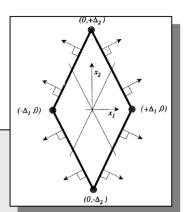


Finite volumes

Finite volumes ...

A numerical method based on a discrete version of Gauss´ theorem.

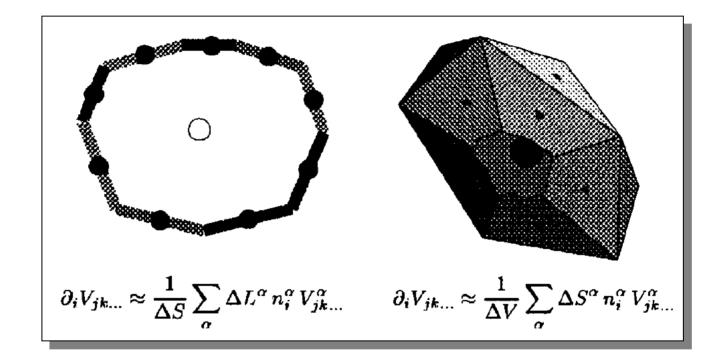


- The theoretical basis
- Derivation of weights for basic grid cells
- FV for hexagonal and irregular grids

... this lecture based on:

Dormy E. and Tarantola A., J. Geophys. Res., 100, 2123-2133, 1995. Käser, M., Diplomarbeit LMU, 2000.

Finite volumes - basic theory



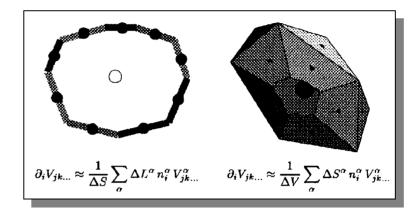
... as the figure suggests, the FV method is based on the idea of knowing a 3D field at the sides of a surface surrounding a finite volume. Is there a mathematical theorem relating the (vector) fields inside a volume with the values at its surface? Yes, it s Gauss´ theorem

...

Finite volumes - Gauss 'theorem

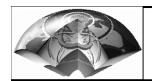
Gauss 'theorem:

(by the way one of the most important results on mathematical physics)



$$\int_{V} dV \partial_{i} w_{i} = \int_{S} dS n_{i} w_{i}$$

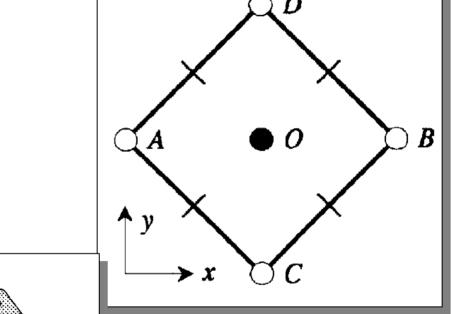
S boundary surrounding V
V volume inside S
w_i vector field
n_i unitary normal to the surface
(pointing outwards)

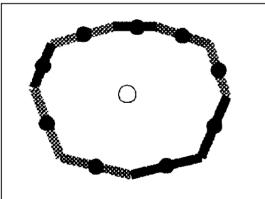


Finite volumes – 2D and 3D

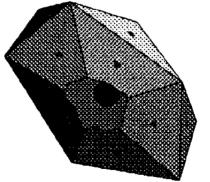
Question:

How can we approximate the gradient of a tensor field at a point P given the values a some points P_1 , P_2 , P_3 , P_4 , P_5 , ... around P?





$$\partial_i V_{jk...} pprox rac{1}{\Delta S} \sum_i \Delta L^{lpha} \, n_i^{lpha} \, V_{jk...}^{lpha}$$



$$\partial_i V_{jk...} pprox rac{1}{\Delta V} \sum_{lpha} \Delta S^{lpha} \, n_i^{lpha} \, V_{jk...}^{lpha}$$

$$\int_{V} dV \partial_{i} W_{jk} = \int_{S} dS n_{i} W_{jk}$$

$$\partial_{i} V_{jk...} \approx \frac{1}{\Delta S} \sum_{\alpha} \Delta L^{\alpha} n_{i}^{\alpha} V_{jk...}^{\alpha} \qquad \partial_{i} V_{jk...} \approx \frac{1}{\Delta V} \sum_{\alpha} \Delta S^{\alpha} n_{i}^{\alpha} V_{jk...}^{\alpha}$$

$$\int_{S} dV \partial_{i} W_{jk} = \int_{L} dL n_{i} W_{jk}$$

Generalization

Gauss 'theorem: Generalized to the gradient of for arbitrary tensor fields ... (e.g. could also be a scalar field) ...

