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What is a finite difference? ShoRa

Common definitions of the derivative of f(x):

f(x+dx)— f(x)

o, f =Ilim
dx—0 d)(

o f = lim f(x)— f(x—dx)
dx—0 dx

o f = lim f(x+dx)— f(x—dx)
dx—0 20adx

These are all correct definitions in the limit dx->0.

But we want dx to remain FINITE
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What is a finite difference? )

The equivalent approximations of the derivatives are:

f (x+dx)— f(x)

0, f = forward difference
dx
0, f = P = T{x=dx) backward difference
dx
0, f = T(x+dx)— f(x—dx) centered difference
2dx

What about the second or higher derivatives?
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Higher Derivatives with FD SR

f (x+dx)— f(x)

0. f" =
dx
9~ f(x)— f(x—dx)
" dx
jp O 00
o dx
5 f(x+dx)—2f(x)+ f(x—dx) Second
o, f = dx? Derivative

Other derivation via Taylor Series (Exercise).
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The b|g question:

How good are the FD approximations?

N —

This leads us to Taylor series....
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Taylor Series S

Taylor series are expansions of a function f(x) for some
finite distance dx to f(x+dx)

2 3 4
f(x+dx) = f(x)idxf'(x)+%f"(x)i% f"'(x)+dilf""(x)i...
What happens, if we use this expression for
. F(x+dx)— f(x
o+ L= F() -
dx '

Numerical Methods in Geophysics The Finite Difference Method



Taylor Series Y
[

... that leads to :

dx®

dx?

f(x+dx)—f(x) 1
dx dx

{dxf X)+—f (X)+—f (X)+ }

= f'(x) +O(dx)

The error of the first derivative using the forward
formulation is of order dx.

Is this the case for other formulations of the derivative?
Let's check!
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Taylor Series

... with the centered formulation we get:

f(x+dx/2)-f(x-dx/2) 1

dx

dx

{dxf (X)+

= £'(x) + O(dx?)

oc
3!

f'"(x)+..1

The error of the first derivative using the centered
approximation is of order dx2.

This is an important results: it DOES matter which formulation
we use. The centered scheme is more accurate!
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Alternative Derivation of FD ek

* f(xi)
I B
dx h
[ < > [ «<—> [ [] [] []
Xj -1 Xj T Xj + 1 Xj + 2 Xj + 3

desired x location

What is the (approximate) value of the function or its (first,
second ..) derivative at the desired location ?

How can we calculate the weights for the neighboring points?
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Alternative Derivation of FD R

Lets’ try Taylor's Expansion

f (x) "
[]

dx
[] 0 < > [] [] []

f(x+dx)=f(xX)+ f'(x)dx (1)
f(x—dx)=f(X)-f'(xX)dx (2)

we are looking for something like

f (X)= X2 Wfi)f (Xindex(j))

j=1,L
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Alternative Derivation of FD S0

af " = af + af 'dx

bf = = bf — bf "dx

= af " +bf =~ (a+b)f + (a—b)f dx

Interpolation Derivative
a—b=0 a+b=0
lef‘+1f+ 'zf+_f_
2 2 2 dXx
1 W — 1
w, =0.5,w, =0.5 T Todx 2T 2dx

Interpolation weights

Derivative weights
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Newtonian Cooling

Numerical solution to first order ordinary differential equation

dT

dt

= f(T,1)

We can not simply integrate this equation. We have to solve it

numerically! First we need to discretise time:

t, =t,+ jt

and for Temperature T

T,

:T(tj)

Numerical Methods in Geophysics

The Finite Difference Method



Newtonian Cooling Sitivesd

Let us try a forward difference:

T .,-T
at Ll oty
dtl,,  dt

... which leads to the following explicit scheme :

Tj+1 sz + dtf (Tj,tj)

This allows us to calculate the Temperature T as a function of
time and the forcing inhomogeneity f(T,t). Note that there will
be an error O(dt) which will accumulate over time.
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Newtonian Cooling Sitivesd

Let’s try to apply this to the Newtonian cooling problem:

TAir T

Cappucino

s

How does the temperature of the liquid evolve as a
function of time and temperature difference to the air?
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Newtonian Cooling Sintizasd

The rate of cooling (dT/dt) will depend on the temperature
difference (T.,,-T,;) and some constant (thermal conductivity).
This is called Newtonian Cooling.

