Generating synthetic seismograms

» Short introduction

» Finite-differences

» Solutions of the acoustic wave equation
»difference equations

» Stability and numerical dispersion

» The Fourier method

Scope: Understand how to calculate
synthetics using finite differences, we will
later analyse the data (time series) in the
spectral domain
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Why numerical methods

Example: seismic wave propagation

... we need numerical
solutions! ... we need grids! ...
And big computers ...
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Partial Differential Equations in Geophysics

0°p =C’Ap + s
A=(82X+62y+8§)

>

C
S

pressure
acoustic wave speed
sources

The acoustic
wave equation

- seismology

- acoustics

- oceanography
- meteorology

JtC=kAC—-veVC-RC+p

T O< X O
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tracer concentration
diffusivity

flow velocity
reactivity

sources

Diffusion, advection,
Reaction

- geodynamics

- oceanography

- meteorology

- geochemistry
- sedimentology

- geophysical fluid dynamics
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Numerical methods: properties

Finite differences

v

Finite elements

Finite volumes

Calculating synthetics

v

v

- time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- Maxwell’s equations

- Ground penetrating radar

-> robust, simple concept, easy to
parallelize, regular grids, explicit method

- static and time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- all problems

-> implicit approach, matrix inversion, well founded,
irreqular grids, more complex algorithms,
engineering problems

- time-dependent PDEs

- seismic wave propagation

- mainly fluid dynamics

-> robust, simple concept, irreqular grids, explicit
method
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Other Numerical methods:

Particle-based —» | - lattice gas methods
- molecular dynamics
methods - granular problems
- fluid flow

- earthquake simulations
-> very heterogeneous problems, nonlinear problems

Boundary element| ——— | - problems with boundaries (rupture)
- based on analytical solutions
methods - only discretization of planes
--> good for problems with special boundary conditions
(rupture, cracks, etc)
Pseudospectra| ——*> | - orthogonal basis functions, special case of FD
methods - spectral accuracy of space derivatives
- wave propagation, GPR

-> reqular grids, explicit method, problems with
strongly heterogeneous media

Calculating synthetics Modern Seismology — Data processing and inversion 5



What is a finite difference?

Common definitions of the derivative of f(x):

f(x+dx)— f(x)

o0, f=1Iim
dx—0 dX

5. = lim f(x)— f(x—dx)
dx—0 dx

o f = lim f(x+dx)— f(x—dx)
dx—0 2dx

These are all correct definitions in the limit dx->0.

But we want dx to remain FINITE

Calculating synthetics Modern Seismology — Data processing and inversion 6



What is a finite difference?

The equivalent approximations of the derivatives are:

N f(x+dx)— f(x)

0, f forward difference
dx
0, f = Fx) = F{x=0x) backward difference
dx
0, f = T(x+dx)— f(x—dx) centered difference
2dx

What about the second or higher derivatives?
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Higher Derivatives with FD

N f(x+dx)— f(x)

o.f"
dx
o f = f(x)— f(x—dx)
dx
, of -0, 1"
0. f =
dx

f(x+dx)-2f(x)+ f(x—dx) Second

dx2 Derivative

o f =

Other derivation via Taylor Series (Exercise).
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How good are the FD approximations?

N/ —
N/ —

This leads us to Taylor series....
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Taylor Series

Taylor series are expansions of a function f(x) for some
finite distance dx to f(x+dx)

f(x+dx) = f(x)+dxf (x)+d7f (x)+d3if ()+d4—4f (X)+...

What happens, if we use this expression for

5f*~ f(x+dx)— f(x)
dx
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Taylor Series

f(x+dx)—f(x): 1

that leads to :

dx? dx?

Calculating synthetics

{dxf'(x)+ f"(x)+?f"'(x)+..]

dx dx ?

— f'(x)+0(dx)

The error of the first derivative using the forward
formulation is of order dx.

Is this the case for other formulations of the derivative?
Let's check!
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Taylor Series

... with the centered formulation we get:

f(x+dx/2)—f(x-dx/2) 1 dxf'(x)+d—)(3f"'(x)+
dx dx 3!

— £'(x) +O(dx?)

