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Orthogonal functions - Function ApproximationOrthogonal functions - Function Approximation

- The Problem

- Fourier Series

- Chebyshev Polynomials 

The Problem

we are trying to approximate a function f(x) by another function gn(x) 
which consists of a sum over N orthogonal functions Φ(x) weighted by 
some coefficients an.
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The ProblemThe Problem

... and we are looking for optimal functions in a least squares (l2) sense ...
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... a good choice for the basis functions Φ(x) are orthogonal functions. 
What  are orthogonal functions? Two functions f and g are  said to be 

orthogonal in the interval [a,b] if
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How is this related to the more conceivable concept of orthogonal 
vectors? Let us look at the original definition of integrals:
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Orthogonal Functions - DefinitionOrthogonal Functions - Definition
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... where x0=a and xN=b, and xi-xi-1=∆x ...
If we interpret f(xi) and g(xi) as the ith components of an N component 

vector, then this sum corresponds directly to a scalar product of vectors. 
The vanishing of the scalar product is the condition for orthogonality of 

vectors (or functions). 
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Periodic functionsPeriodic functions

Let us  assume we have a piecewise continuous function of the form
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... we want to approximate this function with a linear combination of 2π
periodic functions:
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Orthogonality of Periodic functionsOrthogonality of Periodic functions

... are these functions orthogonal ?
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... YES, and these relations are valid for any interval of length 2π.
Now we know that this is an orthogonal basis, but how can we obtain the 

coefficients for the basis functions?

from minimising f(x)-g(x)
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Fourier coefficientsFourier coefficients

optimal functions g(x) are given if
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... with the definition of g(x) we get ...
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leading to (nice exercise)
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Fourier approximation of |x|Fourier approximation of |x|

... Example ...
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leads to the Fourier Serie
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.. and for n<4 g(x) looks like
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Fourier approximation of x2Fourier approximation of x2

... another Example ...
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leads to the Fourier Serie
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.. and for N<11, g(x) looks like
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Fourier - discrete functionsFourier - discrete functions

... what happens if we know our function f(x) only at the points
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it turns out that in this particular case the coefficients are given by
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.. the so-defined Fourier polynomial is the unique interpolating function to 
the function f(xj) with N=2m
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Fourier - collocation pointsFourier - collocation points

... with the important property that ...
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... in our previous examples ...
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Fourier series - convergenceFourier series - convergence

f(x)=x2   => f(x) - blue ; g(x) - red; xi - ‘+’
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Fourier series - convergenceFourier series - convergence

f(x)=x2   => f(x) - blue ; g(x) - red; xi - ‘+’
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Orthogonal functions - Gibb’s phenomenonOrthogonal functions - Gibb’s phenomenon

f(x)=x2   => f(x) - blue ; g(x) - red; xi - ‘+’
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spaced Fourier 

interpolations is ≈14% of 
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Chebyshev polynomialsChebyshev polynomials

We have seen that Fourier series are excellent for interpolating
(and differentiating) periodic functions defined on a regularly 
spaced grid. In many circumstances physical phenomena which 
are not periodic (in space) and occur in a limited area. This quest 
leads to the use of Chebyshev polynomials.

We depart by observing that cos(nϕ) can be expressed by a 
polynomial in cos(ϕ):
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... which leads us to the definition:
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Chebyshev polynomials - definitionChebyshev polynomials - definition

NnxxxTTn nn ∈−∈=== ],1,1[),cos(),())(cos()cos( ϕϕϕ

... for the Chebyshev polynomials Tn(x). Note that because of 
x=cos(ϕ) they are defined in the interval [-1,1] (which - however -
can be extended to  ℜ). The first polynomials are
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Chebyshev polynomials - GraphicalChebyshev polynomials - Graphical

The first ten polynomials look like [0, -1] 
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Chebyshev collocation pointsChebyshev collocation points

These extrema are not equidistant (like the Fourier extrema) 
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Chebyshev polynomials - orthogonalityChebyshev polynomials - orthogonality

... are the Chebyshev polynomials orthogonal?

Chebyshev polynomials are an orthogonal set of functions in the 
interval [-1,1]  with respect to the weight function
such that 
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Chebyshev polynomials - interpolationChebyshev polynomials - interpolation

... we are now faced with the same problem as with the Fourier 
series. We want  to approximate a function f(x), this time not a

periodical function but  a function which is defined between [-1,1]. 
We are looking for gn(x)  
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... and we are faced with the problem, how we can determine the 
coefficients ck. Again we obtain this by finding the extremum 
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Chebyshev polynomials - interpolationChebyshev polynomials - interpolation

... to obtain ...
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... surprisingly these coefficients can be calculated with FFT 
techniques, noting that
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... which means that the coefficients ck are the Fourier coefficients 
ak of the periodic function F(ϕ)=f(cos ϕ)!
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Chebyshev - discrete functionsChebyshev - discrete functions

... what happens if we know our function f(x) only at the points
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Chebyshev - collocation points - |x|Chebyshev - collocation points - |x|

f(x)=|x| => f(x) - blue ; gn(x) - red; xi - ‘+’
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Chebyshev - collocation points - |x|Chebyshev - collocation points - |x|

f(x)=|x| => f(x) - blue ; gn(x) - red; xi - ‘+’
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Chebyshev - collocation points - x2Chebyshev - collocation points - x2

f(x)=x2 => f(x) - blue ; gn(x) - red; xi - ‘+’
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Chebyshev vs. Fourier - numericalChebyshev vs. Fourier - numerical

Chebyshev Fourier

f(x)=x2 => f(x) - blue ; gN(x) - red; xi - ‘+’

This graph speaks for itself ! Gibb’s phenomenon with Chebyshev?
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Chebyshev vs. Fourier - Gibb’sChebyshev vs. Fourier - Gibb’s

Chebyshev Fourier
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f(x)=sign(x-π) => f(x) - blue ; gN(x) - red; xi - ‘+’

Gibb’s phenomenon with Chebyshev? YES!
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Chebyshev vs. Fourier - Gibb’sChebyshev vs. Fourier - Gibb’s

Chebyshev Fourier
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Fourier vs. Chebyshev Fourier vs. Chebyshev 

Fourier Chebyshev
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Fourier vs. Chebyshev  (cont’d)Fourier vs. Chebyshev  (cont’d)

Fourier Chebyshev

coefficients

some properties
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• Gibb’s phenomenon for 
discontinuous functions

• Efficient calculation via FFT

• infinite domain through 
periodicity

• limited area calculations

• grid densification at boundaries

• coefficients via FFT

• excellent convergence at 
boundaries

• Gibb’s phenomenon
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