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S U M M A R Y
We propose a new approach to full seismic waveform inversion on continental and global
scales. This is based on the time–frequency transform of both data and synthetic seismograms
with the use of time- and frequency-dependent phase and envelope misfits. These misfits allow
us to provide a complete quantification of the differences between data and synthetics while
separating phase and amplitude information. The result is an efficient exploitation of waveform
information that is robust and quasi-linearly related to Earth’s structure. Thus, the phase and
envelope misfits are usable for continental- and global-scale tomography, that is, in a scenario
where the seismic wavefield is spatially undersampled and where a 3-D reference model is
usually unavailable. Body waves, surface waves and interfering phases are naturally included
in the analysis. We discuss and illustrate technical details of phase measurements such as the
treatment of phase jumps and instability in the case of small amplitudes.

The Fréchet kernels for phase and envelope misfits can be expressed in terms of their cor-
responding adjoint wavefields and the forward wavefield. The adjoint wavefields are uniquely
determined by their respective adjoint-source time functions. We derive the adjoint-source
time functions for phase and envelope misfits. The adjoint sources can be expressed as inverse
time–frequency transforms of a weighted phase difference or a weighted envelope difference.

In a comparative study, we establish connections between the phase and envelope misfits
and the following widely used measures of seismic waveform differences: (1) cross-correlation
time-shifts; (2) relative rms amplitude differences; (3) generalized seismological data func-
tionals and (4) the L2 distance between data and synthetics used in time-domain full-waveform
inversion.

We illustrate the computation of Fréchet kernels for phase and envelope misfits with data
from an event in the West Irian region of Indonesia, recorded on the Australian continent.
The synthetic seismograms are computed for a heterogeneous 3-D velocity model of the
Australian upper mantle, with a spectral-element method. The examples include P body
waves, Rayleigh waves and S waves, interfering with higher-mode surface waves. All the
kernels differ from the more familar kernels for cross-correlation time-shifts or relative rms
amplitude differences. The differences arise from interference effects, 3-D Earth’s structure
and waveform dissimilarities that are due to waveform dispersion in the heterogeneous Earth.

Key words: Inverse theory; Seismic tomography; Computational seismology; Wave propa-
gation.

1 I N T RO D U C T I O N

1.1 State of the art and summary of previous work

In recent years, developments in both theoretical seismology and numerical mathematics have led to substantial progress in seismic tomography.
It is today widely accepted that wave propagation effects such as multipathing, scattering or wave front healing are important in the 3-D Earth
(Williamson 1991; Williamson & Worthington 1993; Spetzler et al. 2001). Theories and methods that allow us to account for such phenomena
in seismic tomographies and to go beyond classical ray theory, have been developed by several authors (e.g. Bamberger et al. 1982; Tarantola
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1988; Yomogida 1992; Marquering et al. 1998; Dahlen et al. 2000; Zhao et al. 2000). The evidence that the results of seismic tomography
do indeed improve when finite-frequency effects in 3-D media are included is steadily increasing (Yoshizawa & Kennett 2004; Zhou et al.
2005; Boschi 2006; Chen et al. 2007a). Moreover, the amount of data that we can exploit has grown immensely, thanks to efficient numerical
techniques that enable us to simulate global seismic wave propagation through realistic earth models (e.g. Seriani 1998; Komatisch & Tromp
2002; de la Puente et al. 2007; Dumbser et al. 2007). We could, in principle, use complete seismic waveforms for the purpose of seismic
tomography. Yet, full-waveform tomography has so far been limited to regional-scale problems (e.g. Bamberger et al. 1982; Igel et al. 1996;
Dessa et al. 2004; Chen et al. 2007a). Full-waveform tomography on a global scale—as envisioned by Capdeville et al. (2005)—has not been
achieved to date. An important part of the problem is the definition of suitable seismic waveform misfits.

In this paper, we propose an alternative approach to full-waveform inversion that is applicable on continental and global scales. It is
based on the formulation of phase and envelope misfits in the time–frequency domain. We are able to provide a complete quantification
of waveform differences and to separate information that is quasi-linearly related to structure (phase) from information that is non-linearly
related to structure (amplitude). The phase misfit introduces a transmission tomography component that is crucial on continental and global
scales, where the distribution of sources and receivers is sparse, in contrast to exploration scenarios characterized by spatial oversampling.
Moreover, our approach does not rely on the isolation of particular phases, and it naturally combines body and surface wave analyses.

Full-waveform inversion, based on numerical solutions of the wave equation, was initiated in the early 1980s (Bamberger et al. 1982;
Tarantola 1984) in the context of 1-D and 2-D seismic exploration problems. Numerical solution of the wave equation, for example, with a finite-
difference scheme, automatically includes all types of waves in the synthetic seismograms, even when the earth model is complex. To exploit
this wealth of information, time-domain full-waveform inversion attempts to minimize the objective functional

∑N
r=1

∫
[u(xr , t)−u0(xr , t)]2 dt ,

that is, the cumulative L2 distance between the complete data u0 and the complete synthetics u, recorded at N receivers, denoted by xr . The
pure frequency-domain approach proposed by Pratt (1999) is analytically equivalent to the pure time-domain method but offers numerical
advantages in 2-D exploration scenarios. The minimization problem needs to be solved iteratively due to the high computational costs
involved in the numerical solution of the wave equation. Algorithms that have proved to be efficient include the method of steepest descent
(e.g. Tarantola 1984; Gauthier et al. 1986) and variants of the conjugate gradient method (e.g. Mora 1987, 1988; Tape et al. 2007).

One of the theoretical cornerstones of full-waveform inversion is the adjoint method, originally developed in the context of optimal
control theory (Lions 1968) and introduced to geophysics by Chavent et al. (1975). The adjoint method allows us to compute the gradient
of any differentiable misfit functional by solving the forward problem (e.g. the wave equation) and its adjoint problem only once. The
simplicity of calculations makes the adjoint method much more efficient than the approximation of the gradient by finite differences, which is
practically infeasible when the model space comprises a large number of elements. Applications of the adjoint method are not limited to seis-
mology (e.g. Tarantola 1988; Tromp et al. 2005), but can also be found in several other branches of the Earth sciences, including meteorology
(e.g. Talagrand & Courtier 1987), ground water modelling (e.g. Sun 1994) or mantle dynamics (e.g. Bunge et al. 2003).

The advantages and disadvantages of time-domain full-waveform inversion become apparent through its close relation to diffraction
tomography. In diffraction tomography (Devaney 1984; Wu & Toksöz 1987), the scattered wavefield, that is, the difference �u(t) = u(t) −
u0(t), is linearly related to the spectrum of the heterogeneity that caused the incident wavefield to be scattered. This relationship is reminiscent
of the well-known projection slice theorem from X-ray tomography. Diffraction tomography yields accurate images, even of small-scale
structural heterogeneities, but only when the following conditions are satisfied. (1) The background structure is so close to the true structure
that the remaining differences are small compared with the dominant wavelength, that is, the Born approximation holds. (2) The heterogeneity
is illuminated from all directions (Mora 1989).

Diffraction tomography is qualitatively equivalent to the first iteration in a time-domain full-waveform inversion—an interpretation
confirmed by the comparison of numerical results (Gauthier et al. 1986; Wu & Toksöz 1987; Mora 1988). This suggests that time-domain
full-waveform inversion works under conditions that are similar to those given above for diffraction tomography. However, meeting those
conditions is problematic when the Earth is studied on continental or global scales.

A sufficiently accurate reference model is usually unavailable at length scales exceeding several tens of kilometres. This is due to
the nature of the tomography problem with limited data. Even 1-D models of the whole Earth (Dziewonski & Anderson 1981; Morelli &
Dziewonski 1993; Kennett et al. 1995) can differ by several per cents, especially in the upper mantle and near discontinuities. The 1-D
density structure of the Earth has rather limited constraints (Kennett 1998). There are three immediate consequences of this dilemma. First,
the remaining differences between any presently available earth model and the true Earth can often not be treated as scatterers. Second, the
observed waveform residuals at periods above several seconds are mostly due to transmission and interference effects. Third, time-domain
full-waveform inversion on continental or global scales is highly non-linear.

The data coverage necessary for diffraction tomography or time-domain full-waveform inversion is not achievable in a 3-D Earth.
Vast regions of the Earth’s surface are practically inaccessible, and sufficiently strong sources are confined to a few seismogenic zones.
Strong reflectors that could in principle improve this situation (Mora 1989) are not present in the Earth’s mantle. As a result, time-domain
full-waveform inversion cannot work on continental or global scales, unless very long-period data are used (Capdeville et al. 2005).

Nevertheless, it remains desirable to extract as much waveform information as possible and to use numerical solutions of the wave
equation in tomography because they allow us to correctly account for 3-D Earth’s structure. A milestone towards this goal was Luo &
Schuster’s (1991) realization that phase information needs to be included explicitly in the objective functional. Separating phases from
amplitudes is required to overcome the excessive non-linearity introduced by the objective functional

∑N
r=1

∫
[u(xr , t) − u0(xr , t)]2 dt . Luo &
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Schuster’s method was based on the estimation of delay times by cross-correlating data and numerically computed synthetics—a technique
reminiscent of ideas expressed earlier by Dziewonski et al. (1972), Lerner-Lam & Jordan (1983) or Cara & Lévêque (1987) in the context of
surface wave analysis. The cross-correlation approach was further formalized by Gee & Jordan (1992) and then directly applied to data by
Zhou et al. (1995) and Chen et al. (2007a). It was also used for the computation of finite-frequency delay time kernels (Dahlen et al. 2000;
Tromp et al. 2005; Sieminski et al. 2007a,b; Liu & Tromp 2008).

Waveform cross-correlation is a successful and robust technique. However, its applicability is limited to scenarios where single phases
are clearly identifiable and where data and synthetics have essentially identical waveforms. In a case where two different phases interfere, the
cross-correlation technique may not yield accurate delay time information for either of them. A similar effect arises when data and synthetic
waveforms are not only time-shifted but distorted with respect to each other—a well-known phenomenon in the Earth where waveforms
disperse due to the presence of heterogeneities. As a consequence of these limitations, potentially useful and robust information about the
Earth’s structure may remain unexploited by cross-correlation measurements.

1.2 Objectives and outline

The principal objective of this paper is to propose a parametrization for waveform misfit that overcomes the problems of time-domain full-
waveform inversion, yet has a wider range of applicability than pure measurements of cross-correlation time-shifts. In more detail, the proposed
waveform misfits are designed to fulfil the following requirements: (1) applicability in the context of continental- and global-scale waveform
inversion; (2) full quantification of seismic waveform misfit in a suitable frequency range between ω0 and ω1, that is, data = synthetics for
ω ∈ [ω0, ω1] in the hypothetical case of zero misfit; (3) separation of phase and amplitude information; (4) relaxation of the requirements
on waveform similarity needed for the measurement of pure cross-correlation time-shifts and (5) possibility to analyse complete wave trains,
including body waves, surface waves and interfering phases.

