Some basic maths for seismic data processing and inverse problems

» Complex Numbers

» Vectors
» Linear vector spaces
» Linear systems

» Matrices
» Determinants
» Eigenvalue problems
» Singular values
» Matrix inversion

(Refreshement only!)

> Series
» Taylor
> Fourier

> Delta Function

» Fourier integrals

The idea is to illustrate
these mathematical tools
with examples from
seismology
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Complex numbers

z=a+ib=re"” =r(cos¢+isin ¢)

Figure A.2-1: Representation of a complex number.
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Mathematical foundations Computational Geophysics and Data Analysis 2



Complex numbers
conjugate, etc.

z¥=a—-1ib =r(Cos ¢ —isin @)
= 7rCos —¢ —risin( —g) =r "
‘22‘2 zz*=(a+ib)a—-ib)=r"
cos ¢ = (e +e )2
sin ¢ = (e’ —e ")/ 2i
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Complex numbers

seismological applications

> Discretizing signals, description with et
» Poles and zeros for filter descriptions

» Elastic plane waves

» Analysis of numerical approximations
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u;(x;,t) = A4, explik(a,x, —ct)]
u(x,z) = Aexpl[ikx — wr]
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Vectors and Matrices

For discrete linear inverse problems we will need the concept of
linear vector spaces. The generalization of the concept of size of a vector
to matrices and function will be extremely useful for inverse problems.

Definition: Linear Vector Space. A linear vector space over a field F of
scalars is a set of elements V together with a function called addition
from VxV into V and a function called scalar multiplication from FxV into

V satisfying the following conditions for all x,y,z € Vand alla,b € F

(x+y)+z = x+(y+2)

X+y = y+x

There is an element 0 in V such that x+0=x for all x € V

For each x € V there is an element -x € V such that x+(-x)=0.
a(xty)=ax+ay

(a+ b )x=a x+ bx

a(b x)=ab x

1X=X

NSO R DN~
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Matrix Algebra — Linear Systems

Linear system of algebraic equations

a, X, +a,x,+..+a, x =b
A, X, +aX, +...+a, x, =b,

a . x,+a. ,x,+..+a x =b

n

... Where the x4, x,, ..., X, are the unknowns ...
in matrix form

AXx =b
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Matrix Algebra — Linear Systems

AX =D
where
_ _ SN
dip Ay dy, X4
a a a X
21 22 11 2
A:EJ: X=1{x}=4"71
_anl an2 ann_ \an
4 3
b
b A is a nxn (square) matrix, and
b = {b. } —J 2\ x and b are column vectors of
: : dimension n
\bn)
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Matrix Algebra — Vectors

Row vectors Column vectors
( A
W,
Vz[v1 v, v3] W= < w, ¢
%Y
_ 3)

Matrix addition and subtraction
C=A+B with Cz'j:aij_l_bij
D=A-B with d,=a,—b,

ij ij

Matrix multiplication

C=AB with ¢, =Y aub,
k=1

where A (size /xm) and B (size mxn) and /=7,2,...,/and j=1,2,...,n.
Note that in general AB+BA but (AB)C=A(BC)
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Matrix Algebra — Special

Transpose of a matrix Symmetric matrix

_ T _ T
A-le]  AT-[a)]
(AB)' =B'A’ d; =d,

|[dentity matrix

1 O .--- 0

_ 0 1 .- 0

_0 o ... ]__
with Al=A, Ix=x
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Matrix Algebra — Orthogonal

Orthogonal matrices

a matrix is Q (nxn) is said to be T _
orthogonal if Q Q ]”
... and each column is an orthonormal gq =1
vector P

| 0 111 -1
... examples: R

J2|1 1

o T _ r_ b
it is easy to show that : Q Q — QQ — 1,
if orthogonal matrices operate on
yeotors their size (the result of their (QX)T(QX) — x! x
inner product x.x) does not change ->
Rotation
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Matrix and Vector Norms

How can we compare the size of vectors, matrices (and functions!)?

For scalars it is easy (absolute value). The generalization of this concept
to vectors, matrices and functions is called a norm. Formally the norm is

a function from the space of vectors into the space of scalars denoted by

O]

with the following properties:

Definition: Norms.