$$\partial_i V_{jk...} pprox rac{1}{\Delta S} \sum_{lpha} \Delta L^{lpha} \, n_i^{lpha} \, V_{jk...}^{lpha} \qquad \partial_i V_{jk...} pprox rac{1}{\Delta V} \sum_{lpha} \Delta S^{lpha} \, n_i^{lpha} \, V_{jk...}^{lpha}$$

$$\int_{V} dV \partial_{i} W_{jk} = \int_{S} dS n_{i} W_{jk}$$

W_{ik} arbitrary tensor field

V volume inside S

S surface around V

n_i unitary normal to the surface

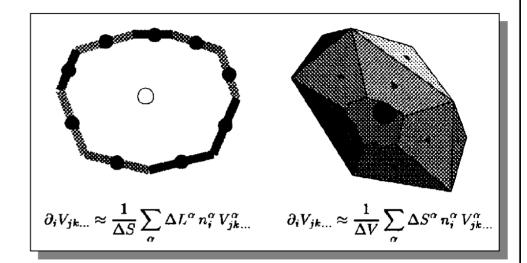
(pointing outwards)

Finite volumes – 3D

Answer:

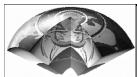
We simply need to turn Gauss 'theorem into a discrete version!

Assumption: smoothly varying W_{ik}



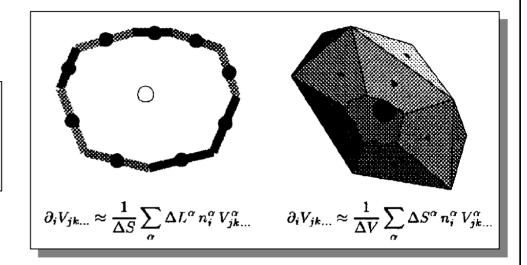
$$\partial_i W_{jk} \approx \frac{1}{\Delta V} \sum \Delta S \ n_i \ W_{jk}$$

 $\begin{array}{ll} W_{jk} & \text{arbitrary tensor field} \\ \Delta V & \text{total volume} \\ \Delta S_{\alpha} & \text{surface segment} \\ n_{i} & \text{unitary normal to the surface} \\ \alpha & \text{number of surface segments} \end{array}$



Finite volumes – 2D

$$\partial_i W_{jk} \approx \frac{1}{\Delta S} \sum \Delta L \ n_i \ W_{jk}$$



arbitrary tensor field

total surface

 ΔL_{α} boundary segment

unitary normal to the surface n_i

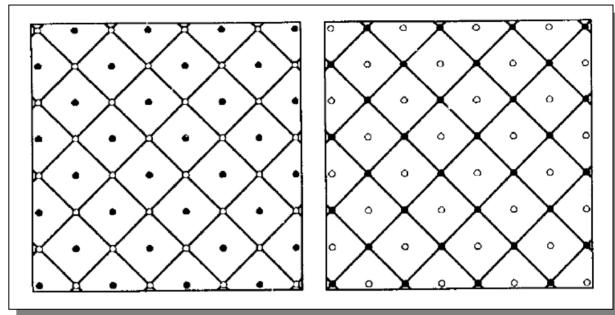
number of surface segments α

How can we use these ideas to solve p.d.e. 's?