The seismic waveform misfits proposed in the following sections are based on a seismogram analysis in the time–frequency plane. This
approach closely follows suggestions by Kristeková et al. (2006), and it is reminiscent of classical surface wave analysis (e.g. Dziewonski
et al. 1972). Representing both data and synthetics in time–frequency space naturally introduces phase and envelope misfits. They fully
characterize the time dependence of the misfit spectrum.

We start our development with the definition of the phase and envelope misfits that we will then use throughout this paper. Much
emphasis will be on the technical details of phase difference measurements and the required degree of waveform similarity. Subsequently, we
will derive the adjoint sources corresponding to measurements of phase and envelope misfits. This will be followed by a comparison of our
results with those obtained for other widely used objective functionals, including cross-correlation time-shifts (e.g. Luo & Schuster 1991),
rms amplitudes and the generalized seismological data functionals (GSDFs) by Gee & Jordan (1992). We will emphasize the conceptual
similarity between the GSDFs and the time–frequency misfits. In Section 5, we will then present sensitivity kernels for phase and envelope
misfits between real data and spectral-element synthetics. The examples include P, surface and S waves that interfere with higher-mode
surface waves. The advantages and disadvantages of our method will be discussed in the final section of this paper. There we will also address
possible inverse problem strategies involving phase and amplitude misfits. In a follow-up paper, we will demonstrate the use of our method
in waveform inversion on continental scales and in particular on the Australian continent.

2 S E I S M I C WAV E F O R M M I S F I T S I N T H E T I M E – F R E Q U E N C Y D O M A I N

Seismic tomography allows us to infer Earth’s structure from the misfit between data and synthetics. The success of a seismic tomography
depends, among other factors, on the completeness of the misfit quantification, the separation of phases and envelopes and the exploitation
of both time and frequency information. We, therefore, propose to characterize the temporal evolution of the frequency content of data and
synthetics. This leads to naturally separated phase and envelope differences that depend on time and frequency. The resulting phase and
envelope misfits are then complete descriptions of the waveform misfit between data and synthetics, which can be used in a tomographic
study exploiting seismic waveforms.

2.1 The definition of phase and envelope misfits

We denote the ith component of a real seismogram recorded at the position x =xr by u0
i (xr , t) and the corresponding synthetic by ui (xr , t).

For notational brevity, we will omit dependences on xr wherever possible. We can analyse how the frequency content of the data evolves with
time by computing the Fourier transforms of u0

i (t) multiplied by a sliding window function h(t − τ ), centred around τ . In symbols

ũ0
i (t, ω) = Fh

[
u0

i

]
(t, ω) := 1√

2π

∫ ∞

−∞
u0

i (τ ) h∗(τ − t) e−iωτ dτ. (1)

The imaginary unit i := √−1 is written in bold face to distinguish it from the index variable i. Using the complex conjugate h∗ instead of
h is a common convention to which we shall conform throughout this paper. Eq. (1) defines a time–frequency representation of the data. A
possible choice for h is the Gaussian (πσ )−1/4 e−t2/2σ 2

, in which case ũ0
i (t, ω) is referred to as the Gabor transform of u0

i (t). In analogy to (1),
we define the time–frequency representation of the synthetics ui (t) as ũi (t, ω) = Fh[ui ](t, ω). Both, ũ0

i and ũi can be written in exponential
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form:

ũ0
i (t, ω) = |ũ0

i (t, ω)| eiφ0
i (t,ω) , ũi (t, ω) = |ũi (t, ω)| eiφi (t,ω). (2)

These relations define the envelopes |ũ0
i (t, ω)| and |ũi (t, ω)| and the corresponding phases φ0

i (t , ω) and φ i (t , ω), with −π < φ0
i , φ i ≤ π . We

now obtain envelope misfits E e and phase misfits E p in the form of L n norms of the envelope difference |ũi | − |ũ0
i | and the phase difference

φ i − φ0
i , respectively:

En
e

(
u0

i , ui

)
:=

∫
R2

W n
e (t, ω)

[|ũi (t, ω)| − ∣∣ũ0
i (t, ω)

∣∣]n
dt dω, (3a)

En
p

(
u0

i , ui

)
:=

∫
R2

W n
p (t, ω)

[
φi (t, ω) − φ0

i (t, ω)
]n

dt dω. (3b)

The symbols W e and W p denote positive weighting functions that we will discuss in the following sections. The envelope difference |ũ0
i |−|ũi |

represents time- and frequency-dependent discrepancies between the amplitudes of u0
i and ui . It is a more informative measure of amplitude

differences than the time-domain difference u0
i − ui because it does not generate large misfits when u0

i and ui are similar and merely
slightly time-shifted. An alternative to the measurement of the envelopes themselves is the measurement of logarithmic envelopes, that is, the
replacement of E e as defined in eq. (3a) by En

e = ∫
W n

e [log(|ũi |/|ũ0
i |)]n dt dω. Logarithmic envelopes may be more linearly related to Earth’s

structure than the pure envelopes. With the exception of Section 3.5, we will, nevertheless, continue to consider the pure envelopes because
this will keep the following developments more readable. The transition to logarithmic amplitudes is mostly trivial. The phase difference
�φ i = φ i − φ0

i can be interpreted in terms of a time-shift �t at frequency ω: �φ i = ω�t . The quantity �φ i is physically meaningful only
when it takes values between −π and π , that is, when data and synthetics are out of phase by less than half a period. The same condition
arises when arrival time differences are estimated by waveform cross-correlation. Sufficient waveform similarity can be achieved by filtering
both data and synthetics or their respective time–frequency representations.

Throughout this paper, we shall use the window function h(t) = (πσ )−1/4 e−t2/2σ 2
, that is, the Gabor transform. This choice is convenient

and, also, advantageous from a theoretical point of view because it maximizes the time–frequency resolution (see for example Strang &
Nguyen 1996, and Appendix B). We will suggest suitable values for the parameter σ in Section 2.2.3 Eq. (1) represents not the only possible
characterization of data or synthetics in time–frequency space. Alternatively, one could employ a wavelet transform instead of a windowed
Fourier transform (e.g. Kristeková et al. 2006). We defer a discussion of this issue to Section 6.

2.2 Technical details of phase measurements

Although envelope measurements are conceptually straightforward, phase and phase difference measurements are more complicated. The
reasons are: (1) the phases φ i and φ0

i can be discontinuous. The discontinuities map into the phase difference �φ i , at least when it is computed
by directly subtracting φ0

i from φ i . (2) Even the smallest wavefield perturbation can in principle lead to strong variations of the phase. This
effect is most pronounced when the signal amplitude is comparatively small or even zero. Therefore, a suitable weighting function W p needs
to be applied. We will address these issues in the following paragraphs.

2.2.1 Phase jumps and the practical implementation of phase difference measurements

A fundamental complication related to the measurement of the phase difference �φ i = φ i − φ0
i arises from the discontinuities in the phases

φ i and φ0
i . For a given time t, the discontinuities of φ i and φ0

i generally occur at different frequencies ω. Since the phase jumps from −π to
π , or vice versa have different locations on the frequency axis, the difference �φ i can reach values of ±2π , even when the signals ui and u0

i

are almost in phase. Unwrapping φ i and φ0
i along the frequency axis for each time does not resolve the problem. This is because the number

of phase jumps within the frequency interval of interest generally varies with time. Hence, while removing the phase jumps on the frequency
axis, an unwrapping procedure produces jumps on the time axis.

Under the assumption that data and synthetics are indeed nearly in phase we can circumvent this obstacle as follows. First, we note that
for a fixed time t, the time–frequency representations ũ0

i and ũi are the Fourier transforms of the functions f 0
t (τ ) =: u0

i (τ )h∗(τ − t) and
f t (τ ) =: ui (τ )h∗(τ − t), respectively. Now, let the correlation function of f t and f 0

t , denoted by c( f 0
t , f t )(τ ), be defined by

c
(

f 0
t , ft

)
(τ ) :=

∫
R

f 0
t (t ′) ft (t

′ + τ ) dt ′. (4)

For the Fourier transform of c( f 0
t , f t ), we then find

F1[c](ω) = 1√
2π

∫
R

c
(

f 0
t , ft

)
(τ ) e−iωτ dτ =

√
2π ũi (t, ω) ũ0

i (t, ω)∗ =
√

2π |ũi ||ũ0
i | ei(φi −φ0

i ) = |F1[c]| ei(φi −φ0
i ). (5)

The phase difference �φ i = φ i − φ0
i can therefore be expressed as

�φi = −i Ln

(
F1[c]

|F1[c]|
)

. (6)

This means that for a specific time t, the phase of the Fourier transformed correlation function coincides with the phase difference
between the time–frequency signals ũi and ũ0

i . In those regions of time–frequency space where u0
i and ui are nearly in phase, (6)
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will give phase differences that range between −π and π . Discontinuities, as produced by directly subtracting φ i from φ0
i , are then

avoided.
When data and synthetics are, however, out of phase, discontinuities appear even when (6) is used for the computation of the phase

difference �φ i (see Section 2.2.4 for an example). This indicates a level of waveform dissimilarity between data and synthetics that needs to
be tamed either by filtering ui (t) and u0

i (t) or by applying a suitable weighting function W p to the time–frequency representations ũi and ũ0
i .

2.2.2 The necessary condition for the stability of phase measurements

Phase measurements are further complicated by the fact that even the smallest wavefield perturbation can lead to strong variations of the
phase unless a reasonable weighting function W p is chosen. Choosing, for example, W p(t , ω) = 1 will lead to an erratic behaviour of the
weighted phase difference W p�φ i in cases where |ũ0

i | is zero or small compared with the noise.
We shall now deduce classes of phase weighting functions W p that lead to robust measurements. Our development is based on stability

arguments. Assume that the signal u(t), which is either u0
i (t) or ui (t), is perturbed by �u(t). This small change will lead to a perturbation of

the weighted phase W pφ(u) so that it becomes W pφ(u + �u) = W pφ(u) + W p�φ(u + �u). Our goal is to find a weighting function W p

such that any small perturbation �u induces a weighted phase change W p�φ that is bounded by C ||�u||2, where C < ∞ is a constant:

||Wp�φ||2 ≤ C ||�u||2 , ∀ �u with ||�u||2 
 ||u||2. (7)

Since ||�u||2 is small compared with ||u||2 we may approximate W p �φ with a Taylor series truncated after the linear term:

Wp�φ=̇Wp
dφ

du
(�u), (8)

where (d φ/d u)(�u) denotes the functional derivative of φ in the direction of �u. The symbol =̇ means ‘correct to first order’. In what
follows we will replace =̇ by = in the interests of simplicity. For the linear operator dφ/du, we find

dφ

du
(�u) = −i

d

du
ln

(
ũ

|ũ|
)

(�u) = −i

(
1

ũ

dũ

du
− 1

|ũ|
d|ũ|
du

)
(�u) = �m

[
1

ũ

dũ

du
(�u)

]
. (9)

From the definition of ũ (see eq. 1), we obtain

dũ

du
(�u) = 1√

2π

∫ ∞

−∞
(�u) h∗(τ − t)e−iωτ dτ = �ũ. (10)

Hence, dũ/du is just equal to F h . Combining eqs (8)–(10), and invoking Plancherel’s formula (see Appendix B) yields an estimate for
||W p�φ||2:

||Wp�φ||2 ≤ ∣∣∣∣Wp/ũ
∣∣∣∣

2
||�ũ||2 = ||h||2

∣∣∣∣Wp/ũ
∣∣∣∣

2
||�u||2. (11)

Based on our definition of a stable measurement, we can conclude that stability requires the quantity ||Wp/ũ||2 to be bounded by a finite
constant. This stability condition puts constraints on the properties of the weighting function W p. The most straightforward choice is
Wp = |ũ| because then we have ||W p �φ||2 ≤ ||h||2||�u||2 and the constant C from the stability definition (7) is equal to ||h||2. This window
function emphasizes those parts of the seismogram that have large amplitudes and frequencies close to the dominant frequency. However,
phases corresponding to low-amplitude waves, with frequencies that are not close to the dominant one, are down-weighted. This behaviour
is reminiscent of the well-known amplitude effect in time-shift estimates by cross-correlation. A direct implication of the large-amplitude
dominance is that different arrivals in a seismogram need to be considered separately when Wp = |ũ| is used as weighting function. Otherwise,
phase information from lower-amplitude arrivals will be practically lost. The large-amplitude dominance of Wp = |ũ| can be reduced by
choosing

Wp = log(1 + |ũ|)/ max
ω,t

log(1 + |ũ|). (12)

This weighting function also satisfies the criterion that ||Wp/ũ||2 be bounded. In addition to the options proposed above, one might use W p

as a noise filter or as a means for emphasizing specific seismic phases, for example, small-amplitude core phases.

2.2.3 Suitable choices for the Gaussian window parameter σ

The choice of the parameter σ in the Gaussian window h(t) = (πσ 2)−1/4 e−t2/2σ 2
influences the time–frequency representations of both data

and synthetics. The technical details of the measurement process, represented by σ in our case, affect the outcome of the measurement.
Optimizing this outcome has always played a central role in time–frequency and spectral analysis. In classical surface wave analysis, for
example, σ is usually tuned to render measurements of group arrival times as easy as possible (Cara 1973; Nyman & Landisman 1977).
Another example of measurement optimization comes from multitaper methods, which are designed to provide spectral estimates that are as
free as possible from the effects of windowing functions (Thomson 1982).

In the case of full-waveform tomography, the situation is slightly different from the ones encountered in classical surface wave or
multitaper analysis. The measurements, namely phase and envelope misfits, are extracted from time–frequency representations, and those
time–frequency representations have, by design, a free parameter σ . This parameter makes the subjectivity inherent in any measurement
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Figure 1. Upper left-hand panel: time-domain signals u0(t) plotted in black and u(t) plotted in red. Upper right-hand panel: dispersion curves c(ν) and c0(ν)
in the frequency range that contributes to u(t) and u0(t) (see eqs 13). Lower left-hand panel: weighted phase difference W p�φ as a function of time t and
frequency ν. The weighting function is Wp = log(1 + |ũ0|)/ max log(1 + |ũ0|). Vertical lines indicate the times when the signals are in phase and phase
shifted by −π , respectively. The bold line traces the extremal weighted phase differences for a given frequency. Those values are plotted separately in the lower
right-hand panel (red line). The weighted phase difference is compared with the phase difference −ωx/c(ω) + ω x/c0(ω) plotted in black.

rather explicit. In principle, we cannot exclude a priori a certain value for σ as long as it results in a physically meaningful measurement and
as long as we interpret the results accordingly.

We can, however, tune σ such that it produces results that are in agreement with our physical intuition and experience. In this sense, we
suggest choosing σ such that the mathematically defined phase difference �φ i is interpretable in terms of the intuitive meaning of a phase
difference—a time-shift between two associated oscillations in the data and the synthetics. A suitable value for σ is then the dominant period
of the data. Choosing σ to be several times smaller than the dominant period gives narrow Gaussian windows that cannot capture time-shifts
between two cycles that span many such windows. Conversely, a value for σ that is several times larger than the dominant period leads to
Gaussian windows that are so wide that the resulting phase difference can no longer be associated to a specific cycle. In the case where the
dominant period varies strongly with time, one may use a time- or frequency-dependent window h. We discuss this issue in Section 6.

2.2.4 A conceptual example

This example is intended to illustrate some of the concepts arising from the measurement of phase differences and is intended to provide a
compromise between realistic and reproducible results. As test signals we use the following analytically defined, dispersed wave trains:

u(x, t) =
∫ 2π/15

2π/50
ω cos[ωt − ωx/c(ω)] dω , c(ω) = (4 − ω − ω2) km s−1, (13a)

u0(x, t) =
∫ 2π/15

2π/50
ω cos[ωt − ωx/c0(ω)] dω , c0(ω) = (3.91 − 0.87ω − 0.8ω2) km s−1, (13b)

with the epicentral distance x = 1500 km and σ = 25 s. Both u(t) and u0(t) are shown in the upper left-hand panel of Fig. 1. The dispersion
curves c(ν) and c0(ν) with ν = ω/2π , are displayed in the upper right-hand panel of Fig. 1. A visual comparison of u(t) and u0(t) indicates
that u(t) is advanced relative to u0(t), prior to t ≈ 500 s. For later times, u(t) is delayed. This delay develops into a phase shift of −π relative to
u0(t), around t = 620 s. All of these features map into the weighted phase misfit W p�φ (lower left-hand panel of Fig. 1), where the weighting
function W p is set to Wp = log(1 + |ũ0|)/ maxω,t log(1 + |ũ0|).

The phase advance of u(t) is most pronounced between 400 and 450 s where the amplitudes, and therefore W p, are largest. The phase
advance disappears at t = 520 s, where the two signals u(t) and u0(t) are exactly in phase. This is indicated by a vertical line in Fig. 1.
Subsequently, W p�φ becomes negative, meaning that the phase of u(t) is smaller than the phase of u0(t). This delay of u(t) at later times
and higher frequencies is very pronounced. Nevertheless, the values of W p�φ do not drop below −1.0 because W p tends to suppress
phase differences associated with smaller-amplitude signals. For t ≈ 620 s, the two signals are exactly out of phase, therefore, producing
a discontinuity in the weighted phase difference. This discontinuity corresponds to a cycle skip, meaning that one oscillation cycle of u(t)
cannot be associated uniquely with an oscillation cycle of u0(t). The cycle skip is synonymous with inadequate waveform similarity. For the
weighted phase difference to be physically meaningful, the late-arriving and incoherent oscillations need to be excluded either by filtering
u(t) and u0(t) or by tapering in the time–frequency domain.

The effect of the phase weighting function W p on the phase difference measurement is illustrated in Fig. 2. The unweighted phase
difference �φ is not well defined at frequencies higher than 1/15 Hz, due to the vanishing envelopes |ũ| and |ũ0| (see the definitions of the
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Figure 2. Left-hand panel: unweighted phase difference �φ at t = 450 s. Central panel: phase weighting function Wp = log(1 + |ũ0|)/ max log(1 + |ũ0|) at
t = 450 s. Right-hand panel: windowed phase difference W p�φ at t = 450 s.

test signals in eqs 13). Numerical errors are the most likely reason for the rapid variation of �φ beyond 1/15 Hz. From the phase weighting
function, we expect to suppress the erratic behaviour at frequencies where |ũ| and |ũ0| are small, that is, in this example, beyond 1/15 Hz. In
the frequency range where the envelopes of data and synthetics are significantly different from zero, the phase weighting function should be
close to unity. As already discussed in Section 2.2.2, one of many possible choices is Wp = log(1 + |ũ0|)/ maxω,t log(1 + |ũ0|). This function
is displayed in the centre of Fig. 2 for t = 450 s. Applying W p to the unweighted phase difference leads to a well-defined weighted phase
difference W p�φ, displayed in the right-hand panel of Fig. 2.

3 S E N S I T I V I T Y K E R N E L S F O R E N V E L O P E A N D P H A S E M I S F I T S

Seismic tomography is an optimization problem. We seek earth models that minimize a given misfit criterion. When the solution of the
forward equations for a large number of models is computationally feasible, the optimization problem can be treated probabilistically (Press
1968; Trampert et al. 2004). Otherwise, we rely on linearizations or gradient methods for non-linear optimization. In this paper, we restrict
our attention to the latter case because we assume that the number of model parameters is large and that the elastic wave equation is solved
numerically. The following paragraphs are therefore devoted to the computation of sensitivity kernels for envelope and phase misfits with
respect to earth model parameters. We can then obtain gradients by projecting the sensitivity kernels onto the space of model basis functions
(e.g. Tarantola 2005).

3.1 A brief review of the adjoint method

We base the computation of sensitivity kernels for phase and envelope misfits on the adjoint method (e.g. Lions 1968; Chavent et al. 1975)
because it leads to elegant expressions in a rather uncomplicated way and because its numerical implementation is straightforward. An
alternative to the adjoint method is the scattering-integral method (Chen et al. 2007b), which can be more efficient when the number of
sources is much larger than the number of receivers. To establish a consistent notation, but also in the interest of completeness, we shall
re-derive or, at least, state some well-known results concerning the adjoint method in the context of elastic wave propagation. These may for
example be found in Tarantola (1988) or Tromp et al. (2005). We shall employ to the operator formulation of the adjoint method, developed
by Fichtner et al. (2006).

We assume that u(x, t) is an elastic displacement field related to a set of model parameters m(x) and an external force density f(x, t) via
L(u, m) = f, where L represents the wave equation operator. More explicitly, one may write

L(u, m) = ρ(x) ∂2
t u(x, t) − ∇ ·

∫ t

−∞
C(x, t − τ ) : ∇u(x, τ ) dτ = f(x, t). (14a)

The model parameters m comprise the mass density ρ and the rate of relaxation tensor C, that is, m = (ρ, C). In addition to eq. (14a), the
displacement field u is required to satisfy the initial and boundary conditions

u|t=0 = ∂t u|t=0 = 0 and n ·
∫ t

−∞
C(x, t − τ ) : ∇u(x, τ ) dτ |x∈∂⊕ = 0, (14b)

where ∂⊕ denotes the free surface of the earth model ⊕. At this point, we neglect possible internal discontinuities. They have been treated,
for example, by Liu & Tromp (2008). We represent the process of measuring the wavefield u or extracting information from it through an
objective function E(u), which we assume to be expressible in the form of a time integral E(u) = ∫ t1

t0
ε[u(xr , t)] dt , with a suitably chosen

function ε(t) = ε[u (xr , t)]. The time t0 represents the beginning of the measurement and t1 is the time when the measurement ends. Given u
as a function of time at the receiver position x = xr , E(u) may for example return cross-correlation time-shifts (e.g. Luo & Schuster 1991)
or rms amplitudes (Dahlen & Baig 2002) of seismic phases. The adjoint method provides an expression for the Fréchet kernel or sensitivity
kernel δm E , which is the volumetric density of the derivative of E with respect to the model parameters m. In its most general form, this
expression is

δm E =
∫

R

u† · ∂mL(u, m) dt, (15)
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where ∂mL denotes the partial derivative of the operator L with respect to the model parameters. Differentiating with respect to ρ, for example,
gives ∂ ρL(u, m) = ∂2

t u. The adjoint field u† is defined through the adjoint wave equation L†(u†, m) = −∂ uε(t) δ(x − xr ), with

L†(u†, p) = ρ(x) ∂2
t u†(x, t) − ∇ ·

∫ ∞

t
C(x, τ − t) : ∇u†(x, τ ) dτ = −∂uε(t) δ(x − xr ) (16a)

and the subsidiary conditions

u†|t=t1 = ∂t u
†|t=t1 = 0 and n ·

∫ ∞

t
C(x, τ − t) : ∇u†(x, τ ) dτ |x∈∂⊕ = 0. (16b)

Eq. (16) is still of the wave equation type, and it can therefore be solved with the same algorithms used for the solution of the regular
wave equation. However, the adjoint field satisfies terminal conditions, meaning that both u† and ∂ t u† vanish at the time t = t 1, when the
measurement ends. For this reason, the adjoint equation is usually solved backwards in time. The adjoint source f†(x, t) = −∂ uε(t) δ(x − xr )
is a point source, acting at the receiver location xr . The conceptual simplicity of the adjoint method is due to the fact that the adjoint-source
time function s†(t) = −∂ uε(t) fully determines the solution of the adjoint equation and that the adjoint operator L† is independent of the misfit
functional. From a theoretical point of view, the computation of sensitivity kernels therefore reduces to the computation of the adjoint-source
time function that corresponds to a given misfit measure. In the case of an isotropic and non-dissipative medium, described in terms of the
mass density ρ and the Lamé parameters μ and λ, the three sensitivity or Fréchet kernels are

δρ E = −
∫

R

∂t u
† · ∂t u dt, (17a)

δμ E =
∫

R

[(∇u†) : (∇u) + (∇u†) : (∇u)T ] dt, (17b)

δλ E =
∫

R

(∇ · u†)(∇ · u) dt. (17c)

Expressions for Fréchet kernels with respect to other parameters, the S-wave speed or the P-wave speed, for example, can be derived from
eqs (17). A special case arises when E(u) is equal to the ith component of the displacement field, ui (xr , τ ). We then have ε(t) = δ(t − τ ) ei ·
u(xr , t), and the source term of the adjoint eq. (16a) becomes −∂ uε(t)δ(x − xr ) = −ei δ(t − τ )δ(x − xr ). This implies that the corresponding
adjoint field u† is equal to the negative adjoint Green’s function for a single force that points in the i-direction, acts at time τ and that is located
at xr . In symbols: u†(x, t) = −g†

i (xr , τ ; x, t). The Fréchet kernel δmui (xr , τ ) is therefore given by

δm ui (x
r , τ ) = −

∫
R

g†
i (xr , τ ; x, t) · ∂mL[u(x, t), m(x)] dt. (18)

With this result in mind, we can now continue with the computation of sensitivity kernels for phase and envelope misfits. As eqs (15) and (16)
suggest, it is sufficient to find the adjoint-source time functions corresponding to the different misfits. They will then determine the adjoint
wavefield u† from (16) and therefore also the sensitivity kernels from (15).

3.2 Adjoint-source time function for the envelope misfit

We start the derivation of the adjoint-source time function corresponding to measurements of the envelope misfit, by differentiating the
envelope misfit E e, as defined in 3(a), with respect to the model parameters m:

Dm Ee = E1−n
e

∫
R2

W n
e Dm |ũi |

(|ũi | − ∣∣ũ0
i

∣∣)n−1
dt dω. (19)

The symbol Dm denotes the functional or Fréchet derivative in the direction of a model perturbation m′, that is, DmEe = (dE e/dm)(m′). At
this point, we keep the development as general as possible and therefore do not specify any particular model parameter. In later applications,
the model parameter vector m may be replaced by the shear velocity, density, Q or any other quantity that enters the wave equation. We also
leave the window function h that appears in the time–frequency transform (1), unspecified. In the interest of a simplified notation, we omit
the dependences on xr , t, ω, m and m′ whenever they are not needed to understand the formulae. For Dm |ũi | in (19) we substitute (A5) given
in Appendix A and find

Dm Ee = E1−n
e �e

∫
R2

W n
e (|ũi | − |ũ0

i |)n−1 ũi

|ũi | Dmũ∗
i dt dω, (20)

where �e(z) denotes the real part of a complex-valued expression z. Writing (20) in terms of the volumetric sensitivity densities δm E e and
δmũi yields

Dm Ee =
∫

R3
m′ · δm Ee d3x = E1−n

e �e

∫
R2

W n
e (|ũi | − |ũ0

i |)n−1

(
ũi

|ũi |
∫

R3
m′ · δmũ∗

i d3x

)
dt dω. (21)

The volumetric sensitivity density, that is, the Fréchet kernel δm E e can therefore be expressed in terms of the volumetric sensitivity density
δmũ∗

i as follows.

δm Ee = E1−n
e �e

∫
R2

W n
e (|ũi | − |ũ0

i |)n−1 ũi

|ũi | δmũ∗
i dt dω. (22)
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The quantity δmũ∗
i is the Fréchet kernel of the time–frequency representation ũ∗

i and can be written in terms of the Fréchet kernel δmui .
The latter is then expressible through the adjoint Green’s function g†

i , as suggested by (18). This sequence of substitutions is summarized in
Appendix A and leads to the following expression for δm E e.

δm Ee = − E1−n
e√
2π

�e

∫
R2

W n
e (t, ω)

[|ũi (t, ω)| − |ũ0
i (t, ω)|]n−1

{
ũi (t, ω)

|ũi (t, ω)|
∫

R2
g†

i (xr , τ ; x, t ′) · ∂mL[u(t ′)] h(τ − t)eiωτ dτ dt ′
}

dt dω. (23)

To generate the canonical form δm Ee = ∫
u†

e,i ·∂mL[u] dt ′, already introduced in eq. (15), we define the adjoint field for envelope measurements
as follows:

u†
e,i (x, t ′) = − E1−n

e√
2π

�e

∫
R

g†
i (xr , τ ; x, t ′)

∫
R2

W n
e (t, ω)

[|ũi (t, ω)| − |ũ0
i (t, ω)|]n−1

[
ũi (t, ω)

|ũi (t, ω)|
]

h(τ − t) eiωτ dt dω dτ. (24)

A closer look at the integrals in (24) reveals that the adjoint-source time function s† e,i corresponding to the adjoint wavefield u†
e,i is

s†e,i (τ ) = − E1−n
e√
2π

�e

∫
R2

W n
e (t, ω)

[|ũi (t, ω)| − |ũ0
i (t, ω)|]n−1

[
ũi (t, ω)

|ũi (t, ω)| h(τ − t)eiωτ

]
dt dω. (25)

The subscripts in s†e,i indicate that the envelope measurement is made on the ith component of the displacement field; they do not symbolize
vector components. Eq. (25) implies that the adjoint wavefield is formally given by

u†
e,i (x, t ′) =

∫
R

s†e,i (τ )g†
i (xr , τ ; x, t ′) dτ. (26)

In practice, eq. (26) is not used because it is difficult to compute numerical Green’s functions and to convolve them at every point in space with
the source time function. Instead, we compute the adjoint wavefield u†

e,i numerically, by solving the adjoint wave eq. (16) with the adjoint-
source time function −∂ uε(t), equal to s†e,i(t). We can simplify eq. (25) considerably by writing it in terms of the inverse time–frequency
transform (see Appendix B):

s†e,i (τ ) = −E1−n
e �e F−1

h

[
W n

e

(|ũi | − |ũ0
i |

)n−1 ũi

|ũi |
]

(τ ). (27)

Expression (27) states that the adjoint-source time function for envelope misfits is simply the inverse time–frequency transform of the (n −
1) th power of the envelope difference (|ũi | − |ũ0

i |)n−1 times the weighting function W n
e ũi/|ũi |.

3.3 Adjoint-source time function for the phase misfit

Our strategy for the derivation of the adjoint-source time function for the phase misfit is identical to the one used in the previous paragraph.
First, we differentiate the phase misfit E p, defined in eq. (3b), with respect to the model parameters m:

Dm Ep = E1−n
"p

∫
R2

W n
p Dmφi

(
φi − φ0

i

)n−1
dt dω. (28)

For Dmφ i we substitute

Dmφi = −i Dm ln

(
ũi

|ũi |
)

= i

(
1

|ũi | Dm |ũi | − 1

ũi
Dmũi

)
(29)

and replace Dm |ũi | by (A5), given in Appendix A. Reordering the terms yields

Dm Ep = i E1−n
p

∫
R2

W n
p (φi − φ0

i )n−1

(
ũi

2|ũi |2 Dmũ∗
i − ũ∗

i

2|ũi |2 Dmũi

)
dt dω

= −E1−n
p �m

∫
R2

W n
p (φ − φ0

i )n−1

(
ũi

|ũi |2 Dmũ∗
i

)
dt dω. (30)

The symbol �m(z) denotes the imaginary part of a complex valued quantity z. We now make the transition from the derivatives DmEp and
Dmũi to their respective volumetric densities:

Dm Ep =
∫

R3
m′ · δm Ep d3x = −E1−n

p �m

∫
R2

W n
p (φi − φ0

i )n−1

(
ũi

|ũi |2
∫

R3
m′ · δmũ∗

i d3x

)
dt dω. (31)

Changing the order of the integration provides an expression for the sensitivity density δm E p in terms of the sensitivity density δmũi :

δm Ep = −E1−n
p �m

∫
R2

W n
p (φi − φ0

i )n−1

(
ũi

|ũi |2 δmũ∗
i

)
dt dω. (32)

As demonstrated in Appendix A, we can write δmũi , and therefore its complex conjugate, in terms of the i th adjoint Green’s function g†
i (xr ,

τ ; x, t ′):

δm Ep = E1−n
p√
2π

�m

∫
R2

W n
p (t, ω)

[
φi (t, ω) − φ0

i (t, ω)
]n−1

[
ũi (t, ω)

|ũi (t, ω)|2
∫

R2
g†

i (xr , τ ; x, t ′) · ∂mL[u(t ′)] h(τ − t) eiωτ dτ dt ′
]

dt dω. (33)

This expression reduces to the canonical form δm Ep = ∫
u†

p,i · ∂mL[u] dt ′ by defining the adjoint field for the phase measurement as follows:

u†
d,i (x, t ′) = E1−n

d√
2π

∫
R3

W n
d (t, ω)

[
φi (t, ω) − φ0

i (t, ω)
]n−1

[
ũi (t, ω)

|ũi (t, ω)|2 g†
i (xr , τ ; x, t ′) h(τ − t) eiωτ

]
dτ dt dω. (34)
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From eq. (34), we can deduce the adjoint-source time function s†p,i (τ ) that generates the adjoint wavefield u†
p,i (x, t ′). It is given by

s†p,i (τ ) = E1−n
p√
2π

�m

∫
R2

W n
p (t, ω)[φi (t, ω) − φ0

i (t, ω)]n−1

[
ũi (t, ω)

|ũi (t, ω)|2 h(τ − t) eiωτ

]
dt dω. (35)

By using the inverse time–frequency transform F−1
h (Appendix B), we can condense (35) to the following expression:

s†p,i (τ ) = E1−n
p �m F−1

h

[
W n

p (φi − φ0
i )n−1 ũi

|ũi |2
]

(τ ) . (36)

The eq. (36) closely resembles (27) which provides the adjoint-source time function for envelope-misfit measurements, with the phase
difference (φ i − φ0

i )n−1 playing the role of the envelope difference (|ũi | − |ũ0
i |)n−1. Note that the term in square brackets is well defined

despite the factor |ũi |−2: since n ≥ 2, the term W n
p /|ũi |2 is bounded because of the stability requirement for phase measurements.

