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2-D random media with ellipsoidal autocorrelation functions

L. T. IkelIe*, S. K. Yung*, and F. Daube‡

ABSTRACT

The integration of surface seismic data with bore-
hole seismic data and well-log data requires a model of
the earth which can explain all these measurements.
We have chosen a model that consists of large and
small scale inhomogeneities: the large scale inhomo-
geneities are the mean characteristics of the earth
while the small scale inhomogeneities are fluctuations
from these mean values.

In this paper, we consider a two-dimensional (2-D)
model where the large scale inhomogeneities are rep-
resented by a homogeneous medium and small scale
inhomogeneities are randomly distributed inside the
homogeneous medium. The random distribution is
characterized by an ellipsoidal autocorrelation func-
tion in the medium properties. The ellipsoidal auto-
correlation function allows the parameterization of
small scale inhomogeneities by two independent auto-
correlation lengths a and b in the horizontal and
the vertical Cartesian directions, respectively. Thus
we can describe media in which the inhomogeneities
are isotropic (a = b), or elongated in a direction
parallel to either of the two Cartesian directions
(a > b, a < b), or even taken to infinite extent in
either dimension (e.g., a = infinity, b = finite: a 1-D
medium) by the appropriate choice of the autocorre-
lation lengths.

We also examine the response of seismic waves to

this form of inhomogeneity. To do this in an accurate
way, we used the finite-difference technique to simu-
late seismic waves. Special care is taken to minimize
errors due to grid dispersion and grid anisotropy. The
source-receiver configuration consists of receivers dis-
tributed along a quarter of a circle centered at the
source point, so that the angle between the source-
receiver direction and the vertical Cartesian direction
varies from 0 to 90 degrees.

Pulse broadening, coda, and anisotropy (transverse
isotropy) due to small scale inhomogeneities are clearly
apparent in the synthetic seismograms. These properties
can be recast as functions of the aspect ratio  = b/a) of
the medium, especially the anisotropy and coda. For
media with zero aspect ratio (1-D media), the coda
energy is dominant at large angles. The coda energy
gradually becomes uniformly distributed with respect to
angle as the aspect ratio increases to unity.

Our numerical results also suggest that, for small
values of aspect ratio,the anisotropic behavior
(i.e., the variations of pulse arrival times with angle)
of the 2-D random media is similar to that of a
1-D random medium. The arrival times agree with
the effective medium theory. As the aspect ratio
increases to unity, the variations of pulse arrival times
with angle gradually become isotropic. To retain the
anisotropic behavior beyond the geometrical critical
angle, we have used a low-frequency pulse with a
nonzero dc component.

INTRODUCTION

In seismic exploration, the earth is very often approxi-

significant amount of variability observed in seismic field
data. One alternative is a model that combines large and
small scale inhomogeneities. The large scale inhomogene-

mated by a series of large homogeneous layers. Such modelsities are the mean characteristics of the earth while the small
do not take into account small scale inhomogeneities asscale inhomogeneities are fluctuations from these mean
revealed by well logs and core samples. Furthermore, syn-values. The small scale inhomogeneities are too numerous
thetic seismic data made from such models cannot explain aand too irregularly distributed, so the only information we
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can hope to reconstruct from seismic data are their statistical
properties. Therefore we will represent the small scale
inhomogeneities as a random process in space.

It is not the first time that a statistical representation is
used to describe small scale inhomogeneities in seismologi-
cal studies (Aki, 1969; O’Doherty and Anstey, 1971; Godfrey
et al., 1980; Richards and Menke, 1983; Frankel and
Clayton, 1984 and 1986; Lenoach, 1987; Burridge and
Chang, 1988, 1989; Stanke and Burridge, 1990; Toksöz and
Charette, 1990; de Hoop et al., 1991a and b; Kerner, 1992).
These works have covered two types of models of small
scale inhomogeneities: the finely layered medium and the
two-dimensional/three-dimensional (2-D/3-D) isotropic ran-
dom medium. The finely layered medium consists of a stack
of a large number of plane homogeneous layers. The layers
are also assumed fine, even finer than the actual sonic log
resolution (de Hoop et al.,1991a). The advantage of this
model is that the properties of rock formations can be de-
scribed as measured by density and sonic logs, especially if it is
assumed that layers are isotropic elastic. But the finely layered
model is often not realistic for simulating seismic data because
seismic waves see inhomogeneities away from the wellbore,
over a distance corresponding to the Fresnel zone.