The error of the first derivative using the centered
approximation is of order dx2.

This is an important results: it DOES matter which formulation
we use. The centered scheme is more accurate!
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Alternative Derivation of FD

f(x)

| T (xi)

dx h
0 - c0——0 [ 0 0

Xj -1 Xj T Xj +1 Xj + 2 Xj + 3

desired x location

What is the (approximate) value of the function or its (first,
second ..) derivative at the desired location ?

How can we calculate the weights for the neighboring points?

Calculating synthetics Modern Seismology — Data processing and inversion 13



Alternative Derivation of FD

f(x) Lets’ try Taylor's Expansion
L, [CI
. |
dx
] [ < > ] ]
. f(x+dx)=f(xX)+ f'(x)dx (1)

f(x—dx)=f(x) - f'0)dx  (2)

we are looking for something like

PO~ T W i)

j=1,L
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Alternative Derivation of FD

af “ =~ af + af 'dx + bf ~ ~ bf — bf 'dx
= af "+bf "=~ (a+b)f +(a-Db)f'dx

Interpolation Derivative
a—b=20 a+b=20
SN EERE e - 10
2 2 2 dXx
1 1
w, =0.5,w, =0.5 W= a2 T gy
Interpolation weights Derivative weights
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Our first FD algorithm (acld.m) !

0°p =C’Ap + s P pressure
| 2 ) ; c acoustic wave speed
A=(0 +0) +0;) s sources

Problem: Solve the 1D acoustic wave equation using the finite
Difference method.

Solution: I
c*dt ?

p(t+dt)= o Ip(x+dx)—2p(x)+ p(x—dx)]
+2p(t)— p(t—dt)+ sdt®
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Problems: Stability

p(t+dt) = Cd:tz Ip(x+dx)—2p(x)+ p(x—dx)]

+2p(t)— p(t—dt)+ sdt ?

Stability: Careful analysis using harmonic functions shows that
a stable numerical calculation is subject to special conditions
(conditional stability). This holds for many numerical problems.

CELSEzI
dx
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The 1-D wave equation

p(X)57u(x,1) = 6,[E(X)a,u(x, )]
Elastic parameters E(x) vary only in one direction.

E(X) — ,u(X) shear waves
E(X) :ﬂ,(X)-I-Z,u(X) P waves

with the corresponding velocities

Vo = fad shear waves
yo,
Ji+2y
Vp = P waves
o,
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The 1-D wave equation

We want to avoid having to take derivatives of the material
parameters (why?). This can be achieved by using a
velocity-stress formulation, which leads to the following
simultaneous equations:

Calculating synthetics

0.l =

P

p(x)

0,7 = E(x)0,u

where

r =E(x)0,u

Modern Seismology — Data processing and inversion
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The 1-D wave equation - FD scheme

Let us try to use one of the previously introduced FD schemes:
central difference for space and forward difference for time

Discretization: (Idt, mdx)

dx space increment, dt time increment

t
|+1 X ®
dt
I ‘ 4 ' .
dx
- X
m-1 m m+1
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The 1-D wave equation - FD scheme

... leading to the following scheme:

|
N ’Z' B
forward m m — m+l m-l centered

dt o,  20dx

gty 1 /!

+1 I o o
forward T —Tn —E um+1 o um—l
dt " 2dx

centered

like in the continuous case, we can make the following Ansatz:
f(x,t) = Aexp(ikx —iwt)
which in the discrete world is :

f,_ = Aexp(ikmdx —iwldt)
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The 1-D wave equation - FD scheme

... in practical terms: first solve I+1 *

| |
ur|n+1 — dt 1 Tt~ Tma n u|
o,  20x

m-1 m 'm+1

then solve

o o
o t] B, St =S | 1
2dx
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The 1-D wave equation - FD scheme

.. let us assume a signal is propagating:
f (! ) = Aexp(ikmdx —iwldt)
f (') = Bexp(ikmdx —iwldt)

we now put this Ansatz into the following equations ...

