Current Challenges in Seismology

the role of computations and data analysis
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... and seismometer recordings ....
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Fig. 1.2 Vertical component record of the Lzmit earthquake in Turkey (1999/08/17) recorded at station MMA13 of
the University of Potsdam during a field experiment in Northermn Norway. Shown from top to bottom are the
vertical component records for a- Wood-Anderson, a WWSSN 5P and a WWSEN LP instrument simmulation.
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Seismology — Schematically

Seismic Source

Seismometer
Ruptures, crack propagation,

physics of earthquakes, Filtering, (de)convolution, three
magnitude, faulting, seismic components, spectrum, broadband,

creep, radiation pattern, strong-motion, tilt, long-period,

Earthquake precursors, amplification, etc.

aftershocks, fault planes, etc.

Propagation Effects

heterogeneities, scattering, attenuation,
anisotropy, rays, body waves, surface waves,

free oscillations, reflections, refractions,
trapped waves, geometrical spreading, etc.
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... and everything affects ...
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Global seismic networks
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Digital Seismograph Networks
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Seismic Data Volumes

Cumulative Terabytes Archived by Network Type Terabytes Shipped by Network Type
through August 31, 2008 through August 31, 2008
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Introduction

... the benefits of permanent observations ...

A map showing variation of Rayleigh wave (a
type of seismic surface wave) group velocity for 8
sec period vibrations derived from more than
60,000 measurements. By cross correlating up
to three years of continuous data from 512
western U.S. stations, including the EarthScope
USArray Transportable Array and regional
seismic networks, inter-station propagation
velocities for all available station pairs were
recovered and inverted for regional velocity
structure. Thick black lines define major tectonic
province boundaries. (Image courtesy of M.P.
Moschetti, M.H. Ritzwoller, and N.M. Shapiro.)

Computational Geophysics and Data Analysis

2.0

2.2

| | |
24 26 28
U (km/s), 8 sec




Earthquakes

 Crack propagation

« Earthquake rupture

e Strong ground motion
* Directivity

e Source mechanism

* Finite sources

Introduction
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Introduction

Seismicity

Repeating earthquakes

Seismic gaps
Crustal deformation
Seismic hazard

Forecasting and
prediction

Stress transfer
Tsunami generation
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Grand Challenges

according to IRIS

Grand Challenges fOr SEISIMOIOQY ... ..oeciviiiiiiiei ittt ee e et e e aaseaetbaeersaesrrsssssssessssessaessssssssssrsssarsssaessseirsessrnssessssesses
Grand Challenge 1. HOW DO FAUIS SHIP? .cvriiiiiieiieeiieiie et e s sesss s s saae s sn s stsssssasrsssaersaserbesssnesessssessns
Grand Challenge 2. How Does the Near-Surface Environment Affect Natural Hazards and Resources? ..................
Grand Challenge 3. What is the Relationship Between Stress and Strain in the Lithosphere?.........cccoocoeeivvvvieenne.
Grand Challenge 4. How Do Processes in the Ocean and Atmosphere Interact With the Solid Earth?.....................
Grand Challenge 5. Where Are Water and Hydrocarbons Hidden Beneath the Surface?..........cccccoevvvviviiiniicicnnnn.
Grand Challenge 6. How Do Magmas ASCENd aNd ErUPT?......oviioeeiiieeiieceeiee et eeve e
Grand Challenge 7. What Is the Lithosphere-Asthenosphere BOUNAAry? ...........covvviiiiieiiiiniiniinnsieine e
Grand Challenge 8. How Do Plate Boundary SYSEEMS EVOIVE? .....c.vviciviiiiiiie i ceiie s siasisseernaseressseeseenssesnas

Grand Challenge 9. How Do Temperature and Composition Variations Control Mantle and Core Convection? ......

Grand Challenge 10. How Are Earth’s Internal Boundaries Affected by Dynamics?.........ccoooiiieeiiieiiieciiiiee e

... what have those challenges to do with seismic data analysis ???
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How do faults slip?