The 2-D random medium with an isotropic autocorrelation
function has also been used to describe the small scale
inhomogeneities (Frankel and Clayton, 1984). Here the
inhomogeneities are isotropic and do not have any preferred
orientation. It is probably realistic to consider, for the entire
crust of the earth, that small scale inhomogeneities do not
have a preferred orientation. In seismic exploration, we are
interested in inhomogeneities in a particular rock or in a
small region of the crust. For a rock or a small region of the
crust, the 2-D or 3-D random medium with an isotropic
autocorrelation is a restrictive model. One can imagine a
rock composed of grains with systematic orientation or a
region of the crust where the deposition of lenses with
different lithologies has produced inhomogeneities with a
preferred orientation. Our objective here is to propose a
description of small scale inhomogeneities that can take into
account the orientation of inhomogeneities. To achieve this
objective, we will introduce a 2-D random medium with an
ellipsoidal autocorrelation function. The interesting aspect
of ellipsoidal autocorrelation functions is that they allow us
to describe media in which the inhomogeneities are isotro-
pic, elongated in a particular direction, or even flattened.

To take advantage of the small scale inhomogeneities in
the interpretation of seismic data, we need to add a new
intuition for small scale inhomogeneities to our basic intu-
ition for large scale inhomogeneities. The new intuition will
develop by the study and analysis of effects of small scale
inhomogeneities on seismic data. These effects are produced
from the multiple scattering of a body wave by inhomoge-
neities. Here, we will analyze the multiple scattering depen-
dence with angle of incidence to the inhomogeneities for
media in which the inhomogeneities are isotropic or elon-
gated in one of the two Cartesian directions. We will use the
finite-difference algorithm to simulate seismic waves. Thus
multiple scattered waves, transmission losses, and surface
waves are included in the waveforms.

The remainder of this paper is composed of four sections.
In the first, we describe the random model with ellipsoidal

autocorrelation function and show some examples. In the
second section, we discuss the implementation of the finite-
difference algorithm for the random model. In the third
section, we examine some factors affecting multiple scatter-
ing dependence with angle, and in the fourth section, we
briefly mention some implications of seismic wave propaga-
tion through small scale inhomogeneities for the interpreta-
tion of seismic data.

DESCRIPTION OF THE RANDOM MEDIUM

Setting up the problem

We start by introducing           to
be a finite set needed to describe an isotropic elastic me-
dium, where x =   is the Cartesian vector. For instance
m(x) can consist of P-wave velocity,  ratio, and
density. From a structural point of view, m(x) contains large
and small scale inhomogeneities. The size of large scale
inhomogeneities is of the order of the dominant wavelength
or larger; on the other hand small scale inhomogeneities are
smaller than the dominant wavelength. Because small scale
inhomogeneities are numerous and irregularly distributed,
we choose to represent them by their statistical properties
although they constitute a well-defined function. Our goal
here is to describe small inhomogeneities by a few parame-
ters.

We decompose the set m(x) into:

=  + 

where  represents the large scale inhomogeneities, that
we assume homogeneous, and  represent small scale
inhomogeneities.We will call m(x) a random medium
throughout this paper.

The most likely statistical characteristics of m(x) that we
can recover from seismic data are their low-order statistical
moments, especially the first two moments. Therefore we
will limit ourselves to second-order statistics. The first
moment (i.e., the mean value) is  so  is a zero-mean
process. The ensemble average of m(x) is:

0
       (2)

The second-order properties are specified by the two-point
moment, i.e., the autocorrelation function:

        (3)

We do not calculate the crosscorrelations between the three
parameters   and  because we suppose
that they are independent. The correlation between the
elastic parameters is still an open question; this question is
beyond the scope of this text. Here, we simply choose three
parameters (P-wave velocity,  ratio, and density) and
assume that they are independent. Nevertheless, we will
take the variance of  ratio much smaller than that of
P-wave velocity to ensure that P-wave and S-wave veloci-
ties are correlated, but not perfectly.

We assume that the statistics of m(x) are spatially invari-
ant with respect to spatial translation and that its three
elements (i.e.,   and  share the same
autocorrelation function. That is

      i = 1, 2, 3. (4)



2-D Random Media 1361

We will specify the form of auto(x) in the next subsection.

Ellipsoidal autocorrelation function

There are several possible choices for the autocorrelation
functions: Gaussian, exponential, and the form proposed by
von Karman (1948) are the common choices in seismological
studies. In this paper, we will use the exponential autocor-
relation function. Nevertheless, the results obtained here
can be easily generalized to the Gaussian and von Karman
autocorrelation functions.

We use the following form for the exponential autocorre-
lation function:

auto(x) =   = exp  

where a and  are the autocorrelation lengths, and auto (x) is
considered ellipsoidal because the variables  and  have
different scaling factors a and  respectively. From a
mathematical point of view, the investigation of a class of
ellipsoidal autocorrelation functions can be reduced to that
of isotropic autocorrelation functions (a =  by introducing

=   =  However, in the context of physical
applications like seismic wave propagation, ellipsoidal auto-
correlation functions are of interest since we can describe
media in which the inhomogeneities are isotropic, or elon-
gated in a direction parallel to either of the two Cartesian
coordinates by an appropriate choice of the autocorrelation
lengths. Figure 1 shows the models corresponding to six
particular pairs (a,  of autocorrelation lengths: (1,  (5,

 (5,  (10,  (1,  and (1,  These values are in
meters. The elastic parameter represented here is the
P-wave velocity. The mean velocity is 3000 m/s and the
variance is 10 percent. Notice that some of the velocity
fluctuations are more than 10 percent because the exponen-
tial autocorrelation function is unbounded.

Instead of autocorrelation lengths, it is sometimes useful
to characterize the lateral shape of inhomogeneities of the
random medium by the aspect ratio:

b
 = 

a

which is unity in the case of a random media with isotropic
autocorrelation function and zero in the case of a one-
dimensional (1 -D) vertically stratified random medium.

In addition to the variance and the autocorrelation lengths
(or aspect ratio), the random medium is also characterized
by its roughness. To explain the roughness of the random
medium, it is convenient to limit ourselves to a 1-D random
process. Like the spectrum of the exponential autocorrela-
tion function (Figure 2), the spectra of most of the autocor-
relation functions used in geophysical studies (e.g., von
Karman and Gaussian) are flat to some corner wavenumber
then asymptotically fall off at different rates. The roughness
of the random medium is the rate of fall-off. Goff and Jordan
(1988) give examples of 1-D media with several roughnesses.

Computational aspects

In Figure 3, we show how the random media are gener-
ated. The input is a uniform distribution of random numbers.

The random medium is built using the fact that the Fourier
transform of the autocorrelation function is the power spec-
trum of the random medium. The medium is later normalized
to the desired variance.

The computations of random media, as a convolution of
the square root of the autocorrelation function with uni-
formly distributed random numbers, are carried out in the
space of continuous function. Unfortunately, the computa-
tions are performed discretely; and as a result, some errors
are introduced in the process. Due to these errors, the
assumptions made in equations (2) and (4), that the random
medium is stationary with a constant mean value, do not
hold. To illustrate the effect of these errors, let us consider a
1-D (depth dependent) random medium (Figure 4a). The
random medium was computed using the algorithm shown in
Figure 3. The medium has 1024 points spaced every 0.25 m
with 10 percent variance.The usual way to check the
stationarity of the medium is by computing the moving
average [see Marple (1987) for more details on the compu-
tations of the moving average]. The moving average over a
20-point window (Figure 4b) shows significant variations of
the mean value. Notice that the variations of the mean value
are different for each realization. Our next task is to reduce
these variations at the level where they can be negligible
compared to the overall variations of the random medium.

Let us introduce a new element into the computation of
the random medium, the tapering function. If  k,)
denotes the tapering function in the Fourier domain, the
random medium is now derived as follows:

 k,)

=       

instead of

 k,) =     

The notations are the same as that of the algorithm in
Figure 3.  , k,) is designated to reduce the power at low
frequencies of the autocorrelation function. Once again, we
find it convenient to start with the 1-D problem, for example
a depth-dependent medium. The 1-D random medium is now
computed as follows:

 (k,) =  (k,)  (k,) exp  (k,)].

The notations are the same as that of the algorithm in
Figure 3. The subscript 1 is used to indicate that the medium
is 1-D. There are several possible choices for  (k,) (see
Marple, 1987). For example, the “raised cosine”:

where is the length of the tapering function. Let us 
back to the 1-D example described in Figure 4. With the
same statistical parameters and uniform distribution of ran
dom numbers we generate a new 1-D medium (Figure 5a
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using equation (9) with the tapering function (10). The
tapering length is = 1.9635   it corresponds to 80
points. The result of the moving average in Figure 5b,
compared with Figure 4b, shows a significant reduction of
the level of variations of the mean value. Now, the variations
of the mean value are negligible with respect to the overall
variations of the medium. These variations can be reduced
further by broadening the tapering function but that might
reduce the spectral resolution of the autocorrelation func-
tion. The trade-off is between the acceptable level of varia-
tion of the mean value of the random medium and the
spectral resolution of the autocorrelation function. As dis-
cussed in the previous subsection, the power spectrum of the
exponential autocorrelation (Figure 2) is flat to some corner
wavenumber then falls off. The fall-off part of the spectrum
controls the roughness of the medium. Therefore, the taper-
ing function must stop well before the corner wavenumber of
the spectrum. Because the number of points describing the
flat part of the spectrum decreases when autocorrelation
length increases, this trade-off implies that the tapering
approach cannot be used for a large autocorrelation length.