With T=T_,-T,;, being the temperature difference and z the
time scale of cooling then f(T,t)=-T/ T and the differential equation
describing the system is

d—T:—T/f
dt

with initial condition T=T, at t=0 and t>0.
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Newtonian Cooling

This equation has a simple analytical solution:

How good is our finite-difference appoximation?

T(t)=T. exp(-t/7)

For what choices of dt will we obtain a stable solution?

Our FD approximation is:

Tj+1

dt dt
:Tj —7TJ :Tj (1—7)

dt
Tj+1 :Tj 1-—)
T
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Newtonian Cooling

dt
Tj+1 — Tj (1_ 7)

1. Does this equation approximation converge for dt -> 0?

2. Does it behave like the analytical solution?

With the initial condition T=T, at t=0:

dt
Tz :T1(1_7) :To (1_

leading to :

T1 — To (1_$)
dt. . dt
)(1—7)

T
dt. .

Tj :To(l__)J
T

Numerical Methods in Geophysics

The Finite Difference Method



Newtonian Cooling

dt. .
T, =T,1-—)
-

Let us use dt=t/j where t; Is the total time up to time step |:

T, =T, 1+

t

)7

J

This can be expanded using the binomial theorem

U+

J
1

41172

2

J
2

+ ...
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Newtonian Cooling

... where

J
r

]!

(J—r)!r!

we are interested in the case that dt-> 0 which is equivalent to j->®

J!

(J-r)

as a result
j =r
L1

r rl

= 10-DU=2)(J-r+1) - i’
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Newtonian Cooling

substituted into the series for Tj we obtain:

_ ) ) -
T oT1ed| - L b
ooy 2
which leads to
T, > Ty 1+ L +i L
| 21l 1

2

... which is the Taylor expansion for

T, =T,exp(-t/7)

2

+ ...

+ ...
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Newtonian Cooling - Convergence EERRE

So we conclude:

For the Newtonian Cooling problem, the numerical
solution converges to the exact solution when the
time step dt gets smaller.

How does the numerical solution behave?

dt
The analytical solution What are the conditions
decays monotonically! so that T,,,<T,?
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Newtonian Cooling - Convergence SRR

dt

Tj+1 = Tj (1_ _)
T
T;,1<T, requires

Ogl—$<1

T
or

O<dt<r

The numerical solution decays only montonically for
a limited range of values for dt! Again we seem to have
a conditional stability.
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Newtonian Cooling - Convergence ok

dt
Tj+1 — Tj (1_ 7)

dt
it T<dt<2r  then 1-—) <0
T
=mmp- the solution oscillates but converges as |1-dt/t|<1
if dt > 27 then dt/z > 2

=mmp ]-dt/t<-1 and the solution oscillates and diverges

... how let us see how the solution looks like ....
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Newtonian Cooling - Convergence hock

% Matlab Program - Newtonian Cooling

% initialise values
nt=10;

t0=1.

tau=.7,;

dt=1.

% initial condition
T=tO;

% time extrapolation
for i=1:nt,
T(@1+1)=T(i)-dt/tau*T(i);
end

% plotting
plot(T)
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Newtonian Cooling - Convergence

dt="1: tau=0.7
1 1 I I 1
05k .
€L
=
0
T
(o8
=
I
|_
[:] B
_[:]5 1 1 1 1
0 2 4 &) a 10
Time(s)
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Newtonian Cooling - Convergence

Solution converges but does not have the right time-dependence

dt=05; tau=0.7

09}
08}
0.7

=

= 06
05

mperatu

':]3'[:]4_

T

03}
02}
0
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Newtonian Cooling - Convergence EERRE

