v2

T
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At oblique angles conversions from S-P, P-S have to be 
considered.
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Reflection and Transmission – AnsatzReflection and Transmission – Ansatz

How can we calculate the amount of energy that is 
transmitted or reflected at a material discontinuity?

We know that in homogeneous media the displacement 
can be described by the corresponding potentials

Ψ×∇+Φ∇=u
in 2-D this yields
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an incoming P wave has the form
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Reflection and Transmission – AnsatzReflection and Transmission – Ansatz

... here ai are the components of the vector normal to the 
wavefront : ai=(cos e, 0, -sin e), where e is the angle between 
surface and ray direction, so that for the free surface
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Reflection and Transmission – CoefficientsReflection and Transmission – Coefficients

... putting the equations for the potentials (displacements) into 
these equations leads to a relation between incident and 
reflected (transmitted) amplitudes
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These are the reflection coefficients for a plane P wave incident 
on a free surface, and reflected P and SV waves. 
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Case 1: Reflections at a free surfaceCase 1: Reflections at a free surface

A P wave is incident at the free surface ...

P P
SV

i j

The reflected amplitudes can be described by the 
scattering matrix S
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Case 2: SH wavesCase 2: SH waves

For layered media SH waves are completely decoupled 
from P and SV waves

SH

There is no conversion only SH waves are reflected or 
transmitted
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Case 3: Solid-solid interfaceCase 3: Solid-solid interface

P Pr
SVr

PtSVt

To account for all possible reflections and transmissions 
we need 16 coefficients, described by a 4x4 scattering 
matrix.
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Case 4: Solid-Fluid interfaceCase 4: Solid-Fluid interface

P Pr
SVr

Pt

At a solid-fluid interface there is no  conversion to SV in 
the lower medium. 
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Reflection coefficients - exampleReflection coefficients - example
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Reflection coefficients - exampleReflection coefficients - example
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Refractions – waveform effectsRefractions – waveform effects
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Scattering and AttenuationScattering and Attenuation

Propagating seismic waves loose energy due to

• geometrical spreading

e.g. the energy of spherical wavefront emanating from a point source is 
distributed over a spherical surface of ever increasing size 

• intrinsic attenuation

elastic wave propagation consists of a permanent exchange between 
potential (displacement) and kinetic (velocity) energy. This process is 
not completely reversible. There is energy loss due to shear heating at 
grain boundaries, mineral dislocations etc.

• scattering attenuation  

whenever there are material changes the energy of a wavefield is
scattered in different phases. Depending on the material properties 
this will lead to amplitude decay and dispersive effects.
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Intrinsic attenuationIntrinsic attenuation

How can we describe intrinsic attenuation? Let us try a spring 
model:

The equation of motion for a damped harmonic oscillator is 
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where ε is the friction coefficient.
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QQ

The solution to this system is
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Q is the energy loss per cycle. Intrinsic attenuation in the Earth is 
in general described by Q.
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Dispersion effectsDispersion effects

What happens if we have frequency independent Q, i.e. each 
frequency looses the same amount of energy per cycle?

xQvfeAxA )(
0)( π−=

high frequencies – more oscillations – more attenuation
low frequencies – less oscillations – less attenuation

Consequences:

- high frequencies decay very rapidly
- pulse broadening

In the Earth we observe that Qp is large than QS. This is due to the 
fact that intrinsic attenuation is predominantly caused by shear
lattice effects at grain boundaries.
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Q in the EarthQ in the Earth

Rock Type Qp QS

Shale 30 10

Sandstone 58 31

Granite 250 70-250

Peridotite
Midmantle

Lowermantle
Outer Core

650
360
1200
8000

280
200
520

0
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Scattering Scattering 
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