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Spectral analysis: Foundations

Orthogonal functions
Fourier Series
Discrete Fourier Series
Fourier Transform: properties
Chebyshev polynomials
Convolution
DFT and FFT

Scope: Understanding where the Fourier Transform comes 
from. Moving from the continuous to the discrete world. 
(Almost) everything we need to understand for filtering. 
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Fourier Series: one way to derive them

The Problem

we are trying to approximate a function f(x) by another function gn (x) 
which consists of a sum over N orthogonal functions Φ(x) weighted by 
some coefficients an .
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... and we are looking for optimal functions in a least squares (l2 ) sense ...

... a good choice for the basis functions Φ(x) are orthogonal functions. 
What  are orthogonal functions? Two functions f and g are  said to be 

orthogonal in the interval [a,b] if
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How is this related to the more conceivable concept of orthogonal 
vectors? Let us look at the original definition of integrals:
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Orthogonal Functions

... where x0 =a and xN =b, and xi -xi-1 =Δx ...
If we interpret f(xi ) and g(xi ) as the ith components of an N component 

vector, then this sum corresponds directly to a scalar product of vectors. 
The vanishing of the scalar product is the condition for orthogonality of 

vectors (or functions). 
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Periodic functions

-15 -10 -5 0 5 10 15 20
0

10

20

30

40

Let us  assume we have a piecewise continuous function of the form
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... we want to approximate this function with a linear combination of 2π
 periodic functions:
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Orthogonality

... are these functions orthogonal ?
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... YES, and these relations are valid for any interval of length 2π.
Now we know that this is an orthogonal basis, but how can we obtain the 

coefficients for the basis functions?

from minimising f(x)-g(x)
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Fourier coefficients

optimal functions g(x) are given if
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Fourier approximation of |x|

... Example ...

.. and for n<4 g(x) looks like

leads to the Fourier Serie
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Fourier approximation of x2

... another Example ...
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.. and for N<11, g(x) looks like

leads to the Fourier Serie
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Fourier - discrete functions
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.. the so-defined Fourier polynomial is the unique interpolating function to 
the function f(xj ) with N=2m

it turns out that in this particular case the coefficients are given by
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... what happens if we know our function f(x) only at the points
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)()(*
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Fourier - collocation points

... with the important property that ...

... in our previous examples ...
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Fourier series - convergence
f(x)=x2   => f(x) - blue ; g(x) - red; xi - ‘+’
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Fourier series - convergence
f(x)=x2   => f(x) - blue ; g(x) - red; xi - ‘+’
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Gibb’s phenomenon
f(x)=x2   => f(x) - blue ; g(x) - red; xi - ‘+’
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Chebyshev polynomials

We have seen that Fourier series are excellent for interpolating 
(and differentiating) periodic functions defined on a regularly 
spaced grid. In many circumstances physical phenomena which 
are not periodic (in space) and occur in a limited area. This quest 
leads to the use of Chebyshev polynomials.

We depart by observing that cos(nϕ) can be expressed by a 
polynomial in cos(ϕ):
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... which leads us to the definition:
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Chebyshev polynomials - definition
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... for the Chebyshev polynomials Tn (x). Note that because of 
x=cos(ϕ) they are defined in the interval [-1,1] (which - however - 
can be extended to  ℜ). The first polynomials are
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Chebyshev polynomials - Graphical

The first ten polynomials look like [0, -1] 

The n-th polynomial has extrema with values 1 or -1 at  
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Chebyshev collocation points

These extrema are not equidistant (like the Fourier extrema) 
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Chebyshev polynomials - orthogonality

... are the Chebyshev polynomials orthogonal?
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Chebyshev polynomials are an orthogonal set of functions in the 
interval [-1,1]  with respect to the weight function
such that 
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Chebyshev polynomials - interpolation

... we are now faced with the same problem as with the Fourier 
series. We want  to approximate a function f(x), this time not a 

periodical function but  a function which is defined between [-1,1]. 
We are looking for gn (x)  
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... and we are faced with the problem, how we can determine the 
coefficients ck . Again we obtain this by finding the extremum 
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Chebyshev polynomials - interpolation

... to obtain ...
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... surprisingly these coefficients can be calculated with FFT 
techniques, noting that
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... which means that the coefficients ck are the Fourier coefficients 
ak of the periodic function F(ϕ)=f(cos ϕ)!
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Chebyshev - discrete functions
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... leading to the polynomial ...

in this particular case the coefficients are given by
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Chebyshev - collocation points - |x|

f(x)=|x| => f(x) - blue ; gn (x) - red; xi - ‘+’
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Chebyshev - collocation points - |x|

f(x)=|x| => f(x) - blue ; gn (x) - red; xi - ‘+’
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Chebyshev - collocation points - x2

f(x)=x2 => f(x) - blue ; gn (x) - red; xi - ‘+’
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The interpolating 
function gn (x) was 
shifted by a small 
amount to be 
visible at all!
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Chebyshev vs. Fourier - numerical

f(x)=x2 => f(x) - blue ; gN (x) - red; xi - ‘+’

This graph speaks for itself ! Gibb’s phenomenon with Chebyshev?
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Chebyshev vs. Fourier - Gibb’s

f(x)=sign(x-π) => f(x) - blue ; gN (x) - red; xi - ‘+’

Gibb’s phenomenon with Chebyshev? YES!

