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Elasticity and Seismic WavesElasticity and Seismic Waves

• Some mathematical basics

• Strain-displacement relation
Linear elasticity
Strain tensor – meaning of its elements

• Stress-strain relation (Hooke’s Law)
Stress tensor
Symmetry
Elasticity tensor
Lame’s parameters

• Equation of Motion
P and S waves
Plane wave solutions
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Stress-strain regimesStress-strain regimes

• Linear elasticity (teleseismic waves)

• rupture, breaking

• stable slip (aseismic)

• stick-slip (with sudden ruptures)

Linear deformation Stable slip Stick slip

Breaking

Deformation
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Linear and non-linear stress and strainLinear and non-linear stress and strain

Stress vs. strain for a loading cycle with rock that breaks. For wave
propagation problems assuming linear elasticity is usually sufficient.   

Stress vs. strain for a loading cycle with rock that breaks. For wave
propagation problems assuming linear elasticity is usually sufficient.   

Linear stress-strain
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Principal stress, hydrostatic stressPrincipal stress, hydrostatic stress

Horizontal stresses are
influenced by tectonic
forces (regional and 
local). This implies that
usually there are two
uneven horizontal 
principal stress
directions. 

Example: Cologne Basin

Horizontal stresses are
influenced by tectonic
forces (regional and 
local). This implies that
usually there are two
uneven horizontal 
principal stress
directions. 

Example: Cologne Basin

When all three orthogonal principal stresses are equal
we speak of hydrostatic stress. 

When all three orthogonal principal stresses are equal
we speak of hydrostatic stress. 
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Elasticity TheoryElasticity Theory

A time-dependent perturbation of an elastic medium 
(e.g. a rupture, an earthquake, a meteorite impact, a 
nuclear explosion etc.) generates elastic waves 
emanating from the source region. These 
disturbances produce local changes in stress and 
strain. 

To understand the propagation of elastic waves we 
need to describe kinematically the deformation of 
our medium and the resulting forces (stress). The 
relation between deformation and stress is governed 
by elastic constants.

The time-dependence of these disturbances will lead 
us to the elastic wave equation as a consequence of 
conservation of energy and momentum. 
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Some mathematical basics - Vectors Some mathematical basics - Vectors 

The mathematical description of deformation processes heavily 
relies on vector analysis. We therefore review the fundamental 
concepts of vectors and tensors.

Usually vectors are written in boldface type, x is a scalar but y is 
a vector, yi are the scalar components of a vector
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Vectors – Triple Product Vectors – Triple Product 

The triple scalar product is defined as
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which is a scalar and represents the 
volume of the parallelepiped defined by 
a,b, and c.
It is also calculated like a determinant:
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Vectors – Gradient  Vectors – Gradient  

Assume that we have  a scalar field Φ(x), we want   to know how 
it changes with respect to the coordinate axes, this leads to a 
vector called the gradient of Φ
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The gradient is a vector that points in the direction of maximum
rate of change of the scalar function Φ(x). 

What happens if we have a vector field?
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Vectors – Divergence + Curl  Vectors – Divergence + Curl  

The divergence is the  scalar product of the nabla operator with 
a vector field V(x). The divergence of a vector field is a scalar!

zzyyxx VVV ∂+∂+∂=•∇ V

Physically the divergence can be interpreted as the net flow out
of a volume (or change in volume). E.g. the divergence of the 
seismic wavefield corresponds to compressional waves.

The curl is the  vector product of the nabla operator with a 
vector field V(x). The curl of a vector field is a vector!
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The curl of a vector field represents the rotational part of that 
field (e.g. shear waves in a seismic wavefield)
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Vectors – Gauss’ Theorem  Vectors – Gauss’ Theorem  

Gauss’ theorem is a relation between a volume integral over the 
divergence of a vector field  F and a surface integral over the 
values of the field at its surface S:

dV
S V

FdSF∫ ∫ •∇=•

… it is one of the most widely used relations in mathematical physics. 
The physical interpretation is again that the value of this integral can be 
considered the net flow out of volume V.
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DeformationDeformation

Let us consider a point P0 at position r relative to 
some fixed origin and a second point Q0 displaced 
from P0 by dx

P0

x 

y 

Q0
δx

δx δu

r

u

P1
Q1δy

v

Unstrained state:
Relative position of point P0 w.r.t. 
Q0 is δx. 

Strained state:
Relative position of point P0 has 
been displaced a distance u to P1
and point Q0 a distance v to Q1.

Relative positive of point P1 w.r.t. Q1 
is δy= δx+ δu. The change in 
relative position between Q and P is
just δu.
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Linear ElasticityLinear Elasticity

The relative displacement in the 
unstrained state is u(r). The 
relative displacement in the 
strained state is v=u(r+ δx). 

So finally we arrive at expressing 
the relative displacement due to 
strain:

δu=u(r+ δx)-u(r)

We now apply Taylor’s 
theorem in 3-D to arrive at: 
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Linear Elasticity – symmetric partLinear Elasticity – symmetric part

The partial derivatives of the 
vector components
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represent a second-rank tensor which can be resolved into a 
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Linear Elasticity – deformation tensorLinear Elasticity – deformation tensor

The symmetric part is called the 
deformation tensor

P0 Q0
δx
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and describes the relation between deformation and displacement in 
linear elasticity. In 2-D this tensor looks like
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Deformation tensor – its elementsDeformation tensor – its elements

Through eigenvector analysis the meaning of the elements of the 
deformation tensor can be clarified:

The deformation tensor assigns each point – represented by position 
vector y a new position with vector u (summation over repeated 
indices applies):

jiji yu ε=
The eigenvectors of the deformation tensor are those y’s for which 
the tensor is a scalar, the eigenvalues λ:

ii yu λ=

The eigenvalues λ can be obtained solving the system:

0=− ijij λδε
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Deformation tensor – its elementsDeformation tensor – its elements

Thus

111 yu λ=

1

1
1 y

u
=λ

222 yu λ= 333 yu λ=

... in other words ...
the eigenvalues are the relative change of length along the three 

coordinate axes

In arbitrary coordinates the diagonal
elements are the relative change of length 

along the coordinate axes and the off-
diagonal elements are the infinitesimal shear 

angles.

shear angle
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Deformation tensor – traceDeformation tensor – trace

The trace of a tensor is defined as the sum over the diagonal 
elements. Thus:  
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This trace is linked to the volumetric change after deformation.
Before deformation the volume was V0. . Because the diagonal 

elements are the relative change of lengths along each direction, the 
new volume after deformation is 

... and neglecting higher-order terms ...
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Deformation tensor – applicationsDeformation tensor – applications

The fact that we have linearised the strain-displacement relation is 
quite severe. It means that the elements of the strain tensor should 
be <<1. Is this the case in seismology?

Let’s consider an example. The 1999 Taiwan earthquake (M=7.6) was 
recorded in FFB. The maximum ground displacement was 1.5mm 
measured for surface waves of approx. 30s period. Let us assume a 
phase velocity of 5km/s. How big is the strain at the Earth’s surface, 
give an estimate !

The answer is that ε would be on the order of 10-7 <<1. This is typical 
for global seismology if we are far away from the source, so that the 
assumption of infinitesimal displacements is acceptable. 

For displacements closer to the source this assumption is not valid. 
There we need a finite strain theory. Strong motion seismology is an 
own field in seismology concentrating on effects close to the seismic 
source.
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StrainