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What is a finite difference?

Common definitions of the derivative of f(x):
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These are all correct definitions in the limit dx->0.

But we want dx to remain FINITE
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What is a finite difference?

The equivalent approximations of the derivatives are:

dx
xfdxxffx
)()( −+

≈∂ forward difference

dx
dxxfxffx

)()( −−
≈∂ backward difference

dx
dxxfdxxffx 2

)()( −−+
≈∂ centered difference

What about the second or higher derivatives?
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Higher Derivatives with FD

dx
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Second
Derivative

Other derivation via Taylor Series (Exercise).

Numerical Methods in Geophysics The Finite Difference Method



The big question:

How good are the FD approximations?

This leads us to Taylor series....

Numerical Methods in Geophysics The Finite Difference Method



Taylor Series

Taylor series are  expansions of a function f(x) for some 
finite distance dx to f(x+dx)

...)(
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' ±+±+±=± xfdxxfdxxfdxxfxfdxxf

What happens, if we use this expression for

dx
xfdxxffx
)()( −+

≈∂ + ?
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Taylor Series

... that leads to :
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The error of the first derivative using the forward
formulation is of order dx. 

Is this the case for other formulations of the derivative?
Let’s check!
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Taylor Series

... with the centered formulation we get:
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The error of the first derivative using the centered 
approximation is of order dx2. 

This is an important results: it DOES matter which formulation
we use. The centered scheme is more accurate!
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Alternative Derivation of  FD

xj − 1 xj xj + 1 xj + 2 xj + 3

f xj( )

dx h

desired x location

What is the (approximate) value of the function or  its (first, 
second ..) derivative at the desired location ?

How can we calculate the weights for the neighboring points?

x

f(x)
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Alternative Derivation of  FD

Lets’ try Taylor’s Expansion

f x( )

dx

x

f(x)

dxxfxfdxxf )(')()( +=+
f x dx f x f x dx( ) ( ) ' ( )− = −

(1)
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we are looking for something like

f x w f xi
j
i

index j
j L
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Alternative Derivation of  FD
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Newtonian Cooling

Numerical solution to first order ordinary differential equation

),( tTf
dt
dT

=

We can not simply integrate this equation. We have to solve it 
numerically! First we need to discretise time:

jdttt j += 0

and for Temperature T

)( jj tTT =
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Newtonian Cooling

Let us try a forward difference:

)(1 dtO
dt

TT
dt
dT jj

tt j

+
−

= +

=

... which leads to the following explicit scheme :

),(dt1 jjjj tTfTT +≈+

This allows us to calculate the Temperature T as a function of
time and the forcing inhomogeneity f(T,t). Note that there will
be an error O(dt) which will accumulate over time. 
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Newtonian Cooling

Let’s try to apply this to the Newtonian cooling problem:

TAir TCappucino

How does the temperature of the liquid evolve as a
function of time and temperature difference to the air?
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Newtonian Cooling

The rate of cooling (dT/dt) will depend on the temperature 
difference (Tcap-Tair) and some constant (thermal conductivity).
This is called Newtonian Cooling.

With  T= Tcap-Tair being the temperature difference and τ the 
time scale of cooling then f(T,t)=-T/ τ and the differential equation 
describing the system is

τ/T
dt
dT

−=

with initial condition T=Ti at t=0 and τ>0. 
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Newtonian Cooling

This equation has a simple analytical solution:

)/exp()( τtTtT i −=

How good is our finite-difference appoximation?
For what choices of dt will we obtain a stable solution?

Our FD approximation is:

)1(1 ττ
dtTTdtTT jjjj −=−=+

)1(1 τ
dtTT jj −=+
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Newtonian Cooling

)1(1 τ
dtTT jj −=+

1. Does this equation approximation converge for dt -> 0?
2. Does it behave like the analytical solution?

With the initial condition T=T0 at t=0:

)1(01 τ
dtTT −=

)1)(1()1( 012 τττ
dtdtTdtTT −−=−=

j
j

dtTT )1(0 τ
−=leading to :
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Newtonian Cooling

j
j

dtTT )1(0 τ
−=

Let us use dt=tj/j where tj is the total time up to time step j:
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This can be expanded using the binomial theorem
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Newtonian Cooling
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Newtonian Cooling

substituted into the series for Tj we obtain:
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... which is the Taylor expansion for 

)/exp(0 τtTTj −=
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Newtonian Cooling - Convergence

So we conclude:

For the Newtonian Cooling problem, the numerical 
solution converges to the exact solution when the 
time step dt gets smaller.

How does the numerical solution behave?

)1(1 τ
dtTT jj −=+)/exp(0 τtTTj −=

What are the conditions
so that Tj+1<Tj ?

The analytical solution
decays monotonically!
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Newtonian Cooling - Convergence

)1(1 τ
dtTT jj −=+

Tj+1<Tj requires

110 <−≤
τ
dt

or

τ<≤ dt0

The numerical solution decays only montonically for 
a limited range of values for dt! Again we seem to have 
a conditional stability.
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Newtonian Cooling - Convergence

)1(1 τ
dtTT jj −=+

0)1( <−
τ
dt

ττ 2<< dt thenif 

the solution oscillates but converges as |1-dt/τ|<1

2/ >τdtτ2>dt thenif

1-dt/τ<-1 and the solution oscillates and diverges  

... now let us see how the solution looks like ....
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Newtonian Cooling - Convergence

% Matlab Program - Newtonian Cooling

% initialise values
nt=10;
t0=1.
tau=.7;
dt=1.

% initial condition
T=t0;

% time extrapolation
for i=1:nt,
T(i+1)=T(i)-dt/tau*T(i);
end

% plotting
plot(T)
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Newtonian Cooling - Convergence
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Newtonian Cooling - Convergence

Solution converges but does not have the right time-dependence
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Newtonian Cooling - Convergence

... only slight error of the time-dependence - acceptable solution ...
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Newtonian Cooling - Convergence

.. very accurate solution which we pay by a fine sampling in time ...
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Newtonian Cooling - Convergence

... this solution is wrong and unstable !
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The 1-D wave equation

[ ]t)u(x,t)u(x,2
t xE(x))( ∂∂= xx ∂ρ

Elastic parameters E(x) vary only in one direction.

)()( xxE µ= shear waves

)(2)()( xxxE µλ += P waves

with the corresponding velocities

ρ
µ

=Sv

ρ
µλ 2+

=Pv

shear waves

P waves
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The 1-D wave equation

We want to avoid having to take derivatives of the material 
parameters (why?). This can be achieved by using a 
velocity-stress formulation, which leads to the following 
simultaneous equations:

τ
ρ xt x

u ∂=∂
)(

1

uxE xt ∂=∂ )(τ

where

uxE x∂= )(τ stress
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The 1-D wave equation - FD scheme

Let us try to use one of the previously introduced FD schemes:
central difference for space and forward difference for time

Discretization:  

dx space increment, dt time increment

dx),dt( ml
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The 1-D wave equation - FD scheme

... leading to the following scheme: 

dxdt
uu l

m
l
m

m

l
m

l
m

2
1 11

1
−+

+ −
=

− ττ
ρ

centeredforward

dx
uuE

dt

l
m

l
m

m

l
m

l
m

2
11

1
−+

+ −
=

−ττ
centeredforward

like in the continuous case, we can make  the following Ansatz:

)exp(),( iwtikxAtxf −=

which in the discrete world is :

)dtdxexp( iwlikmAflm −=
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The 1-D wave equation - FD scheme
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... in practical terms: first solve
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The 1-D wave equation - FD scheme

... let us assume a signal is propagating: 

)dtdxexp()( iwlikmAf l
m −=τ

)dtdxexp()( iwlikmBuf l
m −=

we now put this Ansatz into the following equations ...

dxdt
uu l

m
l
m

m

l
m

l
m

2
1 11

1
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− ττ
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dx
uuE
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l
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l
m

m

l
m

l
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1
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=

−ττ
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The 1-D wave equation - FD scheme

...after some algebra (hours later) ...

kdx
dx
dtEiiwdt

m

m sin1)exp( ⎟
⎠
⎞

⎜
⎝
⎛±=−

ρ

What does this result tell us about the numerical solution?

1)exp( >−iwdt

for any choice of dt and dx! So ω must be complex.
But then for example:

)exp()exp()dtdxexp()( *ldtwikmAiwlikmAf l
m −=−=τ

will grow exponentially as, ω* is real.
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The 1-D wave equation - FD scheme
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Can we find a scheme that works?
Let us use a centered scheme in
time: l

l+1

l-1

dxdt
uu l

m
l
m

m

l
m

l
m

2
1

2
11

11
−+

−+ −
=

− ττ
ρ m+1m-1 m

dx
uuE
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l
m

l
m

m

l
m

l
m

22
11

11
−+

−+ −
=

−ττ

And again we use the following Ansatz to investigate the behavior
of the numerical solution:

)dtdxexp()( iwlikmAf l
m −=τ

)dtdxexp()( iwlikmBuf l
m −=



The 1-D wave equation - FD scheme

...again after some algebra (minutes later) ...

kdx
dx
dtEwdt

m

m sinsin ⎟
⎠
⎞

⎜
⎝
⎛±=

ρ

... has real solutions as long as 

1≤⎟
⎠
⎞

⎜
⎝
⎛

dx
dtE

m

m

ρ

... knowing that for example ... 

p
m

m vE
=

ρ
P-wave velocity
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The 1-D wave equation - FD scheme

... we arrive at maybe the most important result 
for FD schemes applied to the wave equation:

1
dx
dtv SP, ≤⎟
⎠
⎞

⎜
⎝
⎛

vP,S is the locally homogeneous velocity. This is called
a conditionally stable finite-difference scheme. Finding the
right combination of dt and dx for  a practical application, where
the velocities vary in the medium is one of the most important
tasks.
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The 1-D wave equation - FD scheme

There is an even better scheme!
t
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mm-1 m+1

l

l+1

l-1

x

m+1/2

This is called a 
staggered scheme

τ

u

l+1/2

l-1/2

m-1/2



The 1-D wave equation - FD scheme

... leading to the FD scheme: 

dxdt
uu l

m
l
m

m

l
m

l
m 2/12/1

2/12/1 1 −+
−+ −

=
− ττ

ρ

dx
uuE

dt

l
m

l
m

m

l
m

l
m

2/12/1
1

2/1
2/1

1
2/1

++
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+
+

+
+ −

=
−ττ

And again we use the following Ansatz to investigate the behaviour
of the numerical solution:

)dtdxexp()( iwlikmAf l
m −=τ

)dtdxexp()( iwlikmBuf l
m −=

Find the corresponding stability condition (Exercise)!
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Staggered Grids

x

dx

dx

Centered

Staggered

Which scheme is more accurate?

dx
dxxfdxxffx 2

)()( −−+
≈∂

dx
dxxfdxxffx

)2/()2/( −−+
≈∂

centered:

staggered:

Because the error is O(h2), the error of the centered scheme is 4 times larger.
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Numerical Dispersion

What does the stability criterion tell us about the 
quality of the numerical solution?