1. J)vl/ >0 for any ve0 and [/vl/ = 0 implies v=0
2. [lavil=/al vl

3. JJutviKIVI[+/lufl  (Triangle inequality)

We will only deal with the so-called /, Norm.
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The Ip—Norm

The |- Norm for a vector x is defined as (p=1):

Examples:

<,

n

-3

=

p
X.

l

P

1/ p

- for p=2 we have the ordinary euclidian norm:

- for p= « the definition is

- a norm for matrices is induced via

- for |, this means

||A]|,=maximum eigenvalue of ATA
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4] =

| T
— VX X

] W
M

= MaxX|x

1<i<n
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Matrix Algebra — Determinants

The determinant of a square matrix A is a scalar number
denoted det (A) or |A|, for example

a b
det =ad —bc
c d

or

detl a,, a,, a,;

= 110y Qg3 T A1y Ay3Qgy + A3y A3y — A11Ao3Uay — AUy A33 — A3y, A3,
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Matrix Algebra — Inversion

A square matrix is singular if det A=0. This usually indicates
problems with the system (non-uniqueness, linear dependence,
degeneracy ..)

Matrix Inversion

For a square and non-singular

matrix A its inverse is defined AAL=A2A =
such as
The cofactor matrix C of Cij — (—]_)”j |\/|ij

matrix A is given by

where M is the determinant of 1

the matrix obtained by eliminating Al=—"_T
the /th row and the jth column of det 4

A. . . . 1 _p-1p-1
The inverse of A is then given by (AB) =B~A

Mathematical foundations Computational Geophysics and Data Analysis 14



Matrix Algebra — Solution techniques

... the solution to a linear system of equations is the given by

X=A"D

The main task in solving a linear system of equations is finding
the inverse of the coefficient matrix A.

Solution techniques are e.g.

Gauss elimination methods
lterative methods

A square matrix is said to be positive definite if for any non-zero
vector x

X' =AX>0

... positive definite matrices are non-singular
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Eigenvalue problems

... one of the most important tools in stress, deformation and wave
problems!

It is a simple geometrical question: find me the directions in which a
square matrix does not change the orientation of a vector ... and
find me the scaling ...

AX = AX

.. the rest on the board ...
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Matrices —Systems of equations

Seismological applications

» Stress and strain tensors

» Calculating interpolation or differential
operators for finite-difference methods

» Eigenvectors and eigenvalues for
deformation and stress problems (e.g.
boreholes)

» Norm: how to compare data with theory

» Matrix inversion: solving for tomographic
Images
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The power of series

Many (mildly or wildly nonlinear) physical systems
are transformed to linear systems by using Taylor
series

f(x+dx) =f()c)+f'a’x#—%f”a’x2 +%f”'dx3+...
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... and Fourier

Let alone the power of Fourier series assuming a

periodic function .... (here: symmetric, zero at
both ends)

. n
f(x)=a, +Zn: a, Sln(Zﬂxzj n=100

lL
aozzjf(x)dx

=—jf(x)S|n—dx
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Series —Taylor and Fourier

Seismological applications

» Well: any Fouriertransformation, filtering

» Approximating source input functions (e.g.,
step functions)

» Numerical operators (“Taylor operators”)

» Solutions to wave eguations

» Linearization of strain - deformation
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The Delta function

.. SO weird but so useful ...

| S5(0)f (t)dt = £(0)

U Ss(W)dt=1  ,8(t)=0  fiir t#0

f(@)o(t—a) = f(a)
o(at) =i5(t)

a

1 K it
5(0:5_[0 e dew
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Delta function — generating series
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The delta function

Seismological applications

» As input to any system (the Earth, a
seismometers ...)

» As description for seismic source signals in
time and space, e.g., with M; the source
moment tensor

s(X,t)=Mo(t—1t,)0(X—X,)

» As Iinput to any linear system -> response
Function, Green’s function
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Fourier Integrals

The basis for the spectral analysis (described in the continuous
world) is the transform pair:

1 o
f(t):gjw F(w)e“dw
Flo) = j F()e dt

For actual data analysis it is the discrete version that plays the most
important role.
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Complex fourier spectrum

The complex spectrum can be described as

F(w) = R(w) +il (w)
= A(w)e"

... here A is the amplitude spectrum and @ is the phase spectrum
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The Fourier transform

Seismological applications

« Any filtering ... low-, high-, bandpass

e Generation of random media

« Data analysis for periodic contributions
« Tidal forcing
e Earth’s rotation
« Electromagnetic noise
o Day-night variations

* Pseudospectral methods for function
approximation and derivatives
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