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Short introduction
Finite-differences
Solutions of the acoustic wave equation

difference equations
Stability and numerical dispersion
The Fourier method 

Scope: Understand how to calculate 
synthetics using finite differences, we will 
later analyse the data (time series) in the 
spectral domain

Generating synthetic seismograms
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Example: seismic wave propagation

Why numerical methods

Generally heterogeneous
medium

Seismometers

explosion
… we need numerical 

solutions! … we need grids! …
And big computers …
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wave equation
- seismology
- acoustics
- oceanography 
- meteorology

Diffusion, advection, 
Reaction
- geodynamics
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- sedimentology
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Partial Differential Equations in Geophysics
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Finite differences

Finite volumes

- time-dependent PDEs
- seismic wave propagation
- geophysical fluid dynamics
- Maxwell’s equations
- Ground penetrating radar
-> robust, simple concept, easy to 

parallelize, regular grids, explicit method

Finite elements - static and time-dependent PDEs
- seismic wave propagation
- geophysical fluid dynamics
- all problems
-> implicit approach, matrix inversion, well founded,

irregular grids, more complex algorithms,     
engineering problems

- time-dependent PDEs
- seismic wave propagation
- mainly fluid dynamics
-> robust, simple concept, irregular grids, explicit  

method

Numerical methods: properties
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Particle-based 
methods  

Pseudospectral
methods

- lattice gas methods
- molecular dynamics
- granular problems
- fluid flow
- earthquake simulations
-> very heterogeneous problems, nonlinear problems

Boundary element
methods

- problems with boundaries (rupture)
- based on analytical solutions
- only discretization of planes 
--> good for problems with special boundary conditions

(rupture, cracks, etc)

- orthogonal basis functions, special case of FD
- spectral accuracy of space derivatives
- wave propagation, GPR
-> regular grids, explicit method, problems with  

strongly heterogeneous media

Other Numerical methods:
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What is a finite difference?

Common definitions of the derivative of f(x):

dx
xfdxxff

dxx
)()(lim
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−+
=∂

→
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dxxfxff

dxx
)()(lim

0

−−
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→
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dxxfdxxff
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−−+
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→

These are all correct definitions in the limit dx->0.

But we want dx to remain FINITE
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What is a finite difference?

The equivalent approximations of the derivatives are:

dx
xfdxxffx
)()( −+

≈∂

dx
dxxfxffx

)()( −−
≈∂

dx
dxxfdxxffx 2

)()( −−+
≈∂

forward difference

backward difference

centered difference

What about the second or higher derivatives?
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Higher Derivatives with FD

dx
xfdxxffx
)()( −+

≈∂ +

dx
dxxfxffx

)()( −−
≈∂ −

dx
ff

f xx
x

−+ ∂−∂
≈∂2

2
2 )()(2)(

dx
dxxfxfdxxffx

−+−+
≈∂

Second
Derivative

Other derivation via Taylor Series (Exercise).
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The big question:

How good are the FD approximations?

This leads us to Taylor series....
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Taylor Series

Taylor series are  expansions of a function f(x) for some 
finite distance dx to f(x+dx)

What happens, if we use this expression for

dx
xfdxxffx
)()( −+

≈∂ + ?

...)(
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' ±+±+±=± xfdxxfdxxfdxxfxfdxxf
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Taylor Series

⎥
⎦
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3

''
2

' xfdxxfdxxf
dxdx

xfdxxf

... that leads to :

The error of the first derivative using the forward
formulation is of order dx. 

Is this the case for other formulations of the derivative?
Let’s check!

)()(' dxOxf +=
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Taylor Series

⎥
⎦
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⎢
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!3

)(dx1)2/()2/( '''
3

' xfdxxf
dxdx

dxxfdxxf

... with the centered formulation we get:

The error of the first derivative using the centered 
approximation is of order dx2. 

This is an important results: it DOES matter which formulation
we use. The centered scheme is more accurate!

)()( 2' dxOxf +=
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Alternative Derivation of  FD

•
xj − 1 xj xj + 1 xj + 2 xj + 3

f xj( )

dx h

desired x location

What is the (approximate) value of the function or  its (first, 
second ..) derivative at the desired location ?