< |1+1 o | |
um _um 1 Tt — T

dt o, 20X

I+1 | - o
T —Tn E um+1_um—1

dt " 2dx
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The 1-D wave equation - FD scheme

...after some algebra (hours later) ...

exp(—iwdt) =17 |- (dt jsin Kdlx
P L OX

What does this result tell us about the numerical solution?

lexp(—iwdt)| > 1

for any choice of dt and dx! So ® must be complex.
But then for example:

f (') = Aexp(ikmdx — iwldt) = Aexp(ikm)exp(-w’ldt)
will grow exponentially as, o* is real.
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The 1-D wave equation - FD scheme

Can we find a scheme that works? |+1 ®
Let us use a centered scheme In
S | ® ® ®
time:
S R [ |
u.  —u- _ 1 7., -7, -1 *
20t Pn 2dx m-1 m m+1
|+1 -1 |
T —Th _ E m+l U
2dt 2dx

And again we use the following Ansatz to investigate the behavior
of the numerical solution:

f(r') = Aexp(ikmdx —iwldt)
f(u') = Bexp(ikmdx — iwldt)
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The 1-D wave equation - FD scheme

...again after some algebra (minutes later) ...

sinwdt = + | (dt jsin kdx
P\ OX

... has real solutions as long as

Em(dtjﬂ
Prm \ AX

... kKnowing that for example ...

E

— =y P-wave velocity

Pu
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The 1-D wave equation - FD scheme

... we arrive at maybe the most important result
for FD schemes applied to the wave equation:

Ve s ax <1

Vp s Is the locally homogeneous velocity. This is called

a conditionally stable finite-difference scheme. Finding the

right combination of dt and dx for a practical application, where
the velocities vary in the medium is one of the most important
tasks.

Calculating synthetics Modern Seismology — Data processing and inversion
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The 1-D wave equation - FD scheme

There is an even better scheme!

t

|+1 ® ® o This is called a
1+1/2 H . _ | staggered scheme

| ® ® ®
-1/2 . ' . - U

®
-1 ° ® ® ’
X
m-1 m m+1
m-1/2 m+1/2
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The 1-D wave equation - FD scheme

... leading to the FD scheme:

- 1+1/2 - 1-1/2 I I
um o um _ 1 Tmiri2 — T2
dt O dx
1+1 I «1+1/2 - 1+1/2
Ths/2 ™ Tmsrie E Una —Up
= m+l/2
dt dx

And again we use the following Ansatz to investigate the behaviour
of the numerical solution:

f (z1) = Aexp(ikmdx — iwldt)
f (U' ) = Bexp(ikmdx —iwldt)
Find the corresponding stability condition (Exercise)!
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Staggered Grids

Which scheme is more accurate?

Centered | N H—N ] = |

Staggerted m ¢+ ®m ¢+ ® ¢+ H ¢+ H o+ H o+ H

dx
f — f(x—
conereq: 8, f o XFI) = Tx=dX)
20X
staggered: O, f ~ T(x+ dX/Z)d_ f(x—dx/2)
X

Because the error is O(h?), the error of the centered scheme is 4 times larger.
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Numerical Dispersion

What does the stability criterion tell us about the
guality of the numerical solution?

Sina)_dt:i Emﬂ/z(dthinkd—x
2 P X

To answer this we need the concept of phase velocity.

Remember we assumed a harmonic oscillation with frequency
® and wavenumber k, for example

V(1) = sin(kx — @t) = sin(k(x—%t)) _sin(o(X x-1))
a

where the phase velocity is

@

Cphase = ?
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Numerical Dispersion

sma)—dt + m”’z(dtji kd_x
2 Jo RN )

we can first assume that dt and dx are very small, in this case :

SIn(X) = X for small x
then
) E
— = |—mlZ _¢ wave speed
K P

‘ for small dt and dx we simulate the correct velocity:
The scheme is convergent.
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Numerical Dispersion

How about the general case?