The tapering solution can be generalized to a 2-D random
medium with an ellipsoidal autocorrelation function. The
tapering function must be 2-D, and it must preserve elliptical
symmetries. Such a 2-D tapering function can be deduced
from the 1-D tapering function via the relation

(11)

where a and b are autocorrelation lengths. More details
about this type of 2-D filter can be found in Huang (1972),
although his analysis is limited to the case where a = b.

FINITE-DIFFERENCE SIMULATION IN RANDOM MEDIA

Implementation

We consider a 2-D medium with a horizontal axis x and a
vertical axis z pointing downward. The medium is assumed

linearly elastic and isotropic. It is also assumed to be in
equilibrium at time t = 0, i.e., particle velocity and stress
tensor are set to zero everywhere in the medium.

The elastodynamic equations can be written as a first-
order hyperbolic system (Virieux, 1986):

FIG. 2. The 1-D power spectrum of the exponential autocor-
relation function. Notice that the spectrum is flat up to a
corner wavenumber that corresponds to l/a, where a is the
autocorrelation length, then asymptotically falls off.

FIG. 3. Flow chart describing how the 2-D random media are
generated. Two-dimensional FFT stands for two-dimen-
sional fast-Fourier transform.
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at
- + - ,

   
(16)

where (v, =     =  (   t)) is the velocity
  =     =     = 

 t)) is the stress tensor,  =   and  =   are
Lame parameters, and  =   is the density.

Equations (12) to (16) are solved numerically by the
finite-difference method. The partial derivatives are replaced
by their finite-difference approximations for a grid spacing of
Ax = AZ and a time increment At. We use a fourth-order
approximation for spatial derivatives and a second-order
approximation for the time derivative. As in Levander
(1988), the velocity vector, stress tensor, Lame parameters,
and density are discretized according to the Madariaga-
Virieux staggered-grid formulation. The reader is referred to
Madariaga (1976) and Virieux (1986) for a more detailed
description of the staggered-grid formulation. We were at-
tracted to this scheme by its high degree of accuracy and
stability, especially if more than 10 gridpoints/wavelength
are used. In fact, Levander’s results show that grid disper-
sion and the grid anisotropy are insignificant if more than

FIG. 4. (a) A 1-D random medium (P-wave velocity) gener-
ated using the algorithm described in Figure 3. (b) We take a
moving average over 20 points using a boxcar window. The
moving average shows significant variations of the mean
velocity.

10 gridpoints are used per wavelength. Furthermore, his
results are valid for all values of Poisson’s ratio.

In the following numerical examples, we will apply ab-
sorbing boundary conditions on all sides of the grid using the
“tapering”method developed by Cerjan et al. (1985).

Accuracy tests

The accuracy test of the finite-difference scheme is the
natural step that precedes the numerical experiments. It is
more important here because the use of finite-difference
methods for media as complex as random media might raise
some anxieties. The errors in finite-difference methods can
produce effects in the seismograms similar to those of
attenuation, dispersion,and anisotropy. Therefore, it is
necessary to ensure that these errors are not significant and
that they are not contaminating our results.

We perform two accuracy tests of our finite-difference
scheme by comparing seismograms from the source-receiver
configuration in Figure 6 and theoretical solutions. In
Figure 6, the receivers are equidistant from the source point.

FIG. 5. (a) A 1-D random medium (P-wave velocity) gener-
ated by a modified version of the algorithm described in
Figure 3 where the tapering function [equation (10)] has been
included in the computation. (b) We take a moving average
over 20 points using a boxcar window. Compared with
Figure 4b, we see that the variations of mean velocity are
negligible with respect to the overall variations of the me-
dium.
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The angle  between the source-receiver direction and the
vertical axis varies from 0 to 90 degrees. The first accuracy
test is simply a verification of the radiation pattern of an
explosive source in a homogeneous medium. The homoge-
neous medium is an infinite isotropic elastic medium where
P-wave velocity is 3500 m/s, S-wave velocity is 2121 m/s and
density is 2.6 g/cm3. The wavelength for the P-wave is  =
11.7 m and the source-receiver distance is about  = 
Figures 7a and 7b show the horizontal and vertical compo-
nent seismograms obtained by the finite-difference scheme.
As the receivers are equidistant to the source point, the
pulse arrives at the same time. The magnitude of the vertical
component increases with cos  while the magnitude of the
horizontal component increases with sin  so that the total
magnitude is invariant with  (Figure  These results agree
with the radiation pattern of an explosive source (see Aki
and Richards, 1980). Notice that the explosive source radi-
ates only P-waves. Throughout this paper, we will assume
an explosive source if not stated otherwise.

