
Numerical Methods in Geophysics Introduction

Numerical Methods: Structured vs. unstructured grids

• The goals of this course

• General Introduction: Why numerical methods?

• Numerical methods and their fields of application

• Review of finite differences

Goals:

• Understanding the basics of all the “finite”s 

(differences, elements, volumes)

• The beauty: in the linear limit they are all really the 

same      
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Example: seismic wave propagation

Why numerical methods?

homogeneous medium

Seismometers

explosion

In this case there 

are analytical solutions? 

Are they useful?
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Example: seismic wave propagation

Why numerical methods?

layered medium

Seismometers

explosion

... in this case quasi-analytical 

solutions exist, applicable for example 

for layered sediments ... 
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Example: seismic wave propagation

Why numerical methods?

long wavelength 

perturbations

Seismometers

explosion

… in this case high-frequency 

approximations can be used

(ray theory)
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Example: seismic wave propagation

Why numerical methods

Generally heterogeneous

medium

Seismometers

explosion

… we need numerical 

solutions! … we need grids! …

And big computers …
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Partial Differential Equations in Geophysics
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+∆=∂ The acoustic 

wave equation

- seismology

- acoustics

- oceanography 

- meteorology

Diffusion, advection, 

Reaction

- geodynamics

- oceanography 

- meteorology

- geochemistry

- sedimentology

- geophysical fluid dynamics

P pressure

c acoustic wave speed

s sources
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k diffusivity

v flow velocity

R reactivity

p sources
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Numerical methods: fields of application

Finite differences

Finite volumes

- time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- Maxwell’s equations

- Ground penetrating radar

-> robust, simple concept, easy to 

parallelize, regular grids, explicit method

Finite elements
- static and time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- all problems

-> implicit approach, matrix inversion, well founded,

irregular grids, more complex algorithms,     

engineering problems

- time-dependent PDEs

- seismic wave propagation

- mainly fluid dynamics

-> robust, simple concept, irregular grids, explicit  

method
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Other Numerical methods:

Particle-based 

methods  

Pseudospectral 

methods

- lattice gas methods

- molecular dynamics

- granular problems

- fluid flow

- earthquake simulations

-> very heterogeneous problems, nonlinear problems

Boundary element

methods

- problems with boundaries (rupture)

- based in analytical solutions

- only discretization of planes 

--> good for problems with special boundary conditions

(rupture, cracks, etc)

- orthogonal basis functions

- spectral accuracy of space derivatives

- wave propagation, GPR

-> regular grids, explicit method, problems with  

discontinuities
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Numerical methods … in all fields of Earth sciences

Seismology

Mixing -

Geochemistry

Granular media -

rupture

Earthquake physics

Regional earthquakes

Global dynamics

Earth’s magnetic field
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What is a finite difference?

Common definitions of the derivative of f(x):
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These are all correct definitions in the limit dx->0.

But we want dx to remain FINITE



Numerical Methods in Geophysics Introduction

What is a finite difference?

The equivalent approximations of the derivatives are:
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centered difference
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The big question:

How good are the FD approximations?

≈≠=
This leads us to Taylor series....
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Taylor Series

... that leads to :
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The error of the first derivative using the forward

formulation is of order dx. 
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Is this the case for other formulations of the derivative?

Let’s check!
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Taylor Series

... with the centered formulation we get:
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This is an important results: it DOES matter which formulation

we use. The centered scheme is more accurate!
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Alternative Derivation of  FD

a f a f a f d x
+

≈ + ' b f b f b f d x
−

≈ − '+

⇒ + ≈ + + −
+ −

a f b f a b f a b f d x( ) ( ) '

Interpolation Derivative

a b− = 0 a b+ = 0

⇓ ⇓

f f f≈ +
− +1

2

1

2
f

f f

d x
' ≈

−
+ −

2

5.0,5.0
21

== ww w
dx

w
dx

1 2

1

2

1

2
= − =,

Interpolation weights Derivative weights



Numerical Methods in Geophysics Introduction

Our first FD algorithm!
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c acoustic wave speed

s sources

Problem: Solve the 1D acoustic wave equation using the finite 

Difference method.

Solution:
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Problems: Stability
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1≈≤ ε
dx

dt
c

Stability: Careful analysis using harmonic functions shows that 

a stable numerical calculation is subject to special conditions 

(conditional stability). This holds for many numerical problems.
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Problems: Dispersion
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Dispersion: The numerical 

approximation has 

artificial dispersion,

in other words, the wave 

speed becomes frequency 

dependent. 

You have to find a 

frequency bandwidth 

where this effect is small.

The solution is to use 

sufficient grid points per 

wavelength.

True velocity
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Our first FD code!
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% Time stepping

for i=1:nt,

% FD

disp(sprintf(' Time step : %i',i));

for j=2:nx-1

d2p(j)=(p(j+1)-2*p(j)+p(j-1))/dx^2; % space derivative

end

pnew=2*p-pold+d2p*dt^2;                % time extrapolation

pnew(nx/2)=pnew(nx/2)+src(i)*dt^2;     % add source term

pold=p; % time levels

p=pnew;

p(1)=0; % set boundaries pressure free

p(nx)=0;

% Display

plot(x,p,'b-')

title(' FD ')

drawnow

end
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Our first FD code!
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% Time stepping

for i=1:nt,

% FD

disp(sprintf(' Time step : %i',i));

for j=2:nx-1

d2p(j)=(p(j+1)-2*p(j)+p(j-1))/dx^2; % space 

derivative

end

pnew=2*p-pold+d2p*dt^2;                % time

extrapolation

pnew(nx/2)=pnew(nx/2)+src(i)*dt^2;     % add 

source term

pold=p; 

% time levels

p=pnew;

p(1)=0; % 

set boundaries pressure free

p(nx)=0;

% Display

plot(x,p,'b-')

title(' FD ')

drawnow

end

Exercises (FD):

1. Increase the time step dt manually and determine the 

stability limit numerically (c*dt/dx). 

2. Make the medium heterogeneous. Put in a velocity contrast 

along the x axis with a 30% perturbation.

3. Perturb the medium (e.g. 20%) with random perturbations 

(dc=rand([1 nx]). What effect do you have on the 

propagating pulse? Do you think the result is accurate?

4. Compare the results with a simulation with 10000 time 

steps.
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Finite Differences - Summary

Depending on the choice of the FD scheme 

(e.g. forward, backward, centered)  a numerical solution

may be more or less accurate. 

Explicit finite difference solutions to differential 

equations are often conditionally stable. The correct 

choice of the space or time increment is crucial to 

enable accurate solutions. 

Sometimes it is useful to employ so-called staggered 

grids where the fields are defined on separate grids which

may improve the overall accuracy of the scheme.