... only slight error of the time-dependence - acceptable solution ...

dt=0.1; tau=0.7
’] T T T T
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Newtonian Cooling - Convergence

.. very accurate solution which we pay by a fine sampling in time ...

dt=0.01; tau=0.7

10
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Newtonian Cooling - Convergence

Temperature

1.5

0.5

0.5

-15

... this solution is wrong and unstable !

dt=1.41; tau=0.7

A

Time(s)

10
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The 1-D wave equation L0

p(x)22u(x, t) = 8, [E(x) 2,u(x, t)]

Elastic parameters E(x) vary only in one direction.

E(X) — ,u(X) shear waves
E(X) = ﬂ(X)-I—Z,Ll(X) P waves

with the corresponding velocities

Vo = fad shear waves
yo,
Jﬂ+2y
Vp = P waves
yo,
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The 1-D wave equation

We want to avoid having to take derivatives of the material
parameters (why?). This can be achieved by using a
velocity-stress formulation, which leads to the following
simultaneous equations:

X

1

p(X)

0,7

0,7 = E(x)0,u

where

r=E(X)o,u

stress
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The 1-D wave equation - FD scheme R

Let us try to use one of the previously introduced FD schemes:
central difference for space and forward difference for time

Discretization: (Idt, mdx)

dx space increment, dt time increment

I+1

A

t

°
dtI
® o ®
4P
dx
m-1 m m+1
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The 1-D wave equation - FD scheme ook

... leading to the following scheme:

~I+1_

|
u u 1l z...—71

forward il M — mil “m-l centered
dt o,  20dx
41 | | iy
— u —Uu

forward m__n_f —md md centered
dt 2dx

like in the continuous case, we can make the following Ansatz:

f(x,t) = Aexp(ikx —iwt)
which In the discrete world IS :

f_ = Aexp(ikmdx —iwldt)
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The 1-D wave equation - FD scheme %ﬁ;fgf,«?
... In practical terms: first solve |+1 L4
| >
| |
141 1 Tt~ T o
u.~ =dt e +U_ | :
P m-1 m m+l
then solve
u' . —u
A e S )
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The 1-D wave equation - FD scheme

... let us assume a signal is propagating:

f(z') = Aexp(ikmdx — iwldt)
f (') = Bexp(ikmdx — iwldt)

we now put this Ansatz into the following equations ...

urln+1 ~ ulln 1 Tr|n+1 ~ Trln—l
dt O, 20X

Ty — Ty _E Up g = U s
dt " 2dx
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The 1-D wave equation - FD scheme e

...after some algebra (hours later) ...

exp(—iwdt) =1+

m

Pnm

(dtjsin kdx
dx

What does this result tell us about the numerical solution?

lexp(—iwdt)| > 1

for any choice of dt and dx! So ® must be complex.

But then for example:

f (z.) = Aexp(ikmdx —iwldt) = Aexp(ikm) exp(—w’ldt)

will grow exponentially as, o* is real.
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The 1-D wave equation - FD scheme

Can we find a scheme that works? |+1 ®
Let us use a centered scheme in
L | ® ® ®
time:
Uy — UI% L T =T -1 1
2dt Pm 2dx mi m mil
|+1 -1 . . |
Th —Tn —E um+1_um—1
2dt " 2dx

And again we use the following Ansatz to investigate the behavior

of the numerical solution:

f(r') = Aexp(ikmdx — iwldt)
f (4" ) = Bexp(ikmdx —iwldt)
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The 1-D wave equation - FD scheme ISEHE

...again after some algebra (minutes later) ...

sinwdt = + |Em (dt jsin kdx
P \ OX

... has real solutions as long as

E, (dt) _,
P \ OX
... knowing that for example ...
= |
— = Vp P-wave velocity
P
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The 1-D wave equation - FD scheme e