High Resolution Epicenters Repeating Earthquakes
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Rupture propagation
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Non-volcanic tremors

Episodic Tremor
and Slip
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SSIES

* |s there a preparatory stage for fault ruptures?
 How do ruptures stop?

 Are mechanisms of interplate and intraplate
earthquakes different?

e Can tremor be used for forecasting large
earthquakes

.. Information on these topics related to frequency content in
seismograms (spectra) ...
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How Does the Near-Surface Environment Affect Natural Hazards and Resources?
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Earthquake scenario simulations

Ground motion intensities (warm colors correspond to high intensities) for a simulated M 7.7 earthquake with SE to NW rupture on a 200-km section
of the San Andreas Fault. Strong rupture directivity and intensity amplification occur due to funneling of seismic waves through sedimentary basins
south of the San Bernardino and San Gabriel Mountains. The simulation to the left assumes a kinematic (space-time history of slip being prescribed)
rupture model, while the one on the right uses a dynamic (physics-based) rupture. The difference in the predicted intensities in this highly popu-
lated region underscores the importance of properly characterizing source processes in such simulations. (Image modified from K.B. Olsen, S.M. Day,
|.B. Minster, Y. Cui, A. Chourasia, D. Okaya, P. Maechling, and T. Jordan, 2008. TeraShake2: Spontaneous rupture simulation of Mw 7.7 earthquakes

on the Southern San Andreas Fault, Bulletin of the Seismological Society of America, 98(3):1162-1185, ©Seismological Society of America)
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Earthquake scenario simulations
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... large scale parallel simulations and analysis of synthetic seismograms
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Basin effects, amplification, Rhine Graben, Germany
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Source characterization
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SSIES

 How can the acute heterogeneity in the near surface
best be imaged and its material properties constrained in
diverse applications?

 How can time-dependent properties of shallow aquifers
best be characterized to monitor water and contaminant
transport?

 What is the resolution of seismological techniques to
Identify and locate unexploded ordinance, tunnels,
buried landfills, and other human-made subsurface
hazards?
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What is the Relationship Between Stress and Strain in the Lithosphere?
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Remote triggering
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SSIES

 What Is the state of stress on active faults and
how does It vary Iin space and time?

 How do pore fluids influence the stress
environment in fault zones?

 What is the relative importance of static (elastic)
versus dynamic (vibrational) stress changes for
earthquake triggering?

 On what time- and spatial scale do earthquake
,communicate"?
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How do Processes in the Ocean and Atmosphere Interact With the Solid Earth?

Seismic Data
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Glacial earthquakes

Glacial earthquakes in Greenland
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SSIES

 How are Earth’s normal modes excited by
ohenomena in the atmosphere and ocean?

e How do ocean wave and other seismic

packground noise variations track climate
change?

e How can seismic and infrasound data best be

used to study tornadic storm systems and
tornado touch downs?

... analysing long-period information in seismograms ... coherent
energy in seismic networks ... array processing ...
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Where are Water and Hydrocarbons Hidden Beneath the Surface?
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SSIES

How can we improve the detection,
characterization, and production of hydrocarbon
resources Including detecting deep deposits
beneath salt, finding small-scale pockets in
iIncompletel extracted reservoirs, and monitoring
porosity, permeabillity, and fluid flow at high
resolution?
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How do magmas ascend and erupt?
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Volcanoes and seismicity
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4D tomography — passive imaging
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Introduction

Intraplate earthquakes
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Global tomography
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Global wave propagation
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Introduction

synth
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Seismic Tomography
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Mantle convection
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SSIES

 What are the scales of heterogeneity in the
global mantle convection system, and what are
the chemical, thermal, and mineralogical causes
of the multiscale heterogeneity?

e Are there large thermal plumes in the mantle,
and are they related to surface hotspots?