3.4 Adjoint-source time functions for envelope and phase misfits based on velocity or acceleration seismograms

Often, seismic data come in the form of velocity or acceleration seismograms that cannot be integrated, due to the presence of long-period
seismic noise, for example. It can therefore be convenient to measure phase and envelope misfits directly for velocities or accelerations. In
those cases, the adjoint-source time functions that we already found for displacement seismograms need to be modified. Since the derivation
of the adjoint-source time functions for velocity and acceleration measurements closely follows the scheme introduced in the previous
paragraphs, we merely state the results. First, assuming that all envelopes, phases and corresponding misfits are measured from the velocities
vi = u̇i , v

0
i = u̇0

i , we have

s†e,i (τ ) = E1−n
e ∂τ �e F−1

h

[
W n

e (|ṽi | − |ṽ0
i |)n−1 ṽi

|ṽi |
]

(τ ) , s†p,i (τ ) = −E1−n
p ∂τ �m F−1

h

[
W n

p (φi − φ0
i )n−1 ṽi

|ṽi |2
]

(τ ). (37)

For measurements made from the accelerations ai = üi , a0
i = ü0

i , we find in a similar way

s†e,i (τ ) = −E1−n
e ∂2

τ �e F−1
h

[
W n

e (|ãi | − |ã0
i |)n−1 ãi

|ãi |
]

(τ ) , s†p,i (τ ) = E1−n
p ∂2

τ �m F−1
h

[
W n

p (φi − φ0
i )n−1 ãi

|ãi |2
]

(τ ). (38)

It is important to note that despite being potentially convenient from a purely observational point of view, velocity and acceleration
measurements tend to pose numerical problems. The adjoint-source time functions in eqs (37) and (38) are proportional to the second and
fourth derivatives of ui , respectively. The resulting adjoint fields will therefore have higher dominant frequencies than the adjoint fields
based on displacement measurements. This is, from a numerical point of view, disadvantageous because higher frequencies require a finer
discretization and higher computational costs.

3.5 Adjoint-source time function for measurements of logarithmic envelopes

We mentioned in Section 2.1 that it can be advantageous to measure logarithmic rather than pure envelopes, that is, to use an envelope misfit
defined through En

e = ∫
W n

e [log(|ũi |/|ũ0
i |)]n dt dω. For completeness, we therefore give the adjoint-source time function corresponding to

this objective functional, without derivation,

s†e,i (τ ) = −E1−n
e �e F−1

h

[
W n

e

(
log |ũi |/|ũ0

i |
)n−1 |ũ0

i |ũi

|ũi |2
]

(τ ). (39)

4 I N T E R R E L AT I O N S B E T W E E N O B J E C T I V E F U N C T I O NA L S A N D T H E I R
A S S O C I AT E D A D J O I N T S O U RC E S

When the signals ui and u0
i , the window h and the weighting functions W p and W e fulfil certain requirements, then the time–frequency misfits

yield the same numerical results as other objective functionals that, already, found wide-spread use in seismology. Moreover, the associated
adjoint sources and Fréchet kernels are then identical. In the following paragraphs, we will establish relations between the time–frequency
misfits and (1) measurements of cross-correlation time-shifts, (2) measurements of rms amplitude differences, (3) GSDFs (Gee & Jordan 1992)
and (4) time-domain full-waveform inversion. The comparisons will highlight similarities that occur under well-defined circumstances and
point out when significant differences between objective functionals are to be expected. The comparisons will also facilitate the interpretation
of the Fréchet kernels shown in Section 5. The following analyses assume that the phase and envelope misfits are the L2 norms of the
corresponding time- and frequency-dependent phase and envelope differences (n = 2).

4.1 Phase misfits and cross-correlation time-shifts

The estimation of time-shifts between data and synthetics via cross-correlation is a classical tool in surface wave analysis (Dziewonski et al.
1972), which was translated to waveform inversion by Luo & Schuster (1991) to bridge the gap between the highly non-linear time-domain
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full-waveform inversion (e.g. Gauthier et al. 1986) and ray-based traveltime tomography. The concept has been directly applied to data
(e.g. Zhou et al. 1995) and is used to derive finite-frequency delay time kernels (e.g. Dahlen et al. 2000; Tromp et al. 2005).

Cross-correlation time-shifts and phase misfits yield identical values when data and synthetics are exactly time-shifted. This means that
for a given datum u0

i (t), the synthetic is ui (t) = u0
i (t − �t). Furthermore, the window function h is required to vary much more slowly than

the data and synthetics, and the phase weighting function W p must be equal to |ũ0
i |/||v0

i ||. For the time–frequency representation of ui , we
then find

ũi (t, ω) = 1√
2π

∫
R

ui (τ )h∗(τ − t) e−iωτ dτ = e−iω�t

√
2π

∫
R

u0
i (τ )h∗(τ − t + �t) e−iωτ dτ ≈ e−iω�t ũ0

i (t, ω). (40)

The phase difference therefore is �φ = φ − φ0 = −ω�t . Invoking Plancherel’s formula allows us to estimate the phase misfit E p:

E2
p =

∫
R2

W 2
p ω2�t2 dω dt = ||v0

i ||−2 �t2

∫
R2

|ωũ0
i |2 dω dt ≈ ||v0

i ||−2 �t2

∫
R2

|ṽ0
i |2 dω dt = ||v0

i ||−2 �t2

∫
R

|v0
i |2 dt = �t2. (41)

Hence, under these specific assumptions, the phase misfit is equal to the time-shift �t , which could also be measured by cross-correlation.
The adjoint-source time function for phase misfits also reflects this similarity to cross-correlation time-shift measurements. Introducing
E p = �t and Wp = |ũ0

i |/||v0
i || into (36) yields

s†p,i (t) = E−1
p �m G−1

[
W 2

p (φi − φ0
i )

ũi

|ũi |2
]

(t) = −||v0
i ||−2

2 �m G−1

[
ω|ũ0

i |2
ũi

|ũi |2
]

(t) ≈ −||v0
i ||−2

2 �m G−1 [ωũi ] (t)

≈ ||v0
i ||−2

2√
2π ||h||2

�m ∂t

∫
R2

iũi (τ, ω)eiωt h(t − τ ) dω dτ = ||vi ||−2
2 u̇i (t).

(42)

A comparison with (C7) shows that s†p,i is identical to the adjoint-source time function s† cc,i corresponding to the measurement of time-shifts,
via cross-correlation of data and synthetics. To obtain this, result we needed to assume that the data u0

i and the synthetics ui are related
through ui (t) = u0

i (t − �t), which means that they need to have identical waveforms. In practice, this condition is rarely met due to dispersion
in the heterogeneous Earth with resulting waveform distortions. Consequently, the Fréchet kernels for cross-correlation and phase-misfit
measurements will generally be different.

4.2 Envelope misfits and rms amplitude differences

The relative rms amplitude misfit between real and synthetic waveforms is defined through the equations

E2
rms = (A − A0)2

(A0)2
= �(A0)2

A2
, A =

(∫
R

u2
i dt

)1/2

= ||ui ||2 , A0 =
[∫

R

(u0
i )2 dt

]1/2

= ||u0
i ||2, (43)

where ui and u0
i are assumed to be already windowed to a particular phase or a specific part of the seismogram. Tibuleac et al. (2003)

demonstrated that E rms for P waves contains information about the Earth’s structure. The corresponding sensitivity kernels have been derived
by Dahlen & Baig (2002). The envelope and the rms amplitude misfits are identical under the unrealistic condition that the data u0

i and the
synthetics ui are exactly scaled, that is, ui = γ u0

i , with a real number γ . Using the envelope weighting function W e = ||u0
i ||−1

2 then yields
E2

rms = E2
e = �A2/(A0)2. Consequently, the corresponding adjoint-source time functions s†e,i and s†rms,i are also identical:

s†e,i (t) = s†rms,i (t) = − sign �A

||u0
i ||2||ui ||2

ui (t). (44)

In practice, the assumptions under which E rms equals E e are rarely satisfied because of the time dependence of amplitude variations (see
Section 5 for examples involving real data). Thus, the corresponding Fréchet kernels will mostly not be identical.

4.3 Generalized seismological data functionals

GSDFs were introduced by Gee & Jordan (1992) as a means of extracting and separating phase and amplitude information from seismic
waveforms. They have recently been used by Chen et al. (2007a) for the imaging of crustal structure in the Los Angeles region. GSDFs
are the formalization of ideas expressed earlier by Lerner-Lam & Jordan (1983) and Cara & Lévêque (1987). The development is based on
the concept of an isolation filter f (t), which is a processed version of the synthetic waveform u(t), for example, a windowed and filtered
synthetic P wave. The correlation of the isolation filter with the data u0(t), denoted by c(u0, f ), is first localized in time by windowing and
then localized in the frequency domain by narrow-band filtering around a chosen frequency ω i . The modified correlation function FiWc(u0,
f ) may then be approximated by a Gaussian wavelet with half-width σ−1

s and centre frequency ωs:

Fi W c(u0, f )(t) ≈ g(t) = A e−σ 2
s (t−t0

g )2/2 cos[ωs(t − t0
p )], (45)

where the quantities t0
p and t0

g are interpreted as phase and group delays, respectively. Repeating the same procedure for the correlation of the
isolation filter f (t) with the synthetic seismogram u(t) defines the phase and group delays t p and t g. Two of the four GSDFs are then defined
through

�tp = tp − t0
p and �tg = tg − t0

g . (46)
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These are the differential phase and group delays, respectively. We do not consider the remaining two GSDFs. We can relate the phase
difference �φ to the GSDFs �t p and �t g when the isolation filter f (t) is a well-separated phase that arrives at some time t = T and that does
not interfere with other phases. The correlation of f (t) with u(t) is then effectively an autocorrelation. This implies t g = t p = 0, �t p = t0

p and
�t g = t0

g. If we furthermore assume that Wc(u0, f ) does not need to be filtered severely to be representable by a Gaussian wavelet, then we
have

c( f 0
T , fT )(t) ≈ W c(u0, f )(t) ≈ A e−σ 2

s (t−t0
g )2/2 cos[ωs(t − t0

p )], (47)

where c( f 0
T , f T ) is the correlation of the data and synthetics windowed by h(t − T ) (see eq. 4). The phase of c( f 0

T , f T ) is equal to the phase
difference �φ(T , ω). Since the Fourier transform of the Gaussian wavelet in (45) and (47) is

g̃(ω) =
√

2π

2σs
e−(ωs−ω)/2σ 2

s eiωs t0
p −it0

g (ωs−ω), (48)

we can infer the following relation:

�φ(T, ω) ≈ ωs �tp + (ω − ωs) �tg. (49)

The phase difference �φ mixes phase and group delay information. It nevertheless completely quantifies both through �t p = �φ(T , ω =
ωs)/ωs and �t g = ∂ �φ(T , ω)/∂ω.