Our second accuracy test is performed on a 1-D random
medium. We compared the traveltimes predicted by the
finite-difference solution with those predicted by the effec-
tive medium theory (Backus, 1962; Schoenberg and Muir,
1989; Hsu et al., 1988). The effective medium theory gives an
equivalent homogeneous transversely isotropic elastic me-
dium to the 1-D random medium if the moving average over
the 1-D random medium produces a nearly homogeneous
medium. The length over which the moving average is
applied must be small compared to the dominant wavelength
of the signal. As discussed in the previous section, we just

FIG. 6. The source-receiver configuration used to generate
the seismograms described in this paper. The “*” represents
the source position and the  represents the receiver
positions. The receivers are distributed along a quarter of a
circle so that the incident angle  varies between 0 and 90
degrees and the receivers are equidistant from the source
point.

have to make the length of the tapering function [equation (10);
kzmax = 1.9635  large enough to fulfill this condition.
The computations of traveltime of the effective medium are
described in the Appendix.

Figure 8 shows the horizontal and vertical component
seismograms obtained with our finite-difference scheme. The

FIG. 7. Horizontal (a) and vertical (b) component seismo-
grams corresponding to a homogeneous medium. (c) The
total magnitude. The parameters of the homogeneous me-
dium are given in Table 1. The source characteristics are also
given in Table 1. Notice that the source is explosive and
therefore radiates P-waves only. For the remaining figures,
we will also use an explosive source except in Figure 9.

FIG. 8. Horizontal (a) and vertical (b) component seismo-
grams corresponding to a 1-D random medium described in
Table 1. The solid line represents traveltimes predicted by
the effective medium theory. The fast velocity is 3509 m/s
and the slow velocity is 3405 m/s.
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autocorrelation length is 1.5 m (six times the grid size; thermore, Burridge and Chang (1988 and 1989) have devel-
Ax = AZ = 0.25 m). The other elastic and statistical oped a theory that predicts this effect.
parameters are given in Table 1. Seismograms in Figure 8 Another interesting comparison was made by Frankel and
exhibit behavior of traveltime decreasing with increasing Clayton (1984). They computed synthetic seismograms from
angle of incidence. This type of behavior characterizes thea similar fourth-order finite-difference scheme for a case of
anisotropy. To prove that this anisotropic behavior is due to plane homogeneous acoustic layers. The velocity and den-
the random medium rather than the finite-difference scheme,sity were variable at each grid point. They compare the
we have plotted the traveltimes corresponding to the effec-result at normal incidence to that computed using propagator
tive medium in Figure 8 in a solid curve. We can notice a matrices (Haskell, 1960). The comparison shows an excel-
good agreement between the two solutions. lent agreement not only for the main pulse, but also for the

Another proof that the anisotropy observed in our seis- coda. This result implies that the amplitudes of the synthetic
mograms is caused by small scale inhomogeneities is givenseismograms are also correctly predicted by this type of
in Figure 9. In fact, Figure 9 shows only the S-wave part finite-difference scheme. However, as observed by Frankel
of the horizontal and vertical component seismograms for and Clayton (1986), Chang and Randall (1988), and Muir et
the 1-D random medium used in Figure 8. This time, the al. (1992), sharp contrasts in material properties due to
seismic waves are generated by a vertical force for thecoarse grid spacing in a finite-difference scheme can intro-
vertical component and a horizontal force for the hori- duce errors in modeling, especially in the coda part of the
zontal component, and the shear arrivals are recorded. If weseismograms. To ensure greater accuracy in our modeling,
suppose the anisotropy behavior of the P-wave is due to thewe have chosen grid spacing to be much (at least six times)
finite-difference scheme, then the S-wave arrivals should smaller than the autocorrelation lengths a and b.
have the same anisotropic pattern. Because the anistropy
behavior is caused by the random medium, P-wave and SOME FACTORS AFFECTING 2-D MULTIPLE SCATTERING