Finite volumes – space grids

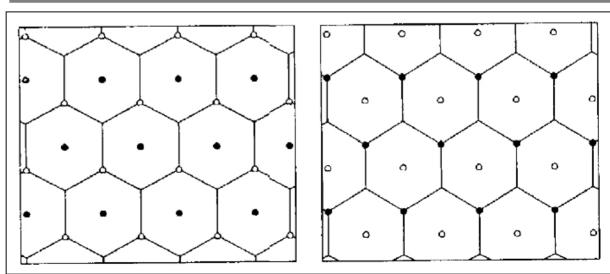
2D Euclidian space

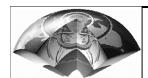
- Lozenges
- staggered grid



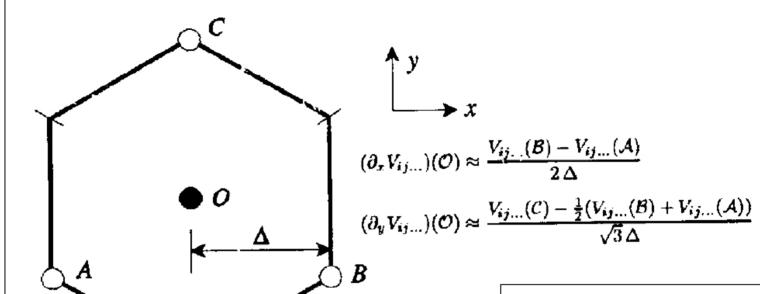
2D Euclidian space

- hexagons
- minimal grid

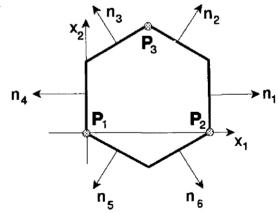




Finite volumes

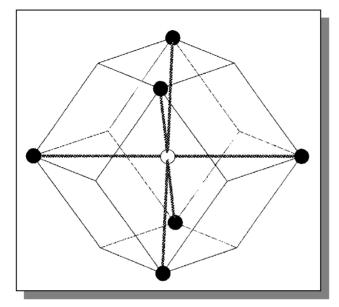


Minimal grid for finite volumes

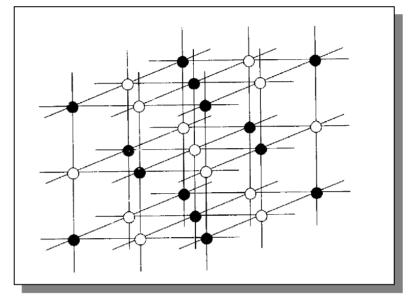




Finite volumes - space grids

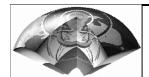


Voronoi cell for FD grid

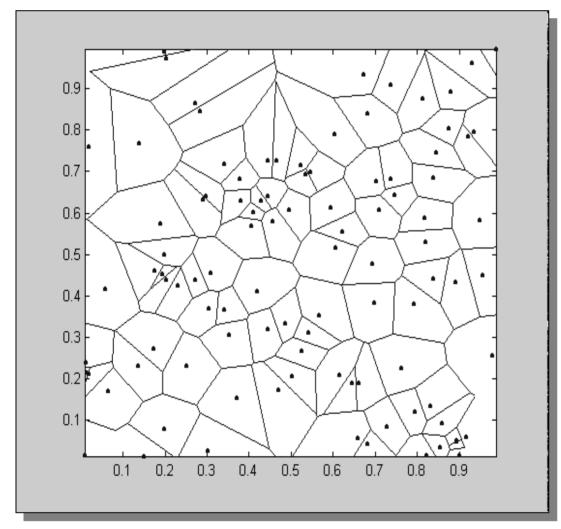


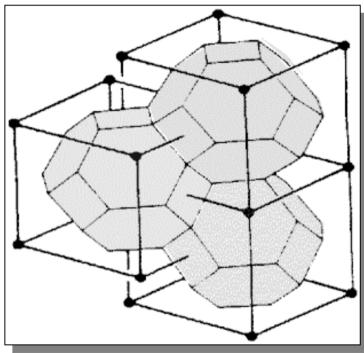
Classic FD grid in 3D

The Voronoi diagrams of an unstructured set of nodes divides the plane into a set of regions, one for each node, such that any point in a particular region is closer to that regions node than to any other.