Conceptually, the time–frequency misfits and the GSDFs are closely related. When measured at a series of frequencies,the GSDFs
quantify frequency-dependent phase and amplitude discrepancies. Thus, minimizing the complete collection of GSDFs is similar to jointly
minimizing the phase and the envelope misfits. When the data and synthetics are too dissimilar, the processed correlation function FiWc(u0,
f ) may not resemble a Gaussian wavelet. It is then possible to expand FiWc(u0, f ) into a Gram–Charlier series with, at least in theory,
infinitely many parameters (Gee & Jordan 1992). In this sense, the GSDFs can be infinite-dimensional and complete along the time axis, just
as the time–frequency misfits E p and E e.

4.4 The relation of envelope and phase misfits to time-domain full-waveform inversion

Luo & Schuster (1991) established a link between time-domain full-waveform inversion and wave-equation traveltime inversion based on
cross-correlation time-shifts (Section 4.1), assuming that small velocity perturbations lead to small time-shifts, time-domain full-waveform
inversion and wave-equation traveltime inversion are essentially identical. This suggests that an iterative minimization based on cross-
correlation time-shifts might combine the advantages of transmission and diffraction tomography.

We can show a similar link between the phase misfit and the L2 misfit ||u −u0||22, used in time-domain full-waveform inversion. By
analogy with the approach taken by Luo & Schuster (1991), we assume that the differences between the real Earth and the model earth are so
small that ũi and ũ0

i only differ by a small phase shift �φ i . For the phase weighting function W p, we choose Wp = |ũ0
i |. A Taylor expansion

truncated after the linear term then gives

�ũi = ũi − ũ0
i = |ũ0

i | ei(φ0
i +�φi ) − |ũ0

i | eiφ0
i = i�φi ũ0

i . (50)

By invoking Plancherel’s relation, we find that the phase misfit E p is then equal to the L2 norm of �ui = ui − u0
i :

E2
p =

∫
R2

W 2
p �φ2

i dω dt =
∫

R2
|�ũi |2 dω dt =

∫
R

�u2
i dt = ||�ui ||22. (51)

Since the misfit measures are equal, the corresponding adjoint sources are also identical. The term ‘small’ is problematic when it is used to
quantify differences between earth models. In fact, when the model differences are ‘small’, it is equally justifiable that the phase differences
vanish and that only the amplitudes of data and synthetics vary by a factor of say γ > 0, that is, ũi = γ ũ0

i . Choosing W e = 1, we find in that
case that the envelope misfit E e is equal to the L2 norm of �ui :

E2
e =

∫
R2

W 2
e (γ − 1)2|ũ0

i |2 dω dt =
∫

R2
W 2

e |�ũi |2 dω dt =
∫

R2
|�ũi |2 dω dt =

∫
R

�u2
i dt = ||�ui ||22. (52)

In practice, both amplitude and phase differences will be observed even when the model earth is close to the real Earth. It is therefore
generally not possible to equate time-domain full-waveform inversion with waveform inversion in the time–frequency domain, when the
model differences are deemed small.

5 DATA E X A M P L E S

5.1 Earth model and data

To illustrate the computation of sensitivity kernels for time–frequency domain misfits with a real data example, we choose an event that
occurred on 1993 June 12 in the West Irian region of Indonesia (see Fig. 3). The earthquake location is latitude: −4.37◦; longitude: 135.12◦;
depth: 15 km. The CMT (Central Moment Tensor) solution is visualized in Fig. 3. Unprocessed velocity seismograms, recorded at station
CTAO (latitude: −20.09◦; longitude: 146.25◦; �= 19.02◦) are plotted in the left column panel of Fig. 3. Instead of integrating both data and
synthetics, we decide to work with velocities rather than with displacements.
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Full-waveform inversion in the time–frequency domain 677

Figure 3. Left-hand panel: unprocessed velocity seismograms of the West Irian event (1993 June 12) recorded at the permanent station CTAO, located in NW
Australia. The CMT solution is visualized in the lower right-hand panel of the BHZ channel recording. Central panel: model of the S-wave velocity β at the
depth of 100 km. The maximum lateral variations �β reach 10 per cent of the background value. The source and receiver locations are plotted as a circle (•)
and a square (****), respectively. Right-hand panel: the same as in the central one but at the depth of 200 km. The lateral variations are smaller than at 100 km
depth and finally vanish below 350 km.

Figure 4. Left-hand panel: comparison of vertical-component surface wave trains, low-pass filtered with a cut-off frequency of 0.02 Hz (50 s). The synthetic
is plotted in black and the data in red. Centre panel: weighted phase difference in time–frequency space. Both positive and negative phase differences are
observable. Right-hand panel: weighted envelope difference in time–frequency space.

The earth model used to compute the synthetic seismograms is an oversmoothed version of the S-velocity model, derived by Fishwick
et al. (2005) on the basis of a surface wave tomography (Fig. 3). The model shows lateral velocity variations down to 350 km. The 1-D
background model is ak135 (Kennett et al. 1995). Based on the analysis of refracted waves (Kaiho & Kennett 2000), we set the lateral P-wave
speed variations equal to 2/3 of the S-wave speed variations and disregard any lateral variations in density. This model is intended to be
an initial model for a waveform tomography. It reproduces the data sufficiently well and therefore justifies the use of the time–frequency
domain misfits E e and E p. Instead of classical tomographies one may alternatively use initial models that are based on geodynamic modelling
(Schuberth et al. 2008). We computed all synthetic seismograms with a spectral-element method described in Fichtner & Igel (2008) and
implemented on a cluster with 160 processors (Oeser et al. 2006).

5.2 Surface waves

In the interest of simplicity, we restrict our attention to the vertical component, even though all components should ideally be used in a
waveform tomography. The surface wave data and synthetics are low-pass filtered with a cut-off frequency of 0.02 Hz (50 s). A comparison
of the data and the synthetic surface wave train are shown on the left-hand panel of Fig. 4.

For the time–frequency analysis, we choose σ = 50 s, that is, the cut-off frequency. The weighting function for the phase difference
is Wp = log(1 + |ṽ0

z |)/ max log(1 + |ṽ0
z |), and for the envelope difference, we choose W e = ||v0

z ||−1
2 . The weighted phase misfit, shown in

the centre of Fig. 4, is dominated by negative values that are due to the overall phase delay of the synthetic relative to the data wave train.
However, there are also slightly positive values of the phase difference near the onset of the wave train. The weighted envelope difference
is more complex than the phase difference, as one can see on the right-hand panel of Fig. 4. For frequencies below 0.01 Hz, the envelope
difference is generally positive, meaning that the synthetic is larger than the data. Around the dominant frequency of 0.02 Hz, the envelope
misfit agrees well with the visual analysis—smaller amplitudes of the synthetic prior to 650 s followed by larger amplitudes of the synthetic
that persist until around 800 s.

The phase and envelope differences translate to adjoint-source time functions (eq. 37) that we use to compute sensitivity kernels for
E p and E e with respect to the shear wave speed β. The results are shown in the left columns of Figs 5 and 6, respectively. Effectively, the
kernels contain contributions from the entire passband up to 50 s. The complexity of both kernels is due to (1) the complexity of the phase
and envelope differences in time–frequency space, (2) the 3-D structure of the earth model and (3) the radiation pattern of the source. While
both kernels attain comparatively large values in the vicinity of the ray path, pronounced side lobes also appear.
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Figure 5. Left-hand panel: horizontal slice through the sensitivity kernel δβ E p at the surface. The kernel corresponds to the phase difference shown in the
centre of Fig. 4. It, therefore, contains contributions from the entire passband up to 50 s. Central panel: horizontal slice through the gradient of the phase misfit
E p with respect to the shear wave speed. The model basis functions are blocks that are 1◦ × 1◦ wide and 10 km deep. Right-hand panel: normalized steepest
descent direction obtained by multiplying the negative gradient by a covariance matrix. The covariance matrix introduces a horizontal correlation length of
100 km and a vertical correlation length of 20 km.

Figure 6. The same as Fig. 5 but for the envelope misfit E e.

The significance of the side lobes in the context of a gradient-method-based misfit minimization can be evaluated by computing the
gradients and the steepest descent directions that correspond to the different kernels. The gradient is the projection of the kernel onto the space
of model basis functions, and the direction of steepest descent equals the negative gradient multiplied by a covariance matrix. Choosing, for
the purpose of illustration, the model basis functions to be blocks that are 1◦ × 1◦ wide and 10 km deep produces the gradients shown in the
centres of Figs 5 and 6. The side lobes with an oscillation period of 1◦ and less disappear so that the gradients are dominated by the two central
lobes. Multiplying the negative gradients by a covariance matrix that introduces a horizontal correlation length of 100 km and a vertical
correlation length of 20 km yields the steepest descent directions shown in the right columns of Figs 5 and 6. The covariance matrix acts as
a smoothing operator and therefore removes oscillations at length scales smaller than the correlation length. In this particular example, only
the two central lobes of the sensitivity kernels are relevant for an iterative misfit minimization based on gradient methods. This is, however,
not a general statement because the characteristics of the steepest descent direction depend strongly on the actual waveform misfits, the set
of basis functions and the regularization via the covariance matrix.

The Fréchet kernels displayed in Figs 5 and 6 cannot be compared directly to those derived, for example, by Marquering et al. (1998),
Friederich (1999), Zhou et al. (2004) or Yoshizawa & Kennett (2005), on the basis of semi-analytic solutions of the elastic wave equation. The
reason for the lack of comparability arises mostly from the different measurement techniques, different notions of phase and amplitude and
the intrinsic data dependence of our kernels. Nevertheless, the nature of wave propagation ensures that all kernels are qualitatively similar in
shape, regardless of the measurement details—slowly oscillating structural sensitivity around the geometrical ray path corresponding to the
first Fresnel zone and rapidly oscillating off-path sensitivity corresponding to the higher Fresnel zones.

5.3 Body waves

We consider, as an example, vertical-component P and S waveforms. The unfiltered data are shown in the centres of Figs 9 and 10. At the
epicentral distance of 19◦, the P waveform is composed of various phases associated with reflection and refraction from the 410 and 660 km
discontinuities. The surface-reflected phase PnPn does not yet have a clearly separate identity but appears as a lower-frequency tail of the
composite P-wave train. Matters are more complicated in the case of the S-wave train. In addition to upper-mantle reflections and refractions,
there are also higher-mode surface waves interacting with the direct S wave.