Sin a)_dt — + Em+1/2 ( dt jsin kd_X
2 pn \dX
: 27T |
using K=— we obtain
A
C(ﬁ) = @ = iSiﬂ_l(co ﬂsin @j

This formula expresses our numerical phase velocity as a
function of the wave speed and the propagating wavelength.
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Numerical Phase Velocity

Fhase velocity

3200 . . . .
3000 - 1
22800 1
E True velocity 3000m/s
o 20001 Curves are shown for .
NN . g
a varying stability.
T 24001 1
5
=
Z 2200t ]
2000 - ]
1800 ' ' . ,
0 5 10 15 20 25

Mumber of points per wavelength
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Numerical Dispersion

What we really measure in a seismogram is
the group velocity:

b70) 4
CCOS——
60)_ 2
o —1/2
oK ( dt . ﬂdsz
1-{c—sIn——
dx

This formula expresses our numerical group velocity as a
function of the wave speed and the propagating wavelength.
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Numerical Group Velocity
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Sroup welocity

True velocity 3000m/s
Curves are shown for
varying stability.

10 15 20
Mumber of points per wavelength
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Numerical Dispersion

Murnerical group welocity

Calculating synthetics

! Blue - Phase velocity l
Red - Group velocity
5 10 15 20

Mumber of points per wavelength

Modern Seismology — Data processing and inversion

25

37



Velocity 5 km/s
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2 point - 2 order

Numerical Dispersion

08+

2 point - 2 order
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FD Summary

Depending on the choice of the FD scheme
(e.g. forward, backward, centered) a numerical solution
may be more or less accurate.

Explicit finite difference solutions to differential
equations are often conditionally stable. The correct
choice of the space or time increment is crucial to
enable accurate solutions.

Sometimes it is useful to employ so-called staggered

grids where the fields are defined on seperate grids which
may improve the overall accuracy of the scheme.
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The Fourier Method

- What is a pseudo-spectral Method?

- Fourier Derivatives

- The Fast Fourier Transform (FFT)

- The Acoustic Wave Equation with the Fourier Method
- Comparison with the Finite-Difference Method

- Dispersion and Stability of Fourier Solutions
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Pseudospectral methods

Spectral solutions to time-dependent PDEs are formulated
In the frequency-wavenumber domain and solutions are
obtained in terms of spectra (e.g. seismograms). This
technique is particularly interesting for geometries where
partial solutions in the w-k domain can be obtained
analytically (e.g. for layered models).

In the pseudo-spectral approach - in a finite-difference like
manner - the PDEs are solved pointwise in physical space
(x-t). However, the space derivatives are calculated using
orthogonal functions (e.g. Fourier Integrals, Chebyshev
polynomials). They are either evaluated using matrix-
matrix multiplications or the fast Fourier transform (FFT).
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Spectral derivative

.. let us recall the definition of the derivative using Fourier integrals ...

0.f(x)=0, j F(k)e ™dk

o0

= — [ikF (k)e "dk

... we could either ...
1) perform this calculation in the space domain by convolution

2) actually transform the function f(x) in the k-domain and back
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Acoustic wave equation

let us take the acoustic wave equation with variable density
1 1
;0. p=0,—0,p
pC P

the left hand side will be expressed with our
standard centered finite-difference approach

21 —[p(t+dt)-2p(t)+ p(t-dt)]= @x[iﬁxpj
dt o,

pC

... leading to the extrapolation scheme ...
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... pseudospectral approximation ...

p(t+dt) = pCzdt28X£i8XDJ+ 2p(t) - p(t—dt)
o

where the space derivatives will be calculated using the Fourier Method.
The highlighted term will be calculated as follows:

e

P" > FFT — P —» ik ,P" > FFT ' > 9 P’
multiply by 1/p

iaxPj“—>FFT—>£18XI3j aikv[iﬁxlsj —>FFT1—>5X(15XPJ.”]
P p p p

L v

... then extrapolate ...
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... pseudospectral approximation ...

p(t +dt) =

pczoltz[ax(%éx pj+ ay(%ay p]+ az(%az pn

+2p(t)— p(t—dt)

.. where the following algorithm applies to each space dimension ...

e

P" > FFT — P —» ik ,P" > FFT ' > 9 P’

18XPJ-”—>FFT—>£18XI3] aikv[lﬁxlsj —>FFT1—>5X(1@XPJ.”]
P P P P

L L
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Matlab code

let us compare the core of the algorithm - the calculation of the derivative
(Matlab code)

function df=fderld(f,dx,nop)