How can we calculate the weights for the neighboring points?

x

f(x)
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Alternative Derivation of  FD

•

Lets’ try Taylor’s Expansion

f x( )

dx

x

f(x)

dxxfxfdxxf )(')()( +=+
f x dx f x f x dx( ) ( ) ' ( )− = −

(1)
(2)

we are looking for something like

f x w f xi
j
i

index j
j L

( ) ( )
( )

,
( ) ( )≈ ∑

=1
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Alternative Derivation of  FD

a f a f a f dx+ ≈ + ' b f b f b f d x− ≈ − '+
⇒ + ≈ + + −+ −a f b f a b f a b f d x( ) ( ) '

Interpolation Derivative

a b− = 0 a b+ = 0

⇓ ⇓
f f f≈ +− +1

2
1
2 f f f

d x
' ≈ −+ −

2

5.0,5.0 21 == ww w
dx

w
dx1 2

1
2

1
2

= − =,

Interpolation weights Derivative weights
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Our first FD algorithm (ac1d.m) !
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+Δ=∂ P
 
pressure

c
 
acoustic wave speed
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acoustic wave speed

s sources

Problem:
 

Solve the 1D acoustic wave equation using the finite 
Difference method.
Problem:

 
Solve the 1D acoustic wave equation using the finite 

Difference method.

Solution:Solution:

[ ]
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Problems: Stability

[ ]
2

2

22

)()(2

)()(2)()(

sdtdttptp

dxxpxpdxxp
dx

dtcdttp

+−−+

−+−+=+

1≈≤ ε
dx
dtc

Stability:
 

Careful analysis using harmonic functions shows that 
a stable numerical calculation is subject to special conditions 
(conditional stability). This holds for many numerical problems.

Stability:
 

Careful analysis using harmonic functions shows that 
a stable numerical calculation is subject to special conditions 
(conditional stability). This holds for many numerical problems.
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The 1-D wave equation

Elastic parameters E(x) vary only in one direction.

)()( xxE μ=

)(2)()( xxxE μλ +=

shear waves

P waves

with the corresponding velocities

ρ
μ

=Sv

ρ
μλ 2+

=Pv P waves

shear waves

[ ]t)u(x,t)u(x,2
t xE(x))( ∂∂= xx ∂ρ



Modern Seismology – Data processing and inversion 19Calculating synthetics

The 1-D wave equation

τ
ρ xt x

u ∂=∂
)(

1
&

We want to avoid having to take derivatives of the material 
parameters (why?). This can be achieved by using a 
velocity-stress formulation, which leads to the following 
simultaneous equations:

uxE xt &∂=∂ )(τ

where

uxE x∂= )(τ stress
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The 1-D wave equation - FD scheme

dx),dt( ml

Let us try to use one of the previously introduced FD schemes:
central difference for space and forward difference for time

Discretization:  

dx space increment, dt time increment

mm-1 m+1

l

l+1
dt

dx

x

t
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The 1-D wave equation - FD scheme

... leading to the following scheme: 

dxdt
uu l

m
l
m

m

l
m

l
m

2
1 11

1
−+

+ −
=

− ττ
ρ

&&

dx
uuE

dt

l
m

l
m

m

l
m

l
m

2
11

1
−+

+ −
=

− &&ττ

forward

forward

centered

centered

like in the continuous case, we can make  the following Ansatz:

)exp(),( iwtikxAtxf −=

which in the discrete world is :

)dtdxexp( iwlikmAflm −=
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The 1-D wave equation - FD scheme

... in practical terms: first solve

l
m

l
m

l
m

m

l
m u

dx
dtu && +⎥

⎦

⎤
⎢
⎣

⎡ −
= −++

2
1 111 ττ
ρ

mm-1 m+1

l

l+1

then solve

l
m

l
m

l
m

m
l
m dx

uuEdt ττ +⎥
⎦

⎤
⎢
⎣

⎡ −
= −++

2
111 &&
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The 1-D wave equation - FD scheme

... let us assume a signal is propagating: 

)dtdxexp()( iwlikmAf l
m −=τ

)dtdxexp()( iwlikmBuf l
m −=&

dxdt
uu l

m
l
m
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l
m
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l
m

l
m

2
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1
−+
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=

− &&ττ

we now put this Ansatz into the following equations ...
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The 1-D wave equation - FD scheme

...after some algebra (hours later) ...

kdx
dx
dtEiiwdt

m

m sin1)exp( ⎟
⎠
⎞

⎜
⎝
⎛±=−

ρ

What does this result tell us about the numerical solution?

1)exp( >−iwdt

for any choice of dt and dx! So ω
 

must be complex.
But then for example:

)exp()exp()dtdxexp()( *ldtwikmAiwlikmAf l
m −=−=τ

will grow exponentially as, ω* is real.