 What are the nature and cause of deep mantle
anisotropy?
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 Many of the fundamental question in Earth Sciences rest
on results from the analysis of seismograms

e Seismology is a data-rich science, so (automated)
processing of seismograms Is essential

 The two key goals of seismic data analysis are the
understanding of (1) the seismic source and (2) the
Earth's structure

* Achieving both goals requires several data processing
steps and a theory for data fitting (inversion)

« Arecent — fundamentally new development — is the use
of seismic noise and correlation techniques to do
tomography and to detect temporal changes of Earth's
structure -> passive imaging
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Appendix:

The seismology primer
(qualitative)

 Earthquakes and seismic sources
e Seismic waves
 Fundamental spectral analysis
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Source mechanisms
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Radiation patterns of a double couple point sources

Far field P — blue
Far field S - red
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Radiation from shear dislocation
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First motion of P
waves at
seismometers in

various directions.

The polarities of
the observed
motion is used to
determine the
point source
characteristics.
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Introduction
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Magnitude Scales — Richter and others

Local Magnitude M,

M, =logA-log A, -log A, from tables or

M, =log A +0.003R + 0.7 R distance in km, A in mm
Domain: R < 600km

Surface wave magnitude Mg

Mg =log(A /T)+1.66 logD + 3.3 T=18-22s, D=20-160°, h <

50km

Body wave magnitude M,
M, = log(A /T)+Q(D,h) 17=0.1-3.0s

Moment magnitude M,
M,, = 2/3 log M, — 10.7 M, scalar Moment
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To first order the Earth’s /!
crust deforms like an B :j:
elastic body when the i maw i j
deformation (strain) is A

small. it

In other words, if the force 11
that causes the
deformation is stopped the
rock will go back to its
original form.

The change in shape (i.e., the deformation)
Is called strain, the forces that cause this
strain are called stresses.
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Linear Elasticity

The relative displacement in
the unstrained state is u(r). The
relative displacement in the
strained state is v=u(r+ ox).

So finally we arrive at
expressing the relative
displacement due to strain:

Su=u(r+ 6x)-ur)

We now apply Taylor’'s theorem 8ui

in 3-D to arrive at: é‘ui — T~ 5Xk
OX,
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Stress-strain relation

The relation between stress and strain in general is described by the tensor of
elastic constants cy

— ' 's L
Gij Cijkl Exi Generalised Hooke’s Law

From the symmetry of the stress and strain tensor and a thermodynamic condition
if follows that the maximum number if independent constants of ¢y is 21. In an
isotropic body, where the properties do not depend on direction the relation
reduces to

Gij — 2,@5” + 2,Ll6’ij Hooke’s Law

where | and m are the Lame parameters, q is the dilatation and djis the
Kronecker delta.
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Seismic wave types

P — primary waves — compressional waves — longitudinal
waves
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Introduction

Seismic wave types

S — waves — secondary waves — shear waves — transverse
waves
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Seismic wave types

Rayleigh waves — polarized in the plane through source and
receiver — superposition of P and SV waves

Rayleigh-Welle
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Seismic wave types

Love waves — transversely polarized — superposition of SH
waves in layered media

Love-Welle
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Seismic wave velocities

Seismic wave velocities strongly depend on

*  rock type (sediment, igneous, metamorphic, volcanic)
*  porosity

 pressure and temperature

*  pore space content (gas, liquid)

ElasticModuli
Density

P-waves S-waves

A+2
VIO: . - Vs: ﬁ
\ » P

Introduction Computational Geophysics and Data Analysis 59




Introduction

Reflection and transmission at boundaries

P waves can be converted to S waves and vice versa. This creates
a quite complex behavior of wave amplitudes and wave forms at
interfaces. This behavior can be used to constrain the properties of

the material interface.

incoming P-wave
P r
reflections

Material 1 Interface

Material 2

transmissions
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Harmonic Analyis — Spectral Synthesis

Introduction

At the heart of spectral analyis is an extremely powerful concept,
that is one of the most important theorems in mathematical
physics:

Any arbitrary periodic signal can be obtained by superposition of
harmonic (sinusoidal) signals.

Furthermore: the representation of physical systems in time and
space or in frequency and wavenumber domain is equivalent!
There is no loss of information when going from one space to
the other and back.
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Spectral synthesis
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The spectrum

Introduction

Fourier space

Physical space

Amplitude spectrum
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