% FDER1D(F,dx,nop) Finite difference
% second derivative

nx=max(size(f));

n2=(nop-1)/2;

1T nop==3; d=[1 -2 1])/dx"2; end
it nop==5; d=[-1/12 4/3 -5/2 4/3 -1/12]/dx"2; end

df=[1:nx]*0;
for 1=1:nop;

df=df+d(1) .*cshiftld(f,-n2+(1-1));
end
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Matlab code

... and the first derivative using FFTs ...

function df=sderld(f,dx)
% SDER1D(T,dx) spectral derivative of vector
nx=max(size(f));

% initialize k

kmax=pi1/dx;

dk=kmax/(nx/2) ;

for 1=1:nx/2, k(1)=C(1)*dk; k(nx/2+i1)=-kmax+(i1)*dk; end
k=sqrt(-1)*k;

% FFT and IFFT
fr=fft(f); fr=k.*ff; df=real (iffe(fr));

.. simple and elegant ...
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Dispersion

... With the usual Ansatz

n i (kjdx —nwdt )

pj = €
we obtain
8)2( p;\ _ _kzel(kjdx—a)ndt)
4 2 C()dt I (kjdx—wndt)

0; pt =——sin“—e
P dt? 2

.. leading to
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Dispersion

What are the consequences?

a) when dt << 1, sin't (kcdt/2) ~kcdt/2 and w/k=c
-> practically no dispersion
b) the argument of asin must be smaller than one.

K., Cdt

2
cdt/dx<2/7 ~0.636

<1
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Matlab code: lectsac.m

Source time function Gauss in space
1 - : 1 . :
0.5}
0.5}
o \}
-0.5 : : 0 :
0 200 400 600 0 10 20

3 point- 2 order; T=6.6 s, Error =50.8352%

1 T T T T T
0.5F
\
\

-0.5¢

0.8 0.9 1 1.1 1.2 1.3 1.4
Time (sec)

Example of acoustic 1D wave simulation.
FD 3 -point operator
red-analytic; blue-numerical; green-difference
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Results

Source time function Gauss in spac
1 ﬂ 1 : :
0.5¢
0.5¢
0\} V
-0.5 : : 0 :
0 200 400 600 0 10 20
5 point- 2 order; T=7.8 s, Error = 3.9286%
1 T T T T T
05¢F
0
-0.5¢
0.8 0.9 1 1.1 1.2 1.3 14
Time (sec)

Calculating synthetics

Example of acoustic 1D wave simulation.
FD 5 -point operator
red-analytic; blue-numerical; green-difference
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Results

Source time function Gauss in space

0.5}

-0.5 ' ' 0 :
0 200 400 600 0 10 20

Fourier - 2 order; T=35 s, Error = 2.72504%
1 T T T T T

o
&
I

o
ol
I

0.8 0.9 1 1.1 1.2 1.3 1.4
Time (sec)

Example of acoustic 1D wave simulation.
Fourier operator
red-analytic; blue-numerical; green-difference
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Results

Source time function Gauss in space
1 - . 1 : :
0.5
0.5}
O N J
-0.5 : : 0 :
0 200 400 600 0 10 20
3 point-2 order; T=7.8s, Error =156.038%
1 | | | | | |
N\
0.5} |
Ot - \ \
-05F
-1 i 1 1 1 1 1 1
0.8 0.9 1 1.1 1.2 1.3 1.4
Time (sec)

Example of acoustic 1D wave simulation.
FD 3 -point operator
red-analytic; blue-numerical; green-difference
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Results

Source time function Gauss in spac

0.5}

-0.5 : : 0 '
200 400 600 0 10 20

5 point- 2 order; T=7.8 s, Error =45.2487%
1 . :

O
&
I

0.8 0.9 1 1.1 1.2 1.3 1.4
Time (sec)

Example of acoustic 1D wave simulation.
FD 5 -point operator
red-analytic; blue-numerical; green-difference

