Spectral analysis: Foundations

» Orthogonal functions

» Fourier Series

» Discrete Fourier Series

» Fourier Transform: properties
» Chebyshev polynomials

» Convolution

» DFT and FFT

Scope: Understanding where the Fourier Transform comes
from. Moving from the continuous to the discrete world.
(Almost) everything we need to understand for filtering.
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Fourier Series: one way to derive them

The Problem

we are trying to approximate a function f(x) by another function g,(x)
which consists of a sum over N orthogonal functions ®(x) weighted by
some coefficients a,..

00~ 9, (0= 3,9
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The Problem

... and we are looking for optimal functions in a least squares (7)) sense ...
— —11/(2

i{f(x)—gN(X)?dx =Min!

a

[ ()-gy ()|

... a good choice for the basis functions ®(x) are orthogonal functions.
What are orthogonal functions? Two functions f and g are said to be
orthogonal in the interval [a,b] if

} f (x)g(x)dx=0

How is this related to the more conceivable concept of orthogonal
vectors? Let us look at the original definition of integrals:
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Orthogonal Functions

[ £ (g00d= m(i (g (x)Ax]

... where x,=a and x=b, and x-x; ;=AX ...
If we interpret f(x;) and g(x;) as the ith components of an N component
vector, then this sum corresponds directly to a scalar product of vectors.
The vanishing of the scalar product is the condition for orthogonality of
vectors (or functions).

fieg, :Zfigi =0

Spectral analysis: foundations Computational Geophysics and Data Analysis 4



Periodic functions

Let us assume we have a piecewise continuous function of the form

f(x+27)=1(X)

40

zz //// f(x+27|z)— f(X)=x°

-15 20

.. we want to approximate this function with a linear combination of 2n
periodic functions:

1, cos( x), sin( x), cos( 2x), sin( 2x),..., cos( nx), sin( nx )

= f(X) =g, (X) :%ao +i{ak cos(kx) +hb, sin(kx)}
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Orthogonality

... are these functions orthogonal ?

i (0 j =k
[ cos( jx)cos( kx)dx =27 j=k=0
o T J=k>0

\

(0 j=k,j k>0

[ sin( jx)sin( ke )dx = |
o T j=k >0

jcos( jx)sin( kx )dx =0 ]>20,k>0

... YES, and these relations are valid for any interval of length 2.
Now we know that this is an orthogonal basis, but how can we obtain the
coefficients for the basis functions?

——> from minimising f(x)-g(x)
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Fourier coefficients

optimal functions g(x) are given if
lg, (0= FO), =Mint or  2{lg,(x) - f(x)], }=

... with the definition of g(x) we get ...

{H a, +Z{a cos( kx) + b, sin( kx)}- f(x)} dx}

leading to
1 N
‘N (x)—E Z a, cos(kx) + b, sin(kx)}  with
k=

1 7Z'

a, =— | f(x)cos(kx)dx, k=01,.., N
72' [
17 .

b, = — | f(x)sin(kx)dx, k =12,..., N
/A
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Fourier approximation of ||

... Example ...

f(x)=x|, —T<X<7xw

leads to the Fourier Serie

1 4 [cos( x) cos( 3x) cos( 5x)
g(X):Eﬂ—;{ 12 + 32 + =2 + ...

.. and for n<4 g(x) looks like

I'\)OHI\I)O&Jh
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Fourier approximation of x2

... another Example ...

f(x)=x?, 0<X<2r7
leads to the Fourier Serie

A2 N 4 A .
g, (X)= : +kzl{k—zcos( kx)—Tsm( kx)}

.. and for N<11, g(x) looks like

40

30

20

10

-10 1 1 1 1
-10 -5 0 5 10
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Fourier - discrete functions

.. what happens if we know our function f(x) only at the points

27 .
N
It turns out that in this particular case the coefficients are given by
2 N
WZ (x;)cos( kx ), k=01,2,.
« 2 N_
b’ :WZ (x;)sin(kx ), k =1,2,3,...
j=1

.. the so-defined Fourier polynomial is the unigque interpolating function to
the function f(x;) with N=2m

m-1
g% (x) = %a* i Z {a" cos( kx) +b” sin( kx) }+ %a; cos( kx)

k=1
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Fourier - collocation points

... With the important property that ...
g, (x) = f(x)

... In our previous examples ...

f(x)=|x| => f(x) - blue ; g(x) - red; x, - ‘+’
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Fourier series - convergence

f(x)=x> =>f(x) - blue ; g(x) - red; x; - *+
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Fourier series - convergence

50

f(x)=x> =>f(x) - blue ; g(x) - red; x; - *+
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Gibb’s phenomenon

f(x)=x> =>f(x) - blue ; g(x) - red; x; - *+
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Chebyshev polynomials

We have seen that Fourier series are excellent for interpolating
(and differentiating) periodic functions defined on a regularly
spaced grid. In many circumstances physical phenomena which
are not periodic (in space) and occur in a limited area. This gquest
leads to the use of Chebyshev polynomials.

We depart by observing that cos(ne) can be expressed by a
polynomial in cos(eo):

cos(2p) =2cos’ ¢ —1
cos(3¢p) = 4cos® @ —3cos ¢
cos(4p)=8cos* @ —8cos’ ¢ +1

... which leads us to the definition:
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Chebyshev polynomials - definition

cos(ng) =T, (cos(e)) =T (X), x=cos(p), xe[-11], neN

... for the Chebyshev polynomials T,(x). Note that because of
x=cos(¢) they are defined in the interval [-1,1] (which - however -
can be extended to $R). The first polynomials are

To(x) =1

T,(x) =x

T,(X)=2x* -1

T,(X) = 4x° - 3x

T,(x) =8x* —8x% +1 where

T.(x))<1 for xe[-11] and neN,
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Chebyshev polynomials - Graphical

The first ten polynomials look like [0, -1]

T _n(x)

The n-th polynomial has extrema with values 1 or -1 at

x\*) = cos( k—”), k=012.3,..,n
N
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Chebyshev collocation points

These extrema are not equidistant (like the Fourier extrema)

100
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x\*) = cos( k—”), k=012.3,..,n
N
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Chebyshev polynomials - orthogonality

... are the Chebyshev polynomials orthogonal?

Chebyshev polynomials are an orthogonal set of functions in the
interval [-1,1] with respect to the weight function 1/v1-x°
such that
0 for k=j |
; dx . .
ka(x)Tj(x)ﬁ=<n/2 for k=j>0: k,jeN,
- 1-x -z for k=j=0

J

... this can be easily verified noting that

dx =—-sinpde
T (x) =cos(ke), T;(x)=cos(jo)

X = COS @,

Spectral analysis: foundations
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Chebyshev polynomials - interpolation

.. we are now faced with the same problem as with the Fourier
series. We want to approximate a function f(x), this time not a
periodical function but a function which is defined between [-1,1].
We are looking for g,,(x)

F(x) = g,(x) ——C oTo(X) + 2 6T (%)

.. and we are faced with the problem, how we can determine the
coefficients c,. Again we obtain this by finding the extremum
(minimum)

1

2 e, 00— o) —2 | =0

aCk 1 1— X2

Spectral analysis: foundations Computational Geophysics and Data Analysis 20



Chebyshev polynomials - interpolation

... to obtain ...

dx

21
k — f T, ,
o= | OO0 ——

... surprisingly these coefficients can be calculated with FFT
techniques, noting that

Ck=%j f (cosp)coskedp, k=012,...,n
0

k=012,.,n

... and the fact that f(coso) is a 2n-periodic function ...

ck:%j f (cosp)coskedep, k=012,...,n

... which means that the coefficients c, are the Fourier coefficients
a, of the periodic function F(p)=f(cos ¢)!
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Chebyshev - discrete functions

.. what happens if we know our function f(x) only at the points

T .
X, = COS —I
N
In this particular case the coefficients are given by
N
c = %Z f (cos ¢ ;) cos( ke ), k=012,.N/2
j=1

... leading to the polynomial ...

gm(X)ZECOTo +ZCka(X)
k=1

... With the property

gn(x)=f(x) at x;=cos(zj/N) j=01,2.. N

Spectral analysis: foundations Computational Geophysics and Data Analysis 22



Chebyshev - collocation points - |X|

f(x)=|x] => f(x) - blue ; g,(x) - red; X, - “+’
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Chebyshev - collocation points - ||

f(x)=|x| => f(x) - blue ; g,(x) - red; x; - ‘+’

N =32
1 T

32 points B
128 points

Spectral analysis: foundations Computational Geophysics and Data Analysis 24



Chebyshev - collocation points - x2

f(x)=x2 => f(x) - blue ; g,(x) - red; x; - ‘+’

N=8
12

'.

8 points 06

o2 . __ "~ The interpolating
function g,(x) was
shifted by a small
amount to be
visible at all!

64 points
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Chebyshev vs. Fourier - numerical

Chebyshev Fourier

08¢

061

04r

0.2¢

0

0 oiz 024 Oi6 028 1 ~0 5
f(x)=x2 => f(X) - blue ; gy(x) - red; x. - ‘+’

This graph speaks for itself ! Gibb’s phenomenon with Chebyshev?
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Chebyshev vs. Fourier - Gibb’s

Chebyshev Fourier
N=16 N =1¢€

15 - - 15

1t /\\/'/\"\/{/\'\/'ﬁ 1L
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f(x)=sign(x-m) => f(x) - blue ; gy(x) - red; x; - ‘+'

Gibb’s phenomenon with Chebyshev? YES!
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Chebyshev vs. Fourier - Gibb’s

Chebyshev Fourier
N =64 N=6

15 . - - 15 . .

1t W 1t AL
05} - 05}
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f(x)=sign(x-m =>f(x) - blue ; gy(x) - red; x; - ‘+
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Fourier vs. Chebyshev

Fourier

periodic functions

cos( nx ), sin( nx)

collocation points

domain

basis functions

Chebyshev
T .

X, = C0S —Ii
N

limited area [-1,1]

T,(x) =cos( ng),
X = COS @

* 1 *
g m (X) = an
1 interpolating g, (x)= C T, + Z ¢, T, (X)
~ . functi
+> {ak cos(kx) + b’ sin( kx)} Hnetion
k=1
1
+=a_ cos(kx)
2
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Fourier vs. Chebyshev (cont’d)

Fourier

N
a = iz f (x;)cos(kx;)
N <

N
b: :iz f(x;)sin(kx;)
N j=1

* Gibb’s phenomenon for
discontinuous functions

 Efficient calculation via FFT

* infinite domain through
periodicity

Spectral analysis: foundations

coefficients

some properties

Chebyshev

N
¢ = %Z f (cos ¢ ;) cos( ke ;)
j=1

* limited area calculations
» grid densification at boundaries
o coefficients via FFT

 excellent convergence at
boundaries

» Gibb’s phenomenon
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The Fourier Transform Pair

F () = % Of f (t)e'dt

f(t) = TF(a))e‘i”th

Forward transform

Inverse transform

Note the conventions concerning the sign of the exponents and the factor.
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The Fourier Transform Pair

F(w) = R(o)+il (0) = A(w)e'*
A(w) = |F (@)= {R*(@) + 1* (o)
| (o)

R(®)

d(w) = arg F (w) = arctan

A(w) Amplitude spectrum

() (a)) Phase spectrum

In most application it is the amplitude (or the power) spectrum that is of interest.
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The Fourier Transform: when does it work?

Conditions that the integral transforms work:

> f(t) has a finite number of jumps and the limits exist from
both sides

> f(t) is integrable, i.e. _H f (t)‘dt =G <o

Properties of the Fourier transform for special functions:

Function f(t) Fouriertransform F(m)
even even

odd odd

real hermitian

Imaginary antihermitian
hermitian real

Spectral analysis: foundations Computational Geophysics and Data Analysis
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... graphically ...
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Some properties of the Fourier Transform

Defining as the FT: f(t)= F(w)
> Linearity af, (t) + bf, (t) = aF, (w) + bF, (w)
> Symmetry f(-t) = 272 (o)
> Time shifting f(t+At) = e'“F(w)
0" f (1)

> Time differentiation = (-iw)"F(w)

ot"
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Differentiation theorem

. . - o"f(t :
> Time differentiation 8’[”( ) = (-iw)"F(w)
exp(-pi t"2) exp(-pi w”"2)
t
d/dt(exp(-pi t"2)) i2piwexp(-pi w2)
t
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Convolution

The convolution operation is at the heart of l[inear systems.

Definition:
ft)=qg(t) = T f(t)gl(t —t')dt':]o f(t—t)g(t")dt'
Properties: f(t)*g(t)=g(t) = f(t)

f(t)*o(t) = f (1)
f(t)*H(t):jf(t)dt

H(t) is the Heaviside function:
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The convolution theorem

A convolution in the time domain corresponds to a
multiplication in the frequency domain.