S-wave arrival patterns are different and are typical of a
transversely isotropic behavior. For example, the first

Aspect ratio [equation (6)]

S-wave arrival at  = 0 degrees is at the same time as the To see how the aspect ratio of a random medium affects
S-wave arrival at  = 90 degrees, while the first P-wave the multiple scattering response, we consider six random
arrival at = 0 degrees is later than first P-wave arrival at media sharing identical statistics of the elastic parameter
 = 90 degrees. distributions except the aspect ratios. For each random
Up to now, we have limited the accuracy tests of the medium, we perform a finite-difference simulation of the

finite-difference scheme to traveltime behavior mainly be- isotropic elastic wave equation. Figures 10-15 show vertical
cause the effective medium theory is not capable of describ-and horizontal component seismograms corresponding, re-
ing the other phenomena one can observe in Figures 7, 8,spectively, to six aspect ratios: 0,0.05,0.1,0.2,0.5, and 1 .O.
and 9. For example Figure 8 compared to Figure 7 shows aThe other elastic and statistical parameters are given in
clear broadening of the pulse. O’Doherty and Anstey (1971), Table 1.
Richards and Menke (1983), Burridge and Chang (1988 and An examination of the seismograms in Figures 10-15
1989) have also observed this pulse broadening effect. Fur-allows some observations to be made about the effects of the
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aspect ratio on the anisotropic behavior in traveltime, the
coda, and the pulse broadening. Let us start with the
anisotropic behavior. The decrease of pulse arrival times
with the increase of incident angle, observed in Figure 10

= 0), characterized an anisotropic behavior. As the
aspect ratio increases to unity, the anisotropic behavior

FIG. 9. S-wave part of the horizontal (a) and vertical (b)
component seismograms from a 1-D random medium iden-
tical to the one used in Figure 8. Seismic waves are gener-
ated by a vertical point force for the vertical component and
a horizontal point force for the horizontal component. We
can see that the P-wave (Figure 8) and S-wave arrivals
combined describe a transversely isotropic elastic medium.
For example, the first S-wave arrival at  = 0 degrees is at

 = 90 degrees while
the first P-wave arrival at  =
P-wave arrival at  = 90 degrees.

FIG. 10. Horizontal (a) and vertical (b) component seismo-
grams corresponding to a random medium with  = 0 (zero
aspect ratio). The other elastic and statistical parameters are
described in Table 1. The characteristics of the source
function are also given in Table 1.

progressively turns to an isotropic behavior. For  = 1
(Figure 15), pulse arrivals are almost invariant with the
incident angles. The plots of estimated traveltime versus
incident angle are depicted in Figure 16a. As the aspect ratio
varies from 0 to 1, the change from anisotropic to isotropic
behavior is evident. Despite the presence of strong coda,
which is a correlated noise, the time picking algorithm gives
a good approximation of the first pulse arrival time.

The other question concerning the anisotropic behavior is:
what types of anisotropic models are related to the different
aspect ratios? We know that for  = 0 (i.e., 1-D medium)
the pulse sees a transversely isotropic elastic medium.
Figures 11-14 also show typical patterns of transversely
isotropic elastic model. We can even say that, for  = 0.05
(Figure 11), the pulse sees a transversely isotropic elastic
medium almost identical to the one corresponding to  = 0.
We arrived at this conclusion by analyzing the residuals
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between the seismograms in Figure 10  = 0) and those in
Figure 11 = 0.05). This conclusion indicates that, for
small values of aspect ratio, the 2-D random medium can
be treated anisotropically as a 1-D medium. The travel-
time versus incident angle curves for  = 0 and  = 0.05
(Figure 16b) reiterate the similarity of anisotropic behavior.
The discrepancies at large incidence angles are due to the
strong coda. The problem of theoretical description of the
transition from 1-D to 2-D anisotropic behavior as the aspect
ratio increases requires investigations that are beyond the
scope of this text.

The seismic signal in Figures 10-15 can be divided into
two parts: the wavefront and the coda. The coda represents
the seismic energy behind the wavefront [this definition
comes from the classical papers of Aki (1969) and Aki and
Chouet (1975)]. Let us make some observations on the coda
energy dependence on the aspect ratio. For  = 0
(Figure 10), most of the coda energy is located at large

angles. As the medium is only depth dependent, this energy
at large angles is essentially due to the effect of tunneling
waves beyond the critical angle (early arrivals) and to guided
waves that travel laterally (late arrivals). As the aspect ratio
increases to one, the coda energy is essentially caused by

FIG. 16. Traveltime versus angles. (a) For clarity, we only
show three aspect ratios: 0 (solid), 0.5 (dash-dot), and 1
(dashed). (b) Here we show two aspect ratios: 0 (solid) and
0.05 (dashed), which have a very similar traveltime/angle
curve. The discrepancies at large angles are essentially due
to the corruption of strong coda on the time picking algo-
rithm.
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multiple scattering of body waves. It becomes uniformly
distributed with respect to angle of incidence since the model
is isotropic. These results suggest that the coda might be
another indicator of the aspect ratio variations.