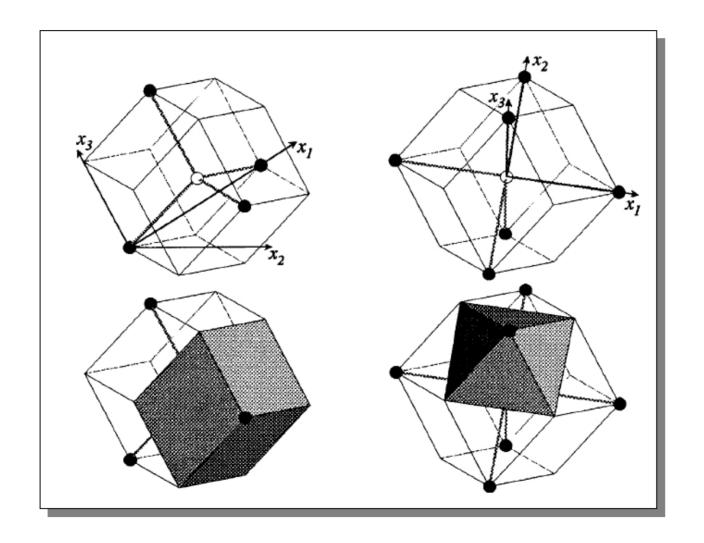


Voronoi cells

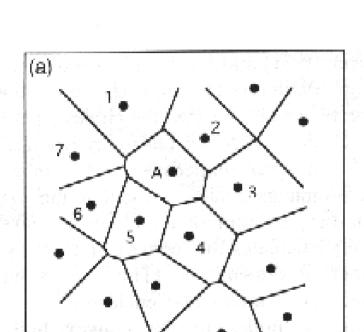


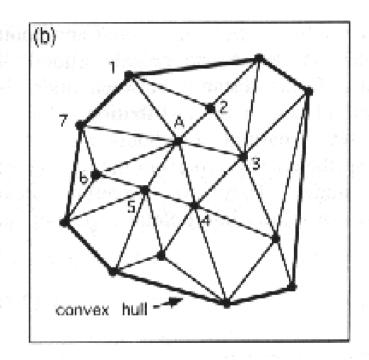


Finite volumes – volumes and surfaces

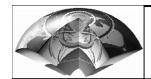


Voronoi and Delaunay

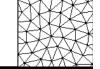


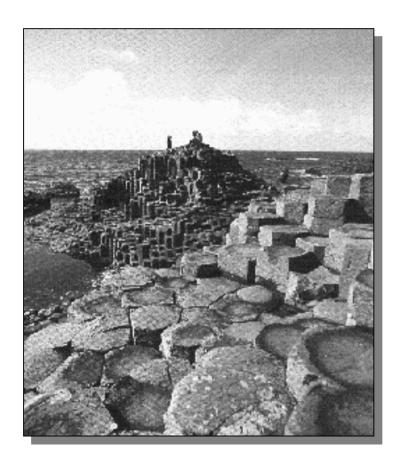


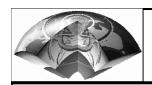
Delauney triangles are obtained by linking the vertices of neighbouring Voronoi cells