For our analysis, we have applied a low-pass filter to the waveforms with a cut-off frequency of 0.04 Hz (25 s). The time-domain P and
S waveforms, together with their respective phase and envelope misfits, are displayed in Figs 7 and 8. The weighting functions W e and W p
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Figure 7. Left-hand panel: comparison of vertical-component P-wave trains, low-pass filtered with a cut-off frequency of 0.04 Hz (25 s). The synthetic is
plotted in black and the data in red. Central panel: weighted phase difference in time–frequency space. Right-hand panel: weighted envelope difference in
time–frequency space.

Figure 8. The same as Fig. 7 but for the S-wave train.

are the same as in the section on surface waves. In both cases, the data are delayed with respect to the synthetics for all times and frequencies,
therefore producing generally positive phase differences (centres of Figs 7 and 8). This is in agreement with the visual impression. The
characteristics of the envelope misfits, shown on the right-hand panel of Figs 7 and 8, are more complicated.

5.3.1 P-wave Fréchet kernels

The Fréchet kernels for the P wave with respect to the P-wave speed α can be seen in Fig. 9. They contain contributions from the complete
passband up to 25 s. Both the envelope misfit and the phase-misfit kernels show a broad central zone surrounding the geometrical ray path.
The outer lobes are not as pronounced as in the surface wave case. The kernels are comparatively simple because the P waveform is a
well-pronounced single peak, despite the interference of several phases inside the analysed time window. The minimum along the ray path is
reminiscent of the seemingly paradoxical zero observed in other types of phase delay kernels (Woodward 1992; Yomogida 1992; Marquering
et al. 1999). It can be interpreted in terms of in-phase scattering on the ray path.

The filtered data and synthetic P waveforms shown on the left-hand panel of Fig. 8 are similar, though not identical. In consequence,
from our comparison of misfit functionals in Section 4, the phase-misfit kernel should be qualitatively similar to cross-correlation time delay
kernels (Dahlen et al. 2000; Liu & Tromp 2008). Similarly, the envelope misfit kernel should qualitatively resemble the rms amplitude kernels
of Dahlen & Baig (2002). Fig. 9 confirms this conjecture.

Figure 9. Left-/central left-hand panel: horizontal slice at 371 km depth and vertical slice through the envelope-misfit kernel for the P-wave train. Centre panel:
unprocessed vertical-component velocity seismogram comprising the P arrival. Right/centre right-hand panel: horizontal slice at 371 km depth and vertical
slice through the phase-misfit kernel for the P-wave train. The kernels in this figure correspond to the envelope and phase differences shown in Fig. 7. They
contain contributions from the entire passband up to 25 s.
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Figure 10. The same as Fig. 10 but for the S-wave train.

5.3.2 S-wave Fréchet kernels

Fig. 10 displays the Fréchet kernels corresponding to the S waveform. The kernels for both the phase and the envelope misfit differ largely
from the P-wave kernels. The complexity of the S-wave kernels results from the complexity of the S-wave train (see Figs 8 and 10) inside
the considered time window. The earth model ak135 (Kennett et al. 1995) predicts four distinct S phases, the SnSn phase and the PcP phase
to arrive between 470 and 530 s (Knapmeyer 2004). The situation is further complicated by the presence of higher-mode surface waves. At
periods around 25 s, these phases interfere with the S-wave train and cannot be separately distinguished. Consequently the sensitivity kernels
become a superposition of the kernels corresponding to each single phase plus the higher-mode surface waves. The P-wave train between
260 and 280 s is also composed of several phases including PnPn. Nevertheless, the P waveform (see Figs 7 and 9) is clearly dominated by
one single peak, which leads to a comparatively simple sensitivity kernel.

Both the complex interferences and the dissimilarity of data and synthetics add to the fact that the phase-misfit kernel shown in Fig. 10
does not resemble cross-correlation time delay kernels (Dahlen et al. 2000; Liu & Tromp 2008). Also, the envelope-misfit kernel differs from
rms amplitude kernels (Dahlen & Baig 2002). This reflects the fact that different measurement techniques yield different kernels.

We abstain from a more detailed analysis of the sensitivity kernels because most statements would not be general due to the strong
dependence of the kernels on the actual data, the model earth and the source characteristics.

6 D I S C U S S I O N

6.1 Advantages of the time–frequency domain misfits in the context of structural inverse problems

The principal advantage of the time–frequency domain misfits is their ability to extract the maximum amount of waveform information and
to separate this information into two parts: the phase which is quasi-linearly related to Earth’s structure and the envelope which can be highly
non-linearly related to Earth’s structure. This makes the time–frequency misfits usable in continental- and global-scale tomography, that is, in
a scenario where the seismic wavefield is spatially undersampled and where the background structure is insufficiently well known.

The computation of the time–frequency misfits does not require the isolation of particular phases or the extraction of any secondary
observables. It is applicable to body waves, surface waves and interfering wave trains. Seismic phases that are of specific interest, for example,
small-amplitude core phases, can be emphasized through the weighting functions W p and W e.

The phase and envelope misfits are physically meaningful quantifications of seismic waveform differences. This is not always the case
when the time-domain L2 norm

∑N
r=1

∫
[u(xr , t) − u0(xr , t)]2 dt is used instead. The latter can be interpreted as the energy of the scattered

wavefield, however, only when the remaining structural heterogeneities can indeed be treated as scatterers. The time-domain L2 norm can
be large even when data and synthetics are similar but slightly time-shifted. This contributes to the excessive non-linearity of time-domain
full-waveform inversion. Phase and envelope misfits avoid this deficiency.

The phase and envelope misfits together fully quantify waveform differences, that is, data = synthetics in the hypothetical case of zero
phase and zero envelope misfit. In this sense, the maximum amount of waveform information is extracted. A structural inverse problem based
on both time–frequency misfits is a full-waveform inversion.

6.2 Disadvantages

The time–frequency domain misfits E p and E e share one disadvantage with all other measures of seismic waveform differences; they are
meaningful only when data and synthetics are similar to some degree. There is currently no technique that allows us to compare largely
dissimilar waveforms in a physically meaningful way. This may be due to the practical need to linearize tomographic problems, but also
to our insufficient understanding of wave propagation in complex media and our rather inflexible physical intuition (In fact, linearizability
and physical intuition often seem to coincide). Our intuition favours a comparison of waveforms by associating oscillation cycles in the data
with oscillation cycles in the synthetics. This is problematic when data and synthetics are too dissimilar, that is, when there are no cycles
to be associated. In the context of a structural inverse problem, this difficulty can be circumvented by inverting for lower frequencies first
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and then by including successively higher frequencies. The general success of this strategy seems obvious but, strictly speaking, is based on
conjecture. When data and synthetic waveforms are too dissimilar only Monte Carlo methods will be generally successful. The choice of the
misfit functional is then likely to be of lesser importance.

As other measures of full-waveform differences, the phase and envelope misfits are relatively sensitive to noise and modelling errors.
The influence of noise can be reduced by using the weighting functions W p and W e as filters that suppress frequency bands where the noise
is particularly high. Still, full-waveform inversion, in any of its variants, is a tomographic method that relies on high-quality data and that is
unlikely to be efficient when the quality of the recordings is too low. Modelling errors can be minimized by using sophisticated numerical
methods that correctly account for 3-D Earth’s structure and the physics of wave propagation.

6.3 The wavelet transform and time-adaptive window functions

A disadvantage of the time–frequency transforms (Gabor transforms) as defined in (1) is that the width of the sliding window h does not
depend on time or frequency. In some applications, such dependence might be desirable. In the case of a strongly dispersed surface wave
train, for example, one may wish to sample the longer-period part with a broader window and the late-arriving part with a narrow window.
More generally, h should be broad for low frequencies and comparatively narrow for high frequencies.

This well-known drawback of the Gabor transform is the principal motivation for its replacement by a continuous wavelet transform
(CWT), studied for example by Kristeková et al. (2006). Indeed, CWT with the Morlet wavelet ψ at reference frequency ω0, defined through

CW T [u(xr
i )](ω, t) := 1√|ω0/ω|

∫
R

u(xr , t) ψ∗
(

τ − t

ω0/ω

)
dτ , ψ(t) := π−1/4 eiω0t e−t2/2, (53)

would solve this problem while being conceptually very close to the windowed Fourier transform. Due to this similarity, most of the results
derived in the previous sections remain almost unchanged when F h is replaced by CWT . Hence, if a particular data set requires a more
sophisticated time–frequency transform, pre-existing data analysis codes can be modified with ease.

In our case, where the data are body and surface wave trains, recorded at epicentral distances beyond 15◦, we found the Gabor transform
to be sufficient. The reason for this is that we can compare data and synthetics only in a frequency range where they are close, that is, phase
shifted by less than ±π . This is, unfortunately, true for comparatively low frequencies only, even when a 3-D earth model is used for the
computation of the synthetics. Therefore, despite improving the quality of the time–frequency representations, a CWT does not necessarily
improve the quantification of the misfits that one can use in a seismic waveform tomography.

6.4 Computational aspects

Eq. (15) implies that the regular wavefield u (x, t) and the adjoint wavefield u†(x, t) need to be known simultaneously to compute the
sensitivity kernel via the time integral δm E = ∫

R
u† · ∂mL(u, m) dt . In practice δm E is computed during the solution of the adjoint equation,

which runs backwards in time due to the terminal conditions (16b). The regular wavefield is then made available through one of the following
three approaches. (1) The final state of the regular wavefield, u (x, t 1) is stored and then marched backwards in time, together with the adjoint
wavefield. This is possible when the medium is non-dissipative. (2) The regular wavefield is stored at sufficiently many time steps during the
solution of the regular wave equation and then loaded during the solution of the adjoint equation. This method is applicable in the case of
dissipative media. It is time-efficient but has very high storage requirements. (3) Checkpointing algorithms provide a balance between storage
and time efficiency (e.g. Griewank & Walther 2000; Charpentier 2001). The regular wavefield is stored at a smaller number of time steps,
called checkpoints, and solved from there until the current time of the adjoint calculation is reached. For the sensitivity kernels presented in
this paper, we used approach (2), that is, the storage of the complete regular wavefield.

Although the computation of the sensitivity kernels is conceptually simple, a full-waveform tomography based on the adjoint method is
still a major challenge. Sensitivity kernels need to be computed for a large number of data and several iterations may be necessary to achieve
a satisfactory misfit reduction. The computational costs can be reduced by computing composite kernels for all data corresponding to one
source (Tape et al. 2007). When the number of sources outnumbers the number of receivers, the scattering-integral formulation by Chen et al.
(2007a,b) can be more efficient than the adjoint method.