2
sin

2
sin 2/1 kdx

dx
dtEdt

m

m ⎟
⎠
⎞

⎜
⎝
⎛±= +

ρ
ω

To answer this we need the concept of phase velocity.
Remember we assumed a harmonic oscillation with frequency
ω and wavenumber k, for example

))(sin())(sin()sin(),( txkt
k

xktkxtxy −=−=−=
ω

ωωω

where the phase velocity is 

k
cphase

ω
=
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Numerical Dispersion

2
sin

2
sin 2/1 kdx

dx
dtEdt

m

m ⎟
⎠
⎞

⎜
⎝
⎛±= +

ρ
ω

we can first assume that dt and dx are very small, in this case :

xx ≈)sin( for small x

then

cE
k m

m == +

ρ
ω 2/1 wave speed

for small dt and dx we simulate the correct velocity:
The scheme is convergent.
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Numerical Dispersion

How about the general case?

2
sin

2
sin 2/1 kdx

dx
dtEdt

m

m ⎟
⎠
⎞

⎜
⎝
⎛±= +

ρ
ω

λ
π2

=k we obtainusing

⎟
⎠
⎞

⎜
⎝
⎛== −

λ
π

π
λωλ dx

dx
dtc

dtk
c sinsin)( 0

1

This formula expresses our numerical phase velocity as a 
function of the wave speed and the propagating wavelength.

Numerical Methods in Geophysics The Finite Difference Method



Numerical Phase Velocity

True velocity 3000m/s
Curves are shown for 
varying stability.
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Numerical Dispersion

What we really measure in a seismogram is
the group velocity:

2/12

sin1

cos

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

=
∂
∂

λ
π
λ
π

ω

dx
dx
dtc

dxc

k

This formula expresses our numerical group velocity as a 
function of the wave speed and the propagating wavelength.
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Numerical Group Velocity

True velocity 3000m/s
Curves are shown for 
varying stability.
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Numerical Group Velocity

Blue - Phase velocity
Red - Group velocity
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Snapshot Example
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Seismogram Dispersion
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Finite Differences - Summary

Depending on the choice of the FD scheme 
(e.g. forward, backward, centered)  a numerical solution
may be more or less accurate. 

Explicit finite difference solutions to differential 
equations are often conditionally stable. The correct 
choice of the space or time increment is crucial to 
enable accurate solutions. 

Sometimes it is useful to employ so-called staggered 
grids where the fields are defined on seperate grids which
may improve the overall accuracy of the scheme.

Numerical Methods in Geophysics The Finite Difference Method


	Numerical Methods in Geophysics:The Finite Difference Method
	What is a finite difference?
	What is a finite difference?
	Higher Derivatives with FD
	The big question:
	Taylor Series
	Taylor Series
	Taylor Series
	Alternative Derivation of  FD
	Alternative Derivation of  FD
	Alternative Derivation of  FD
	Newtonian Cooling
	Newtonian Cooling
	Newtonian Cooling
	Newtonian Cooling
	Newtonian Cooling
	Newtonian Cooling
	Newtonian Cooling
	Newtonian Cooling
	Newtonian Cooling
	Newtonian Cooling - Convergence
	Newtonian Cooling - Convergence
	Newtonian Cooling - Convergence
	Newtonian Cooling - Convergence
	Newtonian Cooling - Convergence
	Newtonian Cooling - Convergence
	Newtonian Cooling - Convergence
	Newtonian Cooling - Convergence
	Newtonian Cooling - Convergence
	The 1-D wave equation
	The 1-D wave equation
	The 1-D wave equation - FD scheme
	The 1-D wave equation - FD scheme
	The 1-D wave equation - FD scheme
	The 1-D wave equation - FD scheme
	The 1-D wave equation - FD scheme
	The 1-D wave equation - FD scheme
	The 1-D wave equation - FD scheme
	The 1-D wave equation - FD scheme
	The 1-D wave equation - FD scheme
	The 1-D wave equation - FD scheme
	Staggered Grids
	Numerical Dispersion
	Numerical Dispersion
	Numerical Dispersion
	Numerical Phase Velocity
	Numerical Dispersion
	Numerical Group Velocity
	Numerical Group Velocity
	Snapshot Example
	Seismogram Dispersion
	Finite Differences - Summary

