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Seismic Instruments

The seismometer as a forced oscillator
The seismometer equation
Transfer function, resonance
Broadband sensors, accelerometers
Dynamic range and generator constant

Rotation sensors
Strainmeters
Tiltmeters
Global Positioning System (GPS)
Ocean Bottom Seismometers (OBS)

Data examples, measurement principles, interconnections, accuracy, 
domains of application
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Spring-mass seismometer 
vertical motion
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Seismometer – The basic principles
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The motion of the seismometer mass as a 
function of the ground displacement is given 
through a  differential equation resulting from the 
equilibrium of forces (in rest):

Fspring

 

+ Ffriction

 

+  Fgravity

 

= 0

for example

Fsprin

 

=-k x, k spring constant

Ffriction

 

=-D x, D friction coefficient

Fgravity

 

=-mu, m seismometer mass 
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Seismometer – The basic principles
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using the notation introduced above the 
equation of motion for the mass is
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From this we learn that:

- for slow movements  the acceleration and   
velocity becomes negligible, the  
seismometer records ground acceleration

- for fast movements the acceleration of the  
mass dominates and the seismometer  
records ground displacement
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A simple finite-difference solution of the seismometer equation
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Seismometer – examples
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Varying damping constant
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Seismometer – CalibrationSeismometer – Calibration
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1. How can we determine the damping 
properties from the observed behaviour of the 
seismometer?

2. How does the seismometer amplify the 
ground motion? Is this amplification frequency 
dependent?

We need to answer these question in order to 
determine what we really want to know:
The ground motion.
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Seismometer – Release TestSeismometer – Release Test
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How can we determine the damping 
properties from the observed behaviour of 
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We release the seismometer mass from a given initial 
position and let it swing. The behaviour depends on the 
relation between the frequency of the spring and the damping 
parameter. If the seismometers oscillates, we can determine 
the damping coefficient h.
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Seismometer – Release TestSeismometer – Release Test
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Seismometer – Release TestSeismometer – Release Test
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The damping constant h can then be determined through:
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Seismometer – FrequencySeismometer – Frequency
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The period T with which the seismometer mass 
oscillates depends on h and (for h<1) is always 
larger than the period of the spring T0
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Seismometer – Response FunctionSeismometer – Response Function
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2. How does the seismometer amplify the ground motion? 
Is this amplification frequency dependent? 

To answer this question we excite our seismometer with a 
monofrequent

 
signal and record the response of the 

seismometer:

the amplitude response
 

Ar

 

of the seismometer depends on 
the frequency of the seismometer w0

 

, the frequency of the 
excitation w and the damping constant h:
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Amplitude Response Function - Resonance
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Phase Response

Clearly, the amplitude and phase 
response of the seismometer mass 
leads to a severe distortion of the 
original input signal (i.e., ground 
motion). 

Before analysing seismic signals this 
distortion has to be revered:

-> Instrument correction
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Seismometer as a Filter 
Restitution -> Instrument correction
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Electromagnetic Seismograph

Electromagnetic seismographs 
measure ground velocity
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Seismic signal and noise

The observation of seismic noise had a strong 
impact on the design of seismic instruments, 
the separation into short-period and long-period 
instruments and eventually to the development 
of broadband sensors.
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Seismic noise
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Seismometer Bandwidth

Today most of the 
sensors of permanent 
and temporary seismic 
networks are broadband 
instruments such as the 
STS1+2. 

Short period instruments 
are used for local 
seismic events (e.g., the 
Bavarian seismic 
network).
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The STS-2 Seismometer

www.kinemetrics.com
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Accelerometer 
force-balance principle

Feedback circuit of a force-balance accelerometer (FBA). The motion 
of the mass is controlled by the sum of two forces: the inertial force 
due to ground acceleration, and the negative feedback force. The 
electronic circuit adjusts the feedback force so that the two forces very 
nearly cancel. (Source Stuttgart University)
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Accelerometer

www.kinemetrics.com
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Observed amplitudes
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(Relative) Dynamic range

Dynamic Range DR: the ratio between largest measurable 
amplitude Amax to the smallest measurable amplitude Amin . 

DR = Vmax /Vmin
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(Relative) Dynamic range
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Bits, counts, dynamic range
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Dynamic range of a seismometer 
ADC (analog-digital-converter)

A n-bit
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intervals
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 an analog signal. 

Example: 

A 24-bit digitizer
 

has 5V maximum
 

output
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 (full-scale-voltage)
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least significant

 
bit
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lsb
 

= 5V / 2n-1 = 0.6 microV

Generator constant
 

STS-2: 750 Vs/m
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peak
 

ground
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Rotation: the curl of the wavefield
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The ring laser at Wettzell

ring laser
Data accessible

 

at www.rotational-seismology.org
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How can we observe rotations? 
-> ring laser

Ring laser

 

technology developed

 

by

 

the

 

groups

 
at the

 

Technical

 

University Munich and the

 
University of Christchurch, NZ
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Ring laser – the principle
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The Sagnac Frequency 
(schematically)
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The Pinon Flat Observatory sensor
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PFO
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PFO
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PFO
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Rotation from seismic arrays? 
... by finite differencing ...
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Synthetics

Uniformity of rotation rate across array

Real data
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Direct vs. array-derived rotation
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Array vs. direct measurements

Wassermann et al., 2009, BSSA 
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A look to the future 
seismic tomography with rotations

From Bernauer et al., Geophysics, 2009
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Strain sensors 
Network in EarthScope
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Pinon Flat Observatory, CA
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Strain meter principle
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Interferometer
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Strain - Observations
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Strain vs. translations
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Strain vs. translations 
(velocity v, acceleration a)
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Tiltmeters

• Tiltmeters are designed to 
measure changes in the angle 
of the surface normal 

• These changes are particularly 
important near volcanoes, or 
in structural engineering

• In the seismic frequency band 
tiltmeters are sensitive to 
transverse acceleration Source: USGS
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Tilt vs. horizontal acceleration 
Earthquake recorded at Wettzell, Germany
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GPS Sensor Networks
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San Francisco GPS Network

Co-seismic displacement 
measured in California 
during an earthquake. 

(Source: UC Berkeley
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Ocean Bottom Seismometers

Source: USGS

The OB Unit is equipped with a 
broadband Güralp seismometer 
and a Differential Pressure Gauge 
(from Scripps Institution of 
Oceanography). Additionally, it 
measures the absolute pressure 
with a Paroscientific Intelligent 
Depth sensor, manufactured by 
DIGIQUARZ. 

Source: GFZ Potsdam
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Other sensors and curiosities

• Gravimeters
• Ground water level
• Electromagnetic measurements 

(ionosphere)
• Infrasound measurements
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Summary

• Seismometers are forced oscillators, recorded 
seismograms have to be corrected for the instrument 
response

• Strains and rotations are usually measured with optical 
interferometry, the accuracy is lower than for standard 
seismometers

• The goal in seismology is to measure with one 
instrument a broad frequency and amplitude range 
(broadband instruments)

• Cross-axis sensitivity is an important current issue 
(translation – rotation – tilt)
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