6.5 A strategy for full-waveform inversion using time–frequency misfits

A time–frequency domain full-waveform inversion is likely to be most efficient when the phase and envelope misfits are minimized
iteratively, for example, with a conjugate gradient method. During the first iterations, the emphasis should be on the phase misfit of longer-
period waveforms to keep the problem as linear as possible. The envelope misfit can then be upweighted successively, depending on the
already achieved waveform similarity and the data quality. With increasing number of iterations, higher frequencies can then be taken into
account. Under which circumstances the envelope misfit may be used to discern variations of Q from elastic structure, still requires further
investigations.
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A P P E N D I X A : T H E R E L AT I O N S F RO M S E C T I O N 3

We demonstrate the relations needed for the derivations of the adjoint source functions in Section 3. First, we consider the sensitivity density
of the time–frequency domain signal ũi with respect to the model parameters, δpũi . For the sensitivity density of the time-domain signal
ui (τ ), we have

δpui (x
r , τ ) = −

∫
R

g†
i (xr , τ ; x, t ′) · ∂pL[u(t ′)] dt ′, (A1)

which is essentially a repetition of eq. (15). Then based on the definition of ũi , eq. (1), we find

δpũi (x
r , t, ω) = 1√

2π

∫
R

δpui (x
r , τ )h∗(τ − t) e−iωτ dτ. (A2)

Introducing (A1) into (A2) yields the desired result

δpũi (x
r , t, ω) = − 1√

2π

∫
R2

g†
i (xr , τ ; x, t ′) · ∂pL[u(t ′)] h∗(τ − t) e−iωτ dτ dt ′. (A3)

Now, we try to find an expression for Dp|ũi | in which we can make use of (A3). For this expression, we differentiate |ũi |2 with respect to the
model parameters p, omitting in the notation the differentiation direction, as usual.

Dp|ũi |2 = Dp(ũi ũ
∗
i ) = 2|ũi | Dp|ũi | = ũi Dpũ∗

i + ũ∗
i Dpũi . (A4)

Solving for Dp|ũi | yields

Dp|ũi | = 1

2

(
ũi

|ũi | Dpũ∗
i + ũ∗

i

|ũi | Dpũi

)
= �e

(
ũi

|ũi | Dpũ∗
i

)
. (A5)
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A P P E N D I X B : S O M E R E S U LT S F RO M T I M E – F R E Q U E N C Y A NA LY S I S

We will briefly review some of the principal definitions and results of time–frequency analysis. Most of the proofs are not entirely mathe-
matically rigorous to keep the treatment readable. Throughout the text we work with the following definition of the Fourier transform of a
function f

f̃ (ω) = F[ f ](ω) = 1√
2π

∫
R

f (t)e−iωt dt. (B1)

The corresponding inverse Fourier transform is

f (t) = F−1[ f̃ ](t) = 1√
2π

∫
R

f̃ (ω)eiωt dω. (B2)

For two functions f and g, we obtain Parseval’s relation by combining eqs (B1) and (B2):

( f̃ , g̃) =
∫

R

f̃ (ω)g̃∗(ω) dω = 1

2π

∫
R

[∫
R

f (t)e−iωt dt

] [∫
R

g∗(τ )eiωτ

]
= 1

2π

∫
R

∫
R

f (t)g∗(τ )
∫

R

eiω(τ−t) dω dt dτ

=
∫

R

∫
R

f (t)g∗(τ ) δ(τ − t) dτ dt =
∫

R

f (t)g∗(t) dt = ( f, g). (B3)

Plancherel’s formula follows immediately by setting f = g: || f̃ ||2 = || f ||2. Now, we define the windowed Fourier transform of a function f
as the regular Fourier transform of f (y)h∗(y − t), where h is a sliding window. In symbols

f̃h(t, ω) = Fh[ f ](t, ω) = 1√
2π

∫
R

f (τ )h∗(τ − t)e−iωτ dτ. (B4)

By defining a time-shift operator T t through Tth(τ ) = h(τ − t), we can express F h in terms of F, F h[ f ](t , ω) = F[fTth∗](ω). Making use
of Parseval’s relation for the Fourier transform (B3), we can then derive a similar result for the windowed Fourier transform:

||h||−2
2 ( f̃h, g̃h) = ||h||−2

2

∫
R2

Fh[ f ](t, ω)F∗
h [g](t, ω) dt dω = ||h||−2

2

∫
R2

F[ f Tt h
∗](ω)F∗[gTt h

∗](ω) dt dω

= ||h||−2
2

∫
R2

f (τ )h∗(τ − t)g∗(τ )h(τ − t) dτ, dt

= ||h||−2
2

∫
R2

f (τ )g∗(τ )|h(τ − t)|2 dt dτ =
∫

R

f (τ )g∗(τ ) dτ = ( f, g). (B5)

Setting f = g gives an analogue of Plancherel’s formula: ||h||−1
2 || f̃h ||2 = || f ||2. From (B5), we can derive an expression for the inverse of

the windowed Fourier transform. For this, we write∫
R

f (t)g∗(t) dt = ||h||−2
2

∫
R2

Fh[ f ](τ, ω)F∗
h [g](τ, ω) dτ dω

= 1√
2π ||h||2

∫
R2

Fh[ f ](τ, ω)
∫

R

g∗(t)h(t − τ )eiωt dt dτ dω

= 1√
2π ||h||2

∫
R

[∫
R2

Fh[ f ](τ, ω)h(t − τ )eiωt dτ dω

]
g∗(t) dt. (B6)

Since g can be any function, we deduce

f (t) = F−1
h [ f̃h](t) = 1√

2π ||h||2

∫
R2

Fh[ f ](τ, ω)h(t − τ )eiωt dω dτ. (B7)

Another interesting result can be derived by invoking Parseval’s relation. Defining gω,t (τ ) = h(τ − t) eiωτ gives

Fh[ f ](t, ω) = 1√
2π

∫
R

f (τ )g∗
ω,t (τ ) dτ = 1√

2π

∫
R

f̃ (ν)g̃∗
ω,t (ν) dν. (B8)

For the interpretation of (B8), we consider a fixed point (ω, t) in the time–frequency space. The time–frequency representation F h[ f ] can
now be generated in two complimentary ways: (1) by integrating over the time representation f (τ ) multiplied by the time window g∗

ω,t (τ ),
shifted by t or (2) by integrating over the frequency representation f̃ (ν) multiplied by the frequency window g̃∗

ω,t (ν) shifted by ω. A narrow
time window, that is, a high time resolution, will usually lead to a broad frequency window and therefore to a low frequency resolution.
Analogously, a low time resolution will result in a high frequency resolution. This trade-off depends strongly on the choice of the sliding
time window h in the definition of F h (B4). The trade-off can be quantified with the well-known uncertainty principle, which we state here
without proof:

�g̃�g ≥ 1

2
||gω,t ||2 = 1

2
||h||2, (B9)

The symbols �g̃ and �g denote the variances of the frequency window g̃ω,t and the time window gω,t , respectively. An effective window
function h should allow us to increase the time resolution (reduce �g) while reducing the frequency resolution (increase �g̃) as little as
possible. The optimal choice for h is the Gaussian

hσ (t) = (πσ 2)−1/4e−x2/2σ 2
, (B10)
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which generates an equal sign in the uncertainty principle (B9), and its L2 norm is 1, that is, ||hσ ||2 = 1, ∀ σ . We omit the lengthly but
straightforward derivations of these results. For h = hσ , the windowed Fourier transform is termed the Gabor transform. To simplify the
notation, we introduce the symbolizms Fhσ

= G and G[ f ](t, ω) = f̃ (t, ω). The dependence of G and f̃ (t, ω) on σ is implicit.
We close this short review with the expressions for the Gabor transform pair because it is of outstanding importance for the analysis in

Section 3:

f̃ (t, ω) = G[ f ](t, ω) = 1√
2π

∫
R

f (τ )h∗
σ (τ − t)e−iωτ dτ, (B11a)

f (t) = G−1[ f̃ ](t) = 1√
2π

∫
R2

f̃ (τ, ω)hσ (t − τ )eiωt dω dτ. (B11b)

A P P E N D I X C : A D J O I N T - S O U RC E T I M E F U N C T I O N S F O R M E A S U R E M E N T S O F
C RO S S - C O R R E L AT I O N T I M E - S H I F T S A N D R M S A M P L I T U D E D I F F E R E N C E S

C1 Measurements of cross-correlation time-shifts

We closely follow the concept introduced by Luo & Schuster (1991). The cross-correlation time-shift �t is defined as the time where the
cross-correlation function

c(u0
i , ui )(τ ) = 1√

2π

∫
R

u0
i (t)ui (t + τ ) dt, (C1)

attains its global maximum. This implies that �t satisfies the necessary condition

∂τ c(u0
i , ui )(τ )|τ=�t = 1√

2π

∫
R

u0
i (t)u̇i (t + �t) dt = 0. (C2)

Eq. (C2) implicity defines �t , at least when there is only one maximum. Invoking the implicit function differentiation yields the sensitivity
density δ p�t :

δp�t = − δpċ(�t)

c̈(�t)
= −

∫
R

u0
i (τ − �t) δpu̇i (τ ) dτ∫

R
u0

i (τ − �t) üi (τ ) dτ
. (C3)

Under the assumption that u0
i and ui are purely time-shifted and not otherwise distorted with respect to each other, we can interchange

u0
i (τ − �t) and ui (τ ) in (C3). For the sensitivity kernel δ p �t , we then have

δp�t = −||v0
i ||−2

2

∫
R

u̇i (τ ) δpui (τ )dτ . (C4)

The sensitivity kernel δ p u i (τ ) can be expressed in terms of the adjoint Green’s function (18):

δp�t = ||v0
i ||−2

2

∫
R2

u̇i (τ )
[
g†

i (xr , τ ; x, t) · ∂pL(u(x, t))
]

dt dτ . (C5)

Eq. (C5) defines the adjoint field u†
cc,t for measurements of cross-correlation time-shifts on the ith component of the data and synthetics:

u†
cc,i (x, t) = ||v0

i ||−2
2

∫
R

u̇i (τ ) g†
i (xr , τ ; x, t) dτ (C6)

and the corresponding adjoint-source time function:

s†cc,i (τ ) = u̇i (τ )

||v0
i ||22

. (C7)

C2 Measurements of rms amplitude differences

In the case of the rms amplitude misfit E2
rms = �A2/(A0)2 with �A = A − A0 (see eq. 43), we follow, essentially, the same steps as in the

previous paragraph on cross-correlation time-shifts. For the Fréchet kernel of E rms we have

δp Erms = δp

√
�A2

(A0)2
= sign �A

A0
δp A = sign �A

A A0

∫
R

ui (τ ) δpui (τ ) dτ. (C8)

Substituting (18) into (C8) yields

δp Erms =
∫

R

u†
rms,i (x, t) ∂pL[u(x, t)] dt , u†

rms,i (x, t) = − sign �A

A A0

∫
R

ui (τ ) g†
i (xr , τ ; x, t) dτ. (C9)

This defines the corresponding adjoint-source time function s rms,i :

srms,i (τ ) = − sign �A

||ui ||2||u0
i ||2

ui (τ ). (C10)
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