... We arrive at maybe the most important result
for FD schemes applied to the wave equation:

dt
Ves I <1

Vp s Is the locally homogeneous velocity. This is called

a conditionally stable finite-difference scheme. Finding the

right combination of dt and dx for a practical application, where
the velocities vary in the medium is one of the most important
tasks.
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The 1-D wave equation - FD scheme ISEHE

There is an even better scheme!

t
|+1 ° ® ) This is called a
1+1/2 . _ | staggered scheme
I ° ® ®
-1/2 : . u
® T
-1 ° ® ®
> X
m-1 m m+1
m-1/2 m+1/2

Numerical Methods in Geophysics

The Finite Difference Method



The 1-D wave equation - FD scheme

... leading to the FD scheme:

«1+1/2 «1-1/2 | |
um o um _ 1 T2 — T2
dt O dx
|+1 I «1+1/2 «1+1/2
Tmitr2 — Tmsa)2 —E um+1 o um
T m4+1/2
dt dx

And again we use the following Ansatz to investigate the behaviour
of the numerical solution:

f(z') = Aexp(ikmdx — iwldt)
f(u') = Bexp(ikmdx —iwldt)

Find the corresponding stability condition (Exercise)!
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Staggered Grids s

Which scheme is more accurate?

Centered | n He—N N L] |

Staggered m ¢+ ®m ¢+ ® ¢ ®H ¢+ H ¢+ ®H o+ H

dx
f dx)— f(x—d
conereg: 0, f ~XFI) = Tx=dX)
20X
staggered: 0, f = f(X—I—dX/Z)d— f(x—dx/2)
X

Because the error is O(h?), the error of the centered scheme is 4 times larger.
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Numerical Dispersion S

What does the stability criterion tell us about the
guality of the numerical solution?

Sinw_dt:i Emﬂ/z(dthiﬂkd—x
2 pn Ldx ) 2

To answer this we need the concept of phase velocity.

Remember we assumed a harmonic oscillation with frequency
® and wavenumber k, for example

V(1) = sin(kx — ot) = sin(k(x—%t)) _sin(o( x-1))
a

where the phase velocity is

@

Cphase = I
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Numerical Dispersion

we can first assume that dt and dx are very small, in this case :

Sin(X) = X for small x

then

wave speed

for small dt and dx we simulate the correct velocity:
The scheme is convergent.

>
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Numerical Dispersion D
P 5

How about the general case?

Sin a)_dt: + Em+1/2 ( dt jsin kd_X
Lm dx
using — 2_7[ we obtain
A
A dt . zdx
t X 2

This formula expresses our numerical phase velocity as a
function of the wave speed and the propagating wavelength.
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Numerical Phase Velocity

Fhase velocity

3200 . . . .
3000 - ]
2800+ ]
g True velocity 3000m/s
g 2600 - Curves are shown for .
AN} . -
& varying stability.
T 2400¢ ]
a
s
Z 2200¢ ]
2000 - ]
1800 ' ' , .
0 5 10 15 20 25

Mumber of points per wavelength
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Numerical Dispersion

What we really measure in a seismogram is
the group velocity:

Py CCOS——
1/2
oK ( dt . ﬂdsz
l1-|c—sSIh——
dx A

This formula expresses our numerical group velocity as a
function of the wave speed and the propagating wavelength.
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Numerical Group Velocity K]
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MNumber of points per wavelength
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Numerical Group Velocity

Mumerical group wvelocity

! Blue - Phase velocity l
Red - Group velocity
5 10 15 20

Mumber of points per wavelength

25
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Snapshot Example
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Seismogram Dispersion

2 point - 2 order

2 point - 2 order 2 point - 2 order
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Finite Differences - Summary ?’?%5

Depending on the choice of the FD scheme
(e.g. forward, backward, centered) a numerical solution
may be more or less accurate.

Explicit finite difference solutions to differential
equations are often conditionally stable. The correct
choice of the space or time increment is crucial to
enable accurate solutions.

Sometimes it is useful to employ so-called staggered
grids where the fields are defined on seperate grids which
may improve the overall accuracy of the scheme.
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