Modern Seismology – Data processing and inversion 25Calculating synthetics

The 1-D wave equation - FD scheme

Can we find a scheme that works?
Let us use a centered scheme in
time: 

mm-1 m+1

l

l+1

l-1

dxdt
uu l

m
l
m

m

l
m

l
m

2
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=
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And again we use the following Ansatz to investigate the behavior
of the numerical solution:

)dtdxexp()( iwlikmAf l
m −=τ

)dtdxexp()( iwlikmBuf l
m −=&
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The 1-D wave equation - FD scheme

...again after some algebra (minutes later) ...

kdx
dx
dtEwdt

m

m sinsin ⎟
⎠
⎞

⎜
⎝
⎛±=

ρ

... has real solutions as long as 

1≤⎟
⎠
⎞

⎜
⎝
⎛

dx
dtE

m

m

ρ

... knowing that for example ... 

p
m

m vE
=

ρ
P-wave velocity
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The 1-D wave equation - FD scheme

... we arrive at maybe the most important result 
for FD schemes applied to the wave equation:

1
dx
dtv SP, ≤⎟

⎠
⎞

⎜
⎝
⎛

vP,S is the locally homogeneous velocity. This is called
a conditionally stable finite-difference scheme. Finding the
right combination of dt and dx for  a practical application, where
the velocities vary in the medium is one of the most important
tasks.
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The 1-D wave equation - FD scheme

There is an even better scheme!

mm-1 m+1

l

l+1

l-1

x

t

m+1/2m-1/2

l+1/2

l-1/2

This is called a 
staggered scheme

τ

u&
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The 1-D wave equation - FD scheme

... leading to the FD scheme: 

dxdt
uu l

m
l
m

m

l
m

l
m 2/12/1

2/12/1 1 −+
−+ −

=
− ττ

ρ
&&

dx
uuE

dt

l
m

l
m

m

l
m

l
m

2/12/1
1

2/1
2/1

1
2/1

++
+

+
+

+
+ −

=
− &&ττ

And again we use the following Ansatz to investigate the behaviour
of the numerical solution:

)dtdxexp()( iwlikmAf l
m −=τ

)dtdxexp()( iwlikmBuf l
m −=&

Find the corresponding stability condition (Exercise)!
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Staggered Grids

x

dx

dx

Centered

Staggered

Which scheme is more accurate?

centered:
dx

dxxfdxxffx 2
)()( −−+

≈∂

dx
dxxfdxxffx

)2/()2/( −−+
≈∂staggered:

Because the error is O(h2), the error of the centered scheme is 4 times larger.
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Numerical Dispersion

What does the stability criterion tell us about the 
quality of the numerical solution?

2
sin

2
sin 2/1 kdx

dx
dtEdt

m

m ⎟
⎠
⎞

⎜
⎝
⎛±= +

ρ
ω

To answer this we need the concept of phase velocity.
Remember we assumed a harmonic oscillation with frequency
ω

 
and wavenumber k, for example

))(sin())(sin()sin(),( txkt
k

xktkxtxy −=−=−=
ω

ωωω

where the phase velocity is 

k
cphase

ω
=
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Numerical Dispersion

2
sin

2
sin 2/1 kdx

dx
dtEdt

m

m ⎟
⎠
⎞

⎜
⎝
⎛±= +

ρ
ω

we can first assume that dt and dx are very small, in this case :

xx ≈)sin( for small x

then

cE
k m

m == +

ρ
ω 2/1 wave speed

for small dt and dx we simulate the correct velocity:
The scheme is convergent.
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Numerical Dispersion

2
sin

2
sin 2/1 kdx

dx
dtEdt

m

m ⎟
⎠
⎞

⎜
⎝
⎛±= +

ρ
ω

How about the general case?

λ
π2

=kusing we obtain

⎟
⎠
⎞

⎜
⎝
⎛== −

λ
π

π
λωλ dx

dx
dtc

dtk
c sinsin)( 0

1

This formula expresses our numerical phase velocity as a 
function of the wave speed and the propagating wavelength.
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Numerical Phase Velocity

True velocity 3000m/s
Curves are shown for 
varying stability.
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Numerical Dispersion

What we really measure in a seismogram is
the group velocity:

2/12

sin1

cos

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−

=
∂
∂

λ
π
λ
π

ω

dx
dx
dtc

dxc

k

This formula expresses our numerical group velocity as a 
function of the wave speed and the propagating wavelength.
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Numerical Group Velocity

True velocity 3000m/s
Curves are shown for 
varying stability.
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Numerical Dispersion

Blue - Phase velocity
Red - Group velocity
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Example

0 1000 2000 3000 4000 5000
0
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 Velocity 5 km/s 
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Numerical Dispersion
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FD Summary

Depending on the choice of the FD scheme 
(e.g. forward, backward, centered)  a numerical solution
may be more or less accurate. 

