from obspy.signal import bandpass
from scipy.io import loadmat
import matplotlib.pyplot as plt
plt.close('all')
import numpy as np
import pickle

# Load python saved
#seis = pickle.load(open("seismogram.bin",'rb'))

mat = loadmat("seismogram.mat")
data = mat['seis']
dt = 0.002 # 500Hz

# Note winlen is just 2s ===> lowest frequency .5Hz
data_bp = bandpass(data[0,:], 0.5, 40.0, df=1.0/dt)

#
# The plotting part
#
time = np.arange(0, len(data[0,:]))*dt
plt.figure()
plt.subplot(211)
plt.plot(time, data[0,:])
plt.ylabel("Orig Data")
plt.xlabel("Time [s]")
plt.subplot(212)
plt.plot(time, data_bp)
plt.ylabel("Bandpassed .5Hz-50Hz")
plt.xlabel("Time [s]")
plt.show()