Voronoi Cells in Nature

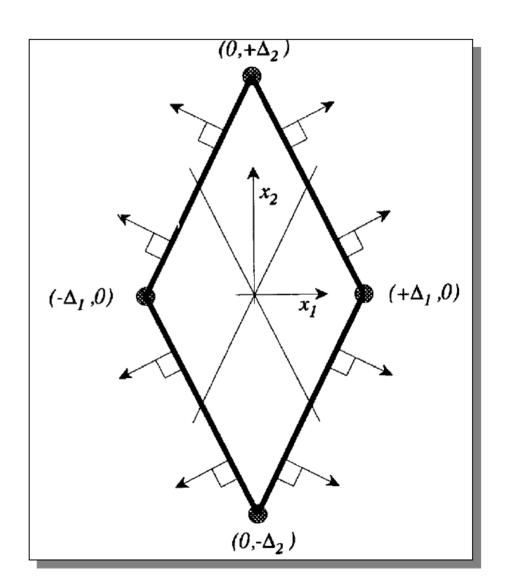






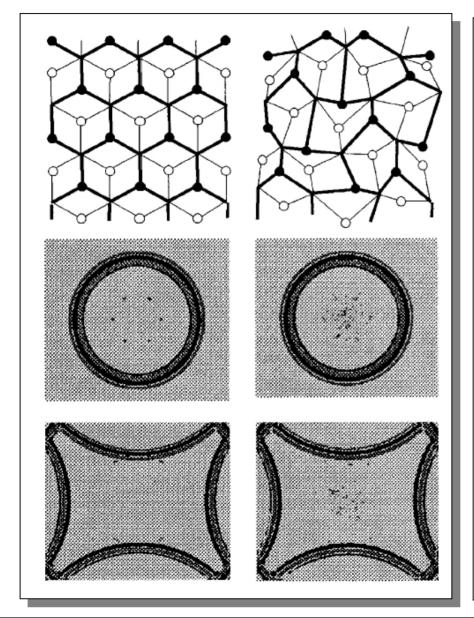
Finite volumes - Difference weights

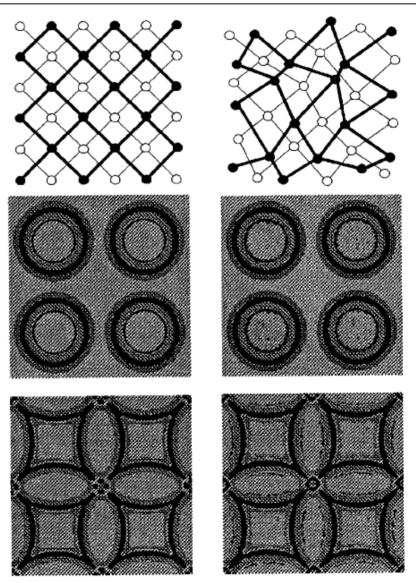
Let us calculate the difference operators for a simples finite volume cell





Finite volumes – wave propagation

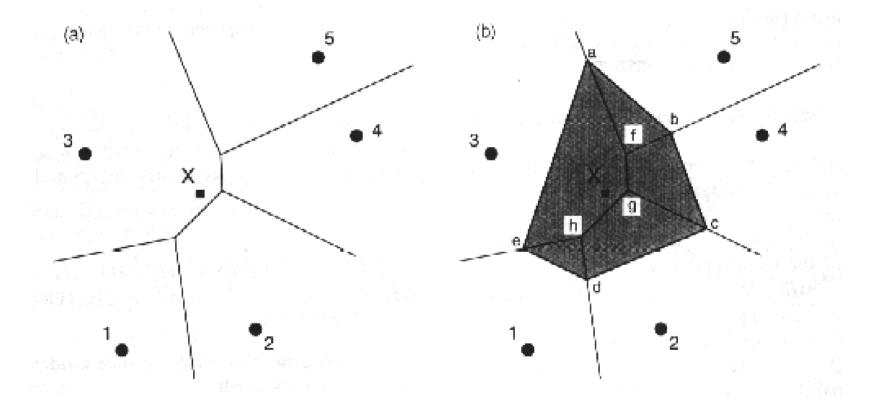




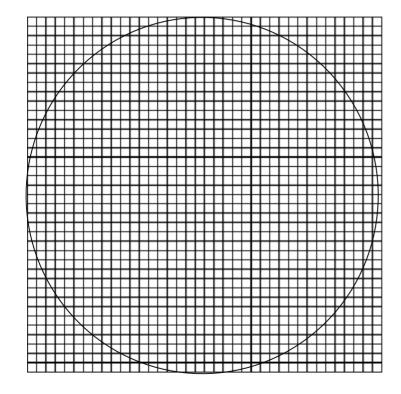
Natural Neighbours

- Basis for local interpolation
- Linear interpolation using triangles
- Distance weighting
- Natural neighbour interpolation
- Differential weights
- Examples