Explicit finite difference solutions to differential 
equations are often conditionally stable. The correct 
choice of the space or time increment is crucial to 
enable accurate solutions. 

Sometimes it is useful to employ so-called staggered 
grids where the fields are defined on seperate grids which
may improve the overall accuracy of the scheme.
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The Fourier Method

- What is a pseudo-spectral Method?

- Fourier Derivatives

- The Fast Fourier Transform (FFT)

- The Acoustic Wave Equation with the Fourier Method  

- Comparison with the Finite-Difference Method

- Dispersion and Stability of Fourier Solutions

The Fourier Method
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What is a pseudo-spectral Method?

Spectral solutions to time-dependent PDEs are formulated 
in the frequency-wavenumber domain and solutions are 
obtained in terms of spectra (e.g. seismograms). This 
technique is particularly interesting for geometries where 
partial solutions in the ω-k domain can be obtained 
analytically (e.g. for layered models). 

In the pseudo-spectral approach - in a finite-difference like 
manner - the PDEs are solved pointwise in physical space 
(x-t). However, the space derivatives are calculated using 
orthogonal functions (e.g. Fourier Integrals, Chebyshev 
polynomials). They are either evaluated using matrix- 
matrix multiplications or the fast Fourier transform (FFT).

Pseudospectral methods
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Fourier Derivatives

∫

∫
∞

∞−

−

∞

∞−

−

−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂=∂

dkekikF

dkekFxf

ikx

ikx
xx

)(

)()(

.. let us recall the definition of the derivative using Fourier integrals ...

... we could either ...

1) perform this calculation in the space domain by convolution

2) actually transform the function f(x) in the k-domain and back

Spectral derivative
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Acoustic Wave Equation - Fourier Method

let us take the acoustic wave equation with variable density

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂=∂ pp

c xxt ρρ
11 2

2

the left hand side will be expressed with our 
standard centered finite-difference approach 

[ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂=−+−+ pdttptpdttp

dtc xx ρρ
1)()(2)(1

22

... leading to the extrapolation scheme ... 

Acoustic wave equation
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Acoustic Wave Equation - Fourier Method

where the space derivatives will be calculated using the Fourier Method. 
The highlighted term will be calculated as follows:

)()(21)( 22 dttptppdtcdttp xx −−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂=+

ρ
ρ

n
jx

nnn
j PPikPP ∂→→→→→ − 1FFTˆˆFFT υυυ

multiply by 1/ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂∂→→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂→⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂→→∂ − n

jxx

n

x

n

x
n
jx PPikPP

ρρρρ υ
υ

υ

1FFTˆ1ˆ1FFT1 1

... then extrapolate ...

… pseudospectral approximation …
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Acoustic Wave Equation - 3D
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⎜⎜
⎝

⎛
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.. where the following algorithm applies to each space dimension ...

… pseudospectral approximation …
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Comparison with finite differences - Algorithm

let us compare the core of the algorithm - the calculation of the derivative
(Matlab code)

function df=fder1d(f,dx,nop)
% fDER1D(f,dx,nop) finite difference
% second derivative

nx=max(size(f));

n2=(nop-1)/2;

if nop==3; d=[1 -2 1]/dx^2; end
if nop==5; d=[-1/12 4/3 -5/2 4/3 -1/12]/dx^2; end

df=[1:nx]*0;

for i=1:nop;
df=df+d(i).*cshift1d(f,-n2+(i-1));
end

Matlab code
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Comparison with finite differences - Algorithm

... and the first derivative using FFTs ... 

function df=sder1d(f,dx)
% SDER1D(f,dx) spectral derivative of vector
nx=max(size(f));

% initialize k
kmax=pi/dx;
dk=kmax/(nx/2);
for i=1:nx/2, k(i)=(i)*dk; k(nx/2+i)=-kmax+(i)*dk; end
k=sqrt(-1)*k;

% FFT and IFFT
ff=fft(f); ff=k.*ff; df=real(ifft(ff));

.. simple and elegant ...