Finally, we observe that the initial pulse in Figure 7 has been
broadened in Figures 10-15 because of multiple reflection or
multiple scattering. However, a closer look at the pulse in these
figures shows very little changes in the pulse broadening with
increasing aspect ratios (Figure 17). This observation is consis-
tent with results from various realizations.

Seismic pulse

In the course of our numerical simulations, we have
experienced how crucial the choice of the source time
function is to observing features described above. For ex-
ample, we have noticed that a finite-difference simulation
through a 1-D random medium with a typical band-limited
source cannot predict the pulse arrival above the geometric
ray critical angle. Let us look at this problem in more detail.
Again, we consider the source-receiver configuration in
Figure 6 and a 1-D random medium. The elastic and statis-
tical parameters of the 1-D random medium are specified in
Table 1. Notice that the shear velocity is held constant. Two
runs of the finite-difference modeling are made using, first, a
high-frequency, band-limited pulse (Figure 18a) and second,
a low-frequency, high-cut pulse (Figure 18C).

We computed both horizontal and vertical component
seismograms (Figures 19 and 20) by propagating the two
pulses through the 1-D model. An examination of the syn-
thetic data allowed the following observations to be made:

1) Below the geometric ray critical angle (about 60 de-
gree), both computations display similar behavior of
traveltime decreasing with increasing angle of inci-
dence. Because the medium is 1-D and the dominant
wavelength is longer than the scale of inhomogeneities,
both seismic pulses see a transversely isotropic me-
dium;

FIG. 17. Here, we show a window of vertical seismo-
gram trace at = 0 degrees for the homogeneous medium
(Figure 7b) and four random media (Figures 10b, 12b, 14b,
and 15b), corresponding respectively to  = 0, 0.1, 0.5,
and 1. Notice that a correction of traveltime delays was
made to enhance the comparison of pulse broadening.

2) Above the geometric ray critical angle, the first arrival
curve corresponding to the high frequency pulse be-
comes discontinuous and the first arrival becomes
incoherent. On the other hand, the low-frequency pulse
retains continuity of the traveltime with a significant
first arrival, albeit changed in waveshape.

We believe that the interruption in the traveltime curve of
the high-frequency pulse is caused by the critical angle
phenomena. Above the critical angle, strong scattering and
mode conversion takes energy out of the first arrival and
builds up the coda. Ray tracing through the medium
(Figure 21) supports this hypothesis by indicating the pres-
ence of a weak amplitude shadow zone.

For the low-frequency pulse, which has a nonzero dc
component, the layers appear thinner in wavelengths than

FIG. 18. (a) High-frequency, band-limited pulse and (b) its
corresponding spectrum. (c) Low-frequency, high-cut pulse,
and (d) its corresponding spectrum. The pulse (a) is refer-
enced in Table 1 as type 1, and the pulse (c) is referenced in
Table 1 as type 2. The parameter-f, is the central frequency.



1370 lkelle et al.

for the high-frequency pulse. This enhances tunneling,
whereby postcritical layer penetration is achieved by an
evanescent leg that retains a significant amplitude in travers-
ing the layer. This is the mechanism which we propose to fill
the geometrical shadow zone and generate a first arrival.

FIG. 19. Horizontal (a) and vertical (b) component seismo-
grams corresponding to a 1-D random medium using a
high-frequency, band-limited pulse (Figure 18a).

FIG. 20. Horizontal (a) and vertical (b) component seismo-
grams corresponding to a 1-D random medium using a
low-frequency, high-cut pulse (Figure 18c). Compared with
Figure 19, below we see a critical angle (about 60 degree).
Both figures dislay similar behavior of traveltime decreasing
with angle of incidence. Above this critical angle, the first-
arrival curve corresponding to high-frequency pulse (Figure
19) becomes incoherent while the low-frequency pulse re-
tains continuity of the traveltime.