Calculating synthetics Modern Seismology — Data processing and inversion 55



Results

Source time function Gauss in space

0.5}

-0.5 ' ' 0 '
200 400 600 0 10 20

Fourier - 2 order; T=34 s, Error =18.0134%
1 T T T T T T

o
&
)

O
(6]
)

0.8 0.9 1 1.1 1.2 1.3 1.4
Time (sec)

Example of acoustic 1D wave simulation.
Fourier operator
red-analytic; blue-numerical; green-difference
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Computation speed

Difference (%) between numerical and analytical solution
as a function of propagating frequency

160
140
120+
Simulation time
1001 [ 3 point 5.4s
80 M 5 point 7.8s
60- B Fourier 33.0s

40
20

5Hz 10 Hz 20 Hz
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Green's function

The concept of Green’s Functions (impulse responses) plays an
Important role in the solution of partial differential equations. It is also
useful for numerical solutions. Let us recall the acoustic wave equation

0;p =C Ap

with A being the Laplace operator. We now introduce a delta source in
space and time

0ip =05(x)5(t)+cAp

the formal solution to this equation is

(Full proof given in Aki and Richards, Quantitative Seismology, Freeman+Co, 1981, p. 65)
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Green's function?

1 S(t—|x|/c)

p(x,t) = P x|

In words this means (in 1D and 3D but not in 2D, why?) , that in
homogeneous media the same source time function which is input at the
source location will be recorded at a distance r, but with amplitude
proportional to 1/r.

An arbitrary source can evidently be constructed by summing up different
delta - solutions. Can we use this property in our numerical simulations?

What happens if we solve our numerical system with delta functions as
sources?
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Heaviside
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0.2
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- Source is a Delta \NV\MNWW\/W
- function in space and . 3 point operator
. time ] P P
I | 5 point operator
I | Fourier Method

, , , , Impulse response (analytical)
0 200 400 600 800 1000 _

_ Impulse response (numerical
Time steps
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FD vs. Fourier

3 point operator 5 point operator Fourier Method
10 . 10 . 10
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2-D acoustic wave propagation ac2d.m

B Editor - F:\Heiner\Matlab\c2d\acZd.m

File Edit Text Go Cell Tools Debug Desktop Window Help
N | 2R | & e Ff 88  BRE DA | e
& 22 i8| -[1o [+ | +[11 [x |«HF|O
36 % Tiwme =tepping
37
35 — for it=1:nt,
39
4n % FD
41
42 — dispisprintf (' Timwe step @ %1i',iti):
43
44 — for j=3:nx-2Z,
45 — for k=3:n=z-2Z,
46 — AZpx (J, k) =(-1/12%p{J+2, k) +3/3"p (J+1, k) -5/ 2%p (], k) +4/3%p (-1, k) -1/12%p(j-2, k) ) fdx"2;
47 — dZpe(J, k) =(-1/12%p (], k+2) +2/3%p (], k+1) -5/2%p (], k) +4/3%p (], k-1) -1/12%p(j, k-2) ) /dx"2;
a5 — end
43 — end
Lo — phew=2*p-poldto. o, ¥ (d2px+diZps) *dAde2; %Y tLime extrapolation
51 — pnew(nx/4,ns/4)=phnewvinx/4,ns/4) +3rc(it) *de2; % add source term
52 — pold=pn: ¥ time lewvels
53 — p=phew;
54
55 — if remi{it,isnap)== 0O,
5a ¥ Display
27 - imagesc (%, 2,0, axis squal
ta - title(' FI ')
59 - dramrnow
a0 — end
gl — end
62
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Snapshots und Seismogramme:
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Snapshots und Seismogramme:
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Summary: Fourier Method

The Fourier Method can be considered as the limit of the finite-difference
method as the length of the operator tends to the number of points along
a particular dimension.

The space derivatives are calculated in the wavenumber domain by
multiplication of the spectrum with ik. The inverse Fourier transform
results in an exact space derivative up to the Nyquist frequency.

The use of Fourier transform imposes some constraints on the
smoothness of the functions to be differentiated. Discontinuities lead to
Gibb’s phenomenon.

As the Fourier transform requires periodicity this technique is particular

useful where the physical problems are periodical (e.g. angular
derivatives in cylindrical problems).
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