Matlab code
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Fourier Method - Dispersion and Stability

... with the usual Ansatz

)( dtnkjdxin
j ep ω−=

we obtain

)(22 ndtkjdxin
jx ekp ω−−=∂

)(2
2

2

2
sin4 ndtkjdxin

jt edt
dt

p ωω −−=∂

... leading to 

2
sin2 dt

cdt
k ω
=

Dispersion
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Fourier Method - Dispersion and Stability

What are the consequences?

a) when dt << 1, sin-1 (kcdt/2) ≈kcdt/2 and w/k=c
-> practically no dispersion

b) the argument of asin must be smaller than one.

2
sin2 dt

cdt
k ω
= )

2
(sin2 1 kcdt

dt
−=ω

636.0/2/

1
2

max

≈≤

≤

πdxcdt

cdtk

Dispersion
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Fourier Method - Comparison with FD - 10Hz

Example of acoustic 1D wave simulation.
FD 3 -point operator

red-analytic; blue-numerical; green-difference

0 200 400 600
-0.5

0

0.5

1
Source time function

0 10 20
0

0.5

1
Gauss in space

0.8 0.9 1 1.1 1.2 1.3 1.4

-0.5

0

0.5

1

 Time (sec) 

 3 point - 2 order; T = 6.6 s, Error = 50.8352% 

Matlab code: lectsac.m
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Fourier Method - Comparison with FD - 10Hz

Example of acoustic 1D wave simulation.
FD 5 -point operator

red-analytic; blue-numerical; green-difference
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 5 point - 2 order; T = 7.8 s, Error = 3.9286% 

Results
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Fourier Method - Comparison with FD - 10Hz

Example of acoustic 1D wave simulation.
Fourier operator

red-analytic; blue-numerical; green-difference
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 Fourier - 2 order; T = 35 s, Error = 2.72504% 

Results
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Fourier Method - Comparison with FD - 20Hz

Example of acoustic 1D wave simulation.
FD 3 -point operator

red-analytic; blue-numerical; green-difference
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 3 point - 2 order; T = 7.8 s, Error = 156.038% 

Results
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Fourier Method - Comparison with FD - 20Hz

Example of acoustic 1D wave simulation.
FD 5 -point operator

red-analytic; blue-numerical; green-difference
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 5 point - 2 order; T = 7.8 s, Error = 45.2487% 

Results
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Fourier Method - Comparison with FD - 20Hz

Example of acoustic 1D wave simulation.
Fourier operator

red-analytic; blue-numerical; green-difference
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 Fourier - 2 order; T = 34 s, Error = 18.0134% 

Results
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Fourier Method - Comparison with FD - Table
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Numerical solutions and Green’s Functions

The concept of Green’s Functions (impulse responses) plays an 
important role in the solution of partial differential equations. It is also 

useful for numerical solutions. Let us recall the acoustic wave equation

pcpt Δ=∂ 22

with Δ
 

being the Laplace operator. We now introduce a delta source in
space and time

pctxpt Δ+=∂ 22 )()( δδ

the formal solution to this equation is

x
cxt

c
txp

)/(
4

1),( 2

−
=

δ
π

(Full proof given in Aki and Richards, Quantitative Seismology, Freeman+Co, 1981, p. 65)

Green‘s function
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Numerical solutions and Green’s Functions

In words this means (in 1D and 3D but not in 2D, why?) , that in 
homogeneous media the same source time function which is input at the 

source location will be recorded at a distance r, but with amplitude 
proportional to 1/r.

An arbitrary source can evidently be constructed by summing up different 
delta - solutions. Can we use this property in our numerical simulations?

What happens if we solve our numerical system with delta functions as 
sources?

x
cxt

c
txp

)/(
4

1),( 2

−
=

δ
π

Green‘s function?
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Numerical solutions and Green’s Functions
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2-D acoustic wave propagation ac2d.m
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Snapshots und Seismogramme: 
Niedriggeschwindigkeitsschicht 
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Snapshots und Seismogramme: 
Störungszone (Verwerfung) 
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Snapshots und Seismogramme: 
Punktstreuung 
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Fourier Method - Summary

The Fourier Method can be considered as the limit of the finite-difference 
method as the length of the operator tends to the number of points along 
a particular dimension. 

The space derivatives are calculated in the wavenumber domain by 
multiplication of the spectrum with ik. The inverse Fourier transform 
results in an exact space derivative up to the Nyquist frequency.

The use of Fourier transform imposes some constraints on the 
smoothness of the functions to be differentiated. Discontinuities lead to 
Gibb’s phenomenon. 

As the Fourier transform requires periodicity this technique is particular 
useful where the physical problems are periodical (e.g. angular 
derivatives in cylindrical problems).

Summary: Fourier Method
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