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Some basic maths for seismic data processing and inverse problems 
(Refreshement only!)

Complex Numbers
Vectors

Linear vector spaces
Linear systems

Matrices
Determinants
Eigenvalue problems
Singular values
Matrix inversion

Series
Taylor
Fourier

Delta Function

Fourier integrals

The idea is to illustrate 
these mathematical tools 
with examples from 
seismology
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Complex numbers
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Complex numbers 
conjugate, etc.
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Complex numbers 
seismological applications

Discretizing signals, description with eiwt

Poles and zeros for filter descriptions
Elastic plane waves
Analysis of numerical approximations
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Vectors and Matrices

For discrete linear inverse problems we will need the concept of
linear vector spaces.

 
The generalization of the concept of size of a vector 

to matrices and function will be extremely useful for inverse problems.

Definition: Linear Vector Space.
 

A linear vector space over a field F of
scalars is a set of elements V together with a function called addition
from VxV

 

into V and a function called scalar multiplication from FxV
 

into 
V satisfying the following conditions for all x,y,z ∈

 

V and all a,b ∈
 

F 

1.
 

(x+y)+z = x+(y+z)
2.

 

x+y = y+x
3.

 

There is an element 0 in V such that x+0=x for all x ∈
 

V 
4.

 

For each x ∈
 

V there is an element -x ∈
 

V such that x+(-x)=0.
5.

 

a(x+y)= a x+ a y
6.

 

(a + b )x= a x+ bx
7.

 

a(b x)= ab
 

x
8.

 

1x=x



Computational Geophysics and Data Analysis 6Mathematical foundations

Matrix Algebra – Linear Systems

Linear system of algebraic equations
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... where the x1

 

, x2

 

, ... , xn

 

are the unknowns ...
in matrix form 

bAx =
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Matrix Algebra – Linear Systems

where
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A

 
is a nxn (square) matrix, and 

x
 

and b
 

are column vectors of 
dimension n
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Matrix Algebra – Vectors

Row vectors                          Column vectors
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Matrix addition and subtraction

ijijij bad −=−= withBAD
Matrix multiplication
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where A
 

(size
 

lxm) and B
 

(size mxn) and i=1,2,...,l and j=1,2,...,n.
Note that in general AB≠BA but

 
(AB)C=A(BC)
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Matrix Algebra – Special
Transpose of a matrix                    Symmetric matrix
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Matrix Algebra – Orthogonal

Orthogonal matrices

n
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a matrix is Q (nxn) is said to be 
orthogonal if 

... and each column is an orthonormal
 vector 1=iiqq

... examples:

it is easy to show that : n
TT IQQQQ ==

if orthogonal matrices operate on 
vectors their size (the result of their 
inner product x.x) does not change  ->  
Rotation

xxQxQx TT =)()(
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Matrix and Vector Norms

How can we compare the size of vectors, matrices (and functions!)?
For scalars it is easy (absolute value). The generalization of this concept 
to vectors, matrices and functions is called a norm. Formally the norm is 
a function from the space of vectors into the space of scalars denoted by

(.)

with the following properties:

Definition: Norms.
1.

 
||v|| > 0 for any v∈0 and ||v|| = 0 implies v=0 

2.
 

||av||=|a| ||v||
3.

 
||u+v||≤||v||+||u||    (Triangle inequality)

We will only deal with the so-called  lp
 

Norm.
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The lp -Norm

The lp
 

-
 

Norm for a vector x is defined as (p≥1):
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for p=2 we have the ordinary euclidian

 
norm:

- for p=
 

∞
 

the definition is

- a norm for matrices is induced via 

- for l2
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Matrix Algebra – Determinants

The determinant of a square matrix A is a scalar number 
denoted det

 
(A) or |A|, for example
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Matrix Algebra – Inversion

A square matrix is singular if det
 

A=0.
 

This usually indicates 
problems with the system (non-uniqueness, linear dependence, 

degeneracy ..)

Matrix Inversion

IAAAA -11 ==−
For a square and non-singular 
matrix A

 
its inverse is defined 

such as

The cofactor matrix
 

C of 
matrix A is given by ijMji+−= )1(ijC

where Mij

 

is the determinant of 
the matrix obtained by eliminating 
the i-th

 
row and the j-th

 
column of 

A.
The inverse of

 
A is then given by

1-1-1

1

AB(AB)

CA

=

=

−

− T

Adet
1
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Matrix Algebra – Solution techniques

... the solution to a linear system of equations is the given by

bAx -1=
The main task in solving a linear system of equations is finding

 the inverse of the  coefficient matrix A.

Solution techniques are e.g.

Gauss elimination methods
Iterative methods

A square matrix is said to be positive definite
 

if for any non-zero 
vector x 

... positive definite matrices are non-singular 

0AxxT >=
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Eigenvalue problems

… one of the most important tools in stress, deformation and wave 
problems!

It is a simple geometrical question: find me the directions in which a 
square matrix does not change the orientation of a vector … and 
find me the scaling …

.. the rest on the board …

xAx λ=
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Matrices –Systems of equations 
Seismological applications

Stress and strain tensors
Calculating interpolation or differential 
operators for finite-difference methods
Eigenvectors and eigenvalues for 
deformation and stress problems (e.g. 
boreholes)
Norm: how to compare data with theory
Matrix inversion: solving for tomographic
images
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The power of series

Many (mildly or wildly nonlinear) physical systems 
are transformed to linear systems by using Taylor 
series
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… and Fourier

Let alone the power of Fourier series assuming a 
periodic function …. (here: symmetric, zero at 
both ends)
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Series –Taylor and Fourier 
Seismological applications

Well: any Fouriertransformation, filtering
Approximating source input functions (e.g., 
step functions)
Numerical operators (“Taylor operators”)
Solutions to wave equations
Linearization of strain - deformation
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The Delta function

… so weird but so useful …
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Delta function – generating series
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The delta function 
Seismological applications

As input to any system (the Earth, a 
seismometers …)
As description for seismic source signals in 
time and space, e.g., with Mij the source 
moment tensor

As input to any linear system -> response 
Function, Green’s function

)()(),( 00 xxMx −−= δδ ttts
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Fourier Integrals

The basis for the spectral analysis (described in the continuous 
world) is the transform pair:
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For actual data analysis it is the discrete version that plays the most 
important role. 
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Complex fourier spectrum

The complex spectrum can be described as
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… here A is the amplitude spectrum and Φ
 

is the phase spectrum
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The Fourier transform 
Seismological applications

• Any filtering … low-, high-, bandpass
• Generation of random media
• Data analysis for periodic contributions 

• Tidal forcing
• Earth’s rotation
• Electromagnetic noise
• Day-night variations

• Pseudospectral methods for function 
approximation and derivatives 
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