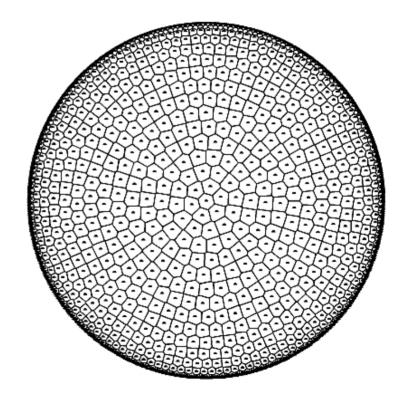
Voronoi: Overlapping Regions



Unstructured Grid Methods

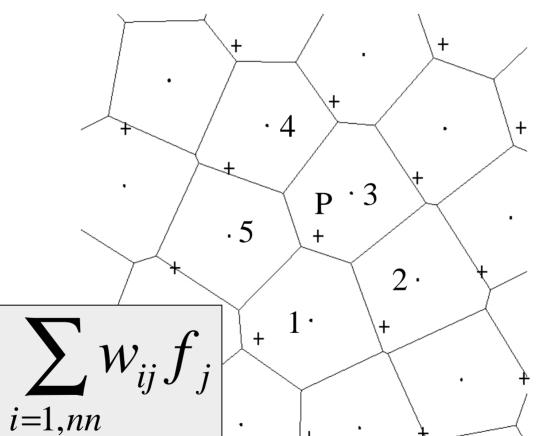


Regular Grid



Voronoi cells

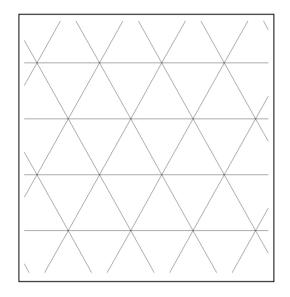
Waves on unstructured grids

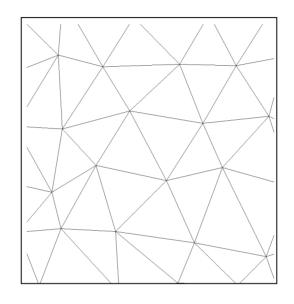


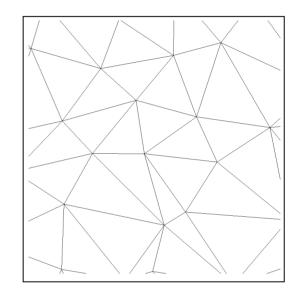
- + Primary grid (velocities)
- Secondary grid (stresses)

Point P with 5 natural neighbours

Triangular grid quality







$$q_{mean}=1.0$$

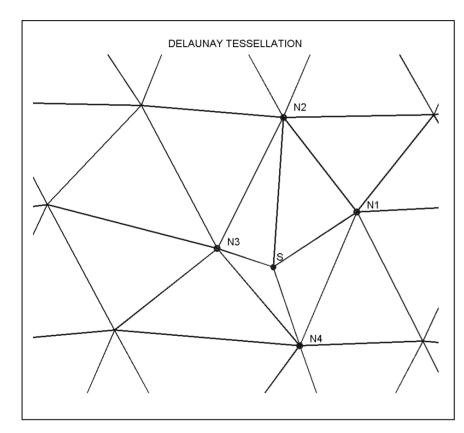
$$q_{mean}=0.9$$

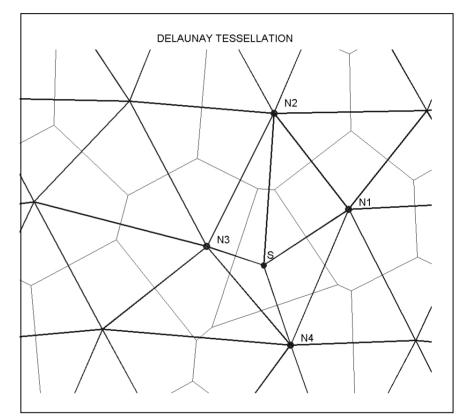
$$q_{mean} = 0.8$$

$$q = \frac{4\sqrt{3}A}{a^2 + b^2 + c^2}$$

Triangle quality q

Method 1: Natural Neighbour Coordinates



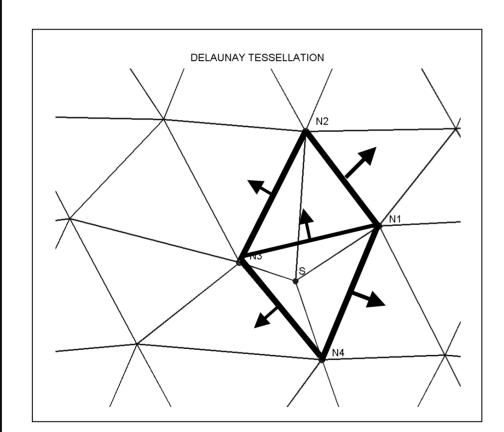


Triangulation

Voronoi Cells

Interpolation (and differential weights for natural neighbours are calculated using overlapping Voronoi cells).

Method 2: The Finite Volume Method

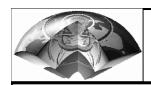


The Finite Volume method is based on a discretization of Gauss' Law

$$\partial_{i} f = \frac{1}{\Delta S} \sum_{j=1}^{NN} \Delta L_{ij} n_{ij} f_{j}$$

Note that the position of point S is irrelevant!

Surprising result! Using only three points is more accurate than using all natural neighbours!