... and vice versa ...

a convolution in the frequency domain corresponds to a
multiplication in the time domain

t(t)*g(t) = F(0)G(w)
T(t)g(t) = F(o)*G(w)

The first relation is of tremendous practical implication!
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The convolution theorem

CONVOLUTION

-1

hlthex(t)

2
28 Tu

0

i

MULTIPLICATION

SUA ; N~
UU'%UU'

(L3] )}

From Bracewell (Fourier transforms)

1
m,

Figure 4.7: Graphical example of the convolution theorem
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Discrete Convolution

Convolution is the mathematical description of the change of
waveform shape after passage through a filter (system).

There is a special mathematical symbol for convolution (*):

y(t) = g(t) = T (t)

Here the impulse response function g is convolved with the
input signal f. g is also named the ,,Green’s function®

3 - 1=012,....m
Yi :Zgifk—i Ji

=0

k=0.12,...,m+n fj  1=012..,n
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Convolution Example(Matlab)

Impulse response

>> X

X =
0 0 1 0

>>y

y = System input
1 2 1 —

>> conv(x,y)
ans =
O 0 1 2 1 O

A

System output
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Convolution Example (pictorial)

X , Faltung® y X*y

0 1 0 0
1 2 1 O

0 1 0
1 2 1 O

0 1 0 0
1 2 1 1
0 1 0 0 2

1 2 1
0 0 1
1 2
0 1 0 0 O
1 2 1
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The digital world
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The digital world

A U A U
vVoNd N~

ALAEATFRRFRRERRTTE

m||.]“'||||: 'I|]']“"II' .

9,0=9(0) Y. 5t jd)

g, Is the digitized version of g and the sum is called the comb function.
Defining the Nyquist frequency fy, as

1
fw = St

after a few operations the spectrum can be written as
G,(f)= {G(f)+Z[G(f —2nfy,)+G(f +2any)]}

.. with very important consequences ...
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The sampling theorem

The implications are that for the calculation of the 1
spectrum at frequency f there are also contributions _I:

of frequencies f£2nfy, n=1,2,3,... N
That means dt has to be chosen such that f is the

largest frequency contained in the signal.

=
e

<

Amplitude of signal

| LR
1 LU RN

0 10 20 30 40 50 60
Time(s) or Distance (m
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The Fast Fourier Transform FFT

.. spectral analysis became interesting for computing with the

introduction of the Fast Fourier Transform (FFT). What's so fast about
it ?

The FFT originates from a paper by Cooley and Tukey (1965, Math.
Comp. vol 19 297-301) which revolutionised all fields where Fourier

transforms where essential to progress.

The discrete Fourier Transform can be written as

N-1

Fo=> fe®™™M k=01.,N-1
j=0
1 N- .
—Z e’ k=01..,N-1
N 4=
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The Fast Fourier Transform FFT

... this can be written as matrix-vector products ...
for example the inverse transform yields ...

1 1 1 1 T F, f
0 0 o o || F f,
1 o o' o° N=2 1 F, f,
_1 a)N_l a)(N—l)z__FN_l_ _fN—l_
.. where ...
D = e27zi/N
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FFT

... the FAST bit is recognising that the full matrix - vector multiplication
can be written as a few sparse matrix - vector multiplications
(for details see for example Bracewell, the Fourier Transform and its
applications, MacGraw-Hill) with the effect that:

Number of multiplications

full matrix FFT

N2 2Nlog,N

this has enormous implications for large scale problems.
Note: the factorisation becomes particularly simple and effective
when N is a highly composite number (power of 2).
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Number of multiplications

Problem full matrix FFT Ratio full/FFT
1D (nx=512) 2.6x10° 9.2x103 28.4
1D (nx=2096) 94.98
1D (nx=8384) 312.6

.. the right column can be regarded as the speedup of an algorithm
when the FFT is used instead of the full system.
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» The Fourier Transform can be derived from the problem of approximating
an arbitrary function.

» A reqgular set of points allows exact interpolation (or derivation) of arbitrary
functions

» There are other basis functions (e.g., Chebyshev polynomials) with similar
properties

» The discretization of signals has tremendous impact on the estimation of
spectra: aliasing effect

» The FFT is at the heart of spectral analysis
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