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• Our real example: hypocentre 
location

Albert Tarantola

This lecture follows Tarantola, Inverse problem theory, p. 1-88.
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The final information on the model 
space is given by the marginal a 
posteriori pdf
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This really is the solution to the inverse problem. One can use σ(m)
To obtain any kind of information one wishes, for example

- mean values
- maximum likelihood values
- error bars
.. etc. 
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1. Negligible modelisation errors (compared to other errors)

d=g(m) is the exact solution of the forward problem.  For the 
A posteriori pdf in the model space we obtain:
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In words: We are sure of the correct physical description and 
the (e.g. analytical, numerical, ...) solution to the problem. The 
only alteration of the solution to the inverse problem comes from
Possible errors in the data ρM(d) and the a priori information on the 
model parameters ρM(m).
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Velocity seismograms derived from three accelerometers at 
the same location recording the 1999 Chi-Chi earthquake 
in Taiwan, they should really be the same …
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2. Negligible observational errors (compared to other errors)
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.. we are absolutely certain about the quality of our data, 
then we obtain … 
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In words: Although we are sure about the data we allow for 
uncertainties in our forward modelling Θ(.). On top of this the
a priori ρ(m) information influences the solution to our problem.
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3. Gaussian modeling and observational errors
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… with the final solution (a posteriori pdf)
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… note here that C=CD+CT

In words: In the Gaussian assumption, observational errors and
modeling errors simply combine by addition of the respective 
covariance operators (even for nonlinear forward problems).
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The Gaussian hypothesis (least-squares criterion)

… let us now also assume that the a priori information
ρ(m) is Gaussian, we then obtain the most commonly 
used solution

1777-1855
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... Even though we are interested in the general nonlinear case d=g(m)
let us quickly explore the linear case when d=g(m)=Gm, G being a matrix 
operator. 



Nonlinear Inverse Problems Probability and information

),(
),(),(),(

md
mdmdkmd

µ
θρσ = Gauss- the linear case!Gauss- the linear case!

The Gaussian hypothesis (least-squares criterion)
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... the linear case leads to the following

1777-1855

by differentiation we can find the mean model <m> of this function 
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This model is the maximum likely model as it has the highest probability. 
The a posteriori probability density in the model space is Gaussian!
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... here we assume exact theoretical data d
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... and it s getting wilder ...
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The problem: The seismic waves recorded at a seismic network carry 
Information on the location of an earthquake. The parameters 
For this problem are simply the x,y,z coordinates of Euclidean 
space. However, we are not interested in one particular solution
but in investigation the amount of informatino we have on the 
space of possible models in x,y,z! To further simplify we consider 
The problem in the x,z plane only. 

Seismic network
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A priori information: The unknowns (model parameters) are the hypocentral 
coordinates x,z and origin time T. We assume a priori 
information on our parameters.

),,( Tzxmρ prior information

kTzxm =),,(µ non-informative prior
x

z

),( zxmρ We assume that the prior information is constant in side 
the region 0<x<60km and 0<z<50km. The prior information 
on t is constant (non-informative).
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A priori information
(data):

We have four arrival times of the earthquake {t1, t2, t3, 
t4} at four observatories at locations {xi, yi}. The 
measurements are described by the probability
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We will assume Gaussian errors for each ti with varian σi:
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To solve the forward problem d=g(m) we need to calculate the arrival times
ti at the seismic stations xi,zi for the hypocentral coordinates X,Z

Here we assume a constant velocity model. 
Is this a good approximation?
We also assume that our modeling is exact. 

Now we can formulate the solution to our inverse problem!
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We can now combine the a priori information with that obtained
from our experiment:
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Now let us calculate this a posteriori 
probability density function.

The stations: s1(5,0), s1(10,0), s1(15,0), s1(25,0) in km
The velocity model: v=5 km/s

The data: tobs= (30.3, 29.4, 28.6, 28.3)
σ = (0.1, 0.2, 0.1, 0.2)
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Hypocenter: data uncertaintiesHypocenter: data uncertainties

The stations: s1(5,0), s1(10,0), s1(15,0), s1(25,0) in km
The velocity model: v=5 km/s

The data: tobs= (30.3, 29.4, 28.6, 28.3)
σ = (0.1, 0.2, 0.1, 0.2)

Marginal prior probabilities
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The solution to our inverse problem (x,z – space)

This is the marginal probability 
density in the x,z space. One can 
Now calculate any desired values 
(maximum likelihood point, standard
Deviations, etc. )

X (km)

Z 
(k

m
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Hypocenter location: a posterioriHypocenter location: a posteriori

The solution to our inverse problem (T- space)

T(s)

p(T)

This graph shows the 
uncertainties on the origin 
time of the earthquake
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The hypocenter problem has shown us most benefits and 
difficulties of probabilistic inverse theory

Benefits:
The visual representation of the marginal probabilities seems to be an 
optimal way of describing information we have on the hypocenter!

Difficulties:
We paid a high price: calculating lots and lots of models with extremely 
low probability. We sampled the a posteriori probability going through 
the whole model space without thought.

There must be better ways of doing this!
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