Test Function

Test function f_p on primary grid points x_i :

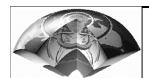
$$f_p(x_i) = \sin(\underline{k}\underline{x}_i - wt)$$

Analytical deriv ative $f^{(j)}$ on secondary grid points x_k :

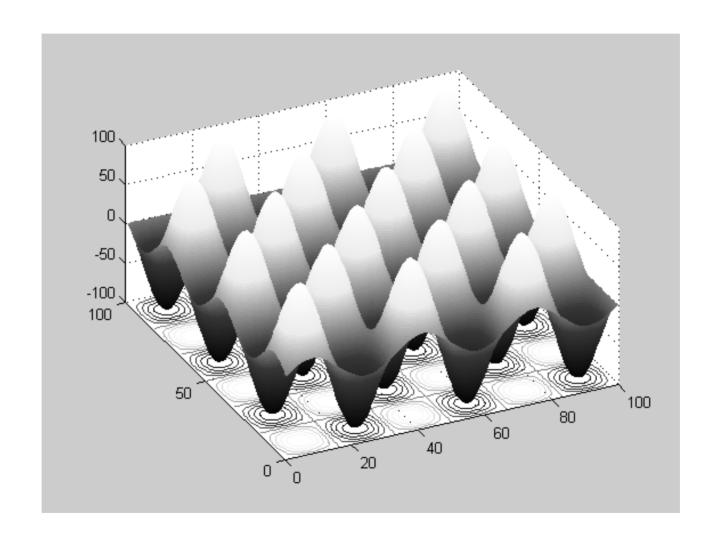
$$f_s^{(j)}(x_k) = k_j \cos(\underline{k}\underline{x}_k - wt)$$

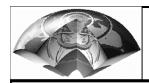
Error of numerical derivative on sec. grid

$$(\underline{k}, q_{mean}) = \frac{\sum_{k} (\widetilde{f}^{(j)}(x_k) - f(x_k))^2}{\sum_{k} f^2(x_k)}$$



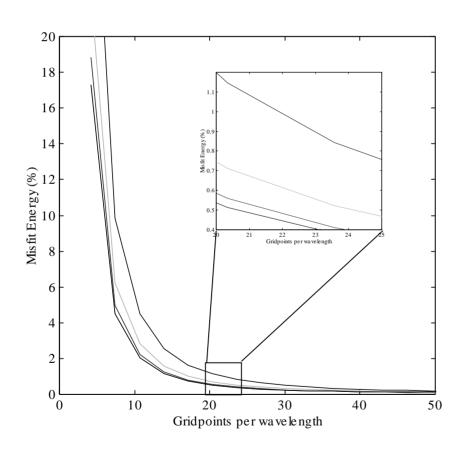
Test Function





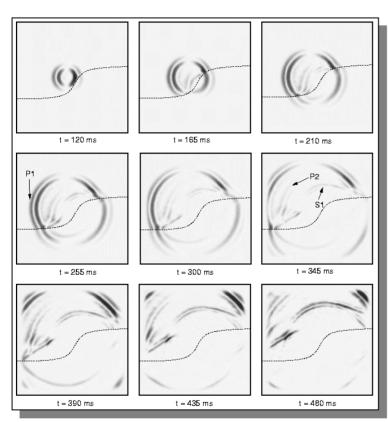
Error of space derivative

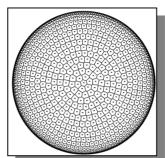
Irregular Grid - qmean = 0.8

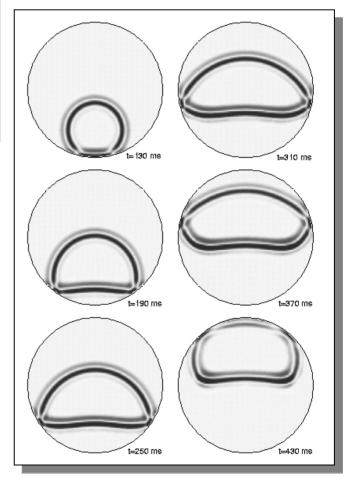


black - Magnier green - NN blue - FV(NN) red - FV (3 points)

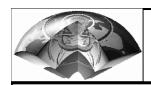
Waves with natural neighbours







Käser, I gel, Sambridge, Braun, 2001 Käser and I gel, 2001



Finite volumes: summary

The finite volume method is an elegant approach to solving partial differential equations on unstructured grids.

The finite volume method is based on a discretization of Gauss 'theorem.

The FV method is frequently applied to flow problems. High-order approaches have been recently developed.

The FV method requires the calculation of volumes and surfaces for each cell. This requires the calculation of Voronoi cells and triangulation.