SOME IMPLICATIONS FOR SEISMIC INTERPRETATION

Seismic source function

In seismic interpretation, the lack of information about the
source function is crudely compensated by a series of
prestack and poststack deconvolutions. Ideally, we have to
consider the source function as a parameter in the inversion
or migration. If the small scale inhomogeneities are ne-
glected as is currently the case in seismic processing, then
the pulse broadening effect pointed out in this paper or in
zother previous works has to be taken explicitly into ac-
count. In other words, if the earth is approximated by a
series of large homogeneous layers, we would need to
consider the source function not only as a time-dependent
parameter but also as a space-dependent parameter.

The pulse broadening effect also explains part of the
reduction of the frequency content observed in seismic field
data.

Velocity model

The velocity is another critical issue in seismic interpre-
tation, especially in the integration of surface seismic, bore-
hole seismic, and well-log data. Here different wavelengths
and different aspect ratios are involved. The modeling re-

FIG. 21. Ray tracing through a 1-D medium. Only a
region (20 m x 20 m) is used. Also only P -wave velocities
are used.
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sults shown in this paper suggest that significant discrepan-
cies in the velocity model can occur if these parameters are
neglected.

Near-surface modeling for static corrections

The near surface is one of the causes of poor resolution in
land seismics. Therefore it is important to model it properly.
The near surface is generally modeled as a homogeneous
layer and the poor resolution is explained by the conversion
of body waves into surface waves by topography at the free
surface. A number of improvements have been suggested.
To this list, we propose to add multiple scattering effects
through the presence of small scale inhomogeneities in the
homogeneous layer. A rough estimate of the aspect ratio
may even be possible from the coda energy according to the
modeling results reported here.

CONCLUSIONS

We demonstrated that the 2-D random medium with
ellipsoidal autocorrelation function can be used to model
different distributions of small scale inhomogeneities in the
earth: finely layered model, isotropic random model, and
model with inhomogeneities elongated in a direction parallel
to either of the two Cartesian directions.

Using finite-difference modeling, we have effectively ob-
served the pulse broadening effect, the coda, and the appar-
ent anisotropy caused by multiple scattering in the random
media. The pulse broadening effect is almost invariant with
the aspect ratio, while the apparent anisotropy and coda
vary with the aspect ratio. The anisotropy is a transversely
isotropic behavior. This behavior increases as the incident
angle increases, especially for low values of aspect ratios. It
becomes isotropic (i.e., invariant with the angle of inci-
dence) for = 1. The coda energy is dominant at large
angles for = 0. It becomes uniformly distributed for  = 1.

The observations made here suggest that small scale
inhomogeneities on seismic data can be interpreted along-
side large scale inhomogeneities by analyzing the pulse
broadening effect, the seismic coda, and the anisotropic behav-
ior. If such interpretation is done with constraints at space
points where well-log data are available, it will lead to a model
of the earth that explains both seismic and well-log data.
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APPENDIX

A METHOD OF COMPUTATION OF TRAVELTIME FOR AN EFFECTIVE MEDIUM

Backus (1962) has developed an averaging technique to
compute the elastic parameters  for the equivalent me-
dium from the Lame parameters   for a one-dimen-
sional vertically stratified random medium. The elastic pa-
rameters are evaluated in terms of averaged algebraic
expressions of the Lame parameters in the following way
(Backus, 1962)

The angular brackets denote the moving average over a
depth range  In discrete form the moving average of a
quantity  is defined as

j   
k

(A-7)

with the weighting function  being normalized

  (A-8)
 

As Hsu et al. (1988), we choose a boxcar function  =
   in a window length  =   1) as a weighting

function.
For the example in Figure 8, the moving average is made

over 20 points (i.e., 5 m) which produce nearly a homoge-

neous transversely isotropic (TI) medium. The fast compres-
sional phase velocity is  degrees) = (c    
3509 m/s and the slow phase velocity is  (0 degrees)

= 3405 m/s.
To compute the traveltime in Figure 10, we have used

group velocity that is related to  (Helbig and Schoenberg
1984). To use Helbig and Schoenberg’s formulas, let us
introduce some notations:

            

   

       

   

where  denotes the mean of c   and   denotes the
of the square of the shear velocity along the coordinate
to the mean of the squares of the compressional 
along the coordinate axes,  denotes the P-wave 
ropy factor, S denotes the anellipticity, and e is introduced
only to simplify the reading of the following formula
Carrion et al. (1992) for the meaningful physical se
these parameters]. Then the group velocity,  is rel

 by

where  denotes the differentiation with respect
argument   is the phase angle, and  is the gr
Carrion et al. (1992) also derives a similar formula
group velocity in a TI medium.