Chebyshev Fourier
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Chebyshev vs. Fourier - Gibb’s

f(x)=sign(x-π) => f(x) - blue ; gN (x) - red; xi - ‘+’

Chebyshev Fourier
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Fourier vs. Chebyshev

Fourier Chebyshev

i
N

x i
π2

= i
N

xi
πcos=

periodic functions limited area [-1,1]

)sin(),cos( nxnx
ϕ
ϕ

cos
),cos()(

=
=

x
nxT n

{ }

)cos(
2
1

)sin()cos(

2
1)(

*

1

1

**

**
0

kxa

kxbkxa

axg

m

m

k

m

kk

+

++

=

∑
−

=

∑
=

+=
m

k
kkm xTcTcxg

1

**
0

* )(
2
1)( 0

collocation points

domain

basis functions

interpolating 
function



Computational Geophysics and Data Analysis 30Spectral analysis: foundations

Fourier vs. Chebyshev (cont’d)

Fourier Chebyshev

coefficients

some properties
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• Gibb’s phenomenon for 
discontinuous functions

• Efficient calculation via FFT

• infinite domain through 
periodicity

• limited area calculations

• grid densification at boundaries

• coefficients via FFT

• excellent convergence at 
boundaries

• Gibb’s phenomenon
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The Fourier Transform Pair
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Note the  conventions concerning the sign of the exponents and the factor. 
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The Fourier Transform Pair
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Phase spectrum

In most application it is the amplitude (or the power) spectrum that is of interest.
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The Fourier Transform: when does it work?

∞<=∫
∞

∞−

Gdttf )(

Conditions that the integral transforms work:

f(t) has a finite number of jumps and the limits exist from 
both sides

f(t) is integrable, i.e.   

Properties of the Fourier transform for special functions:

Function f(t) Fouriertransform F(ω)
even even
odd odd
real hermitian
imaginary antihermitian
hermitian real
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… graphically …
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Some properties of the Fourier Transform

Defining as the FT: )()( ωFtf ⇒

Linearity

Symmetry

Time shifting

Time differentiation
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Differentiation theorem

Time differentiation )()()( ωω Fi
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Convolution

∫∫
∞

∞−
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The convolution operation is at the heart of linear systems.

Definition:

Properties: )()()()( tftgtgtf ∗=∗

)()()( tfttf =∂∗

∫=∗ dttftHtf )()()(

H(t) is the Heaviside function:
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The convolution theorem

A convolution in the time domain corresponds to a 
multiplication in the frequency domain. 

… and vice versa …

a convolution in the frequency domain corresponds to a 
multiplication in the time domain

)()()()( ωω GFtgtf ⇒∗

)()()()( ωω GFtgtf ∗⇒

The first relation is of tremendous practical implication!
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The convolution theorem

From Bracewell (Fourier transforms)
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Discrete Convolution

Convolution is the mathematical description of the change of 
waveform shape after passage through a filter (system). 

There is a special mathematical symbol for convolution (*):

Here the impulse response function g is convolved with the 
input signal f. g is also named the „Green‘s function“
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Convolution Example(Matlab)

>> x

x =

0     0     1     0

>> y

y =

1     2     1

>> conv(x,y)

ans =

0     0     1     2     1     0

>> x

x =

0     0     1     0

>> y

y =

1     2     1

>> conv(x,y)

ans =

0     0     1     2     1     0

Impulse response

System input

System output
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Convolution Example (pictorial)

x y„Faltung“

0 1 0 0

1 2 1

0 1 0 0
1 2 1

0 1 0 0

1 2 1

0 1 0 0

1 2 1

0 1 0 0
1 2 1

0 1 0 0

1 2 1

0

0

1

2

1

0

y x*y
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The digital world
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The digital world
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gs is the digitized version of g and the sum is called the comb function. 
Defining the Nyquist frequency fNy as
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fNy 2

1
=

after a few operations the  spectrum can be written as

[ ]
⎭
⎬
⎫

⎩
⎨
⎧

++−+= ∑
∞

=1
)2()2()(1)(

n
NyNys nffGnffGfG

dt
fG

… with very important consequences …
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The sampling theorem

dt
fNy 2

1
=

The implications are that for the calculation of the 
spectrum at frequency f there are also contributions 
of frequencies f±2nfNy , n=1,2,3,…

That means dt has to be chosen such that fN is the 
largest frequency contained in the signal. 
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The Fast Fourier Transform FFT

... spectral analysis became interesting for computing with the 
introduction of the Fast Fourier Transform (FFT). What’s so fast about 
it ?

The FFT originates from a paper by Cooley and Tukey (1965, Math. 
Comp. vol 19 297-301) which revolutionised all fields where Fourier 
transforms where essential to progress.

The discrete Fourier Transform can be written as 
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The Fast Fourier Transform FFT

... this can be written as matrix-vector products ...
for example the inverse transform yields ...
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FFT

... the FAST bit is recognising that the full matrix - vector multiplication
can be  written as a few sparse matrix - vector multiplications 

(for details see for example Bracewell, the Fourier Transform and its 
applications, MacGraw-Hill) with the effect that:

Number of multiplicationsNumber of multiplications

full matrix                                          FFT  

N2 2Nlog2 N

this has enormous implications for large scale problems.
Note: the factorisation becomes particularly simple and effective 

when N is  a highly composite number (power of 2). 
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FFT

.. the right column can be regarded as the speedup of an algorithm 
when the FFT is used instead of the full system. 

Number of multiplicationsNumber of multiplications

Problem                   full matrix             FFT           Ratio full/FFT  

1D (nx=512)                    2.6x105 9.2x103 28.4
1D (nx=2096)                                                          94.98
1D (nx=8384)                                                          312.6
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Summary

The Fourier Transform can be derived from the problem of approximating
an arbitrary function. 

A regular set of points allows exact interpolation (or derivation) of arbitrary
functions

There are other basis functions (e.g., Chebyshev polynomials) with similar
properties

The discretization of signals has tremendous impact on the estimation of 
spectra: aliasing effect

The FFT is at the heart of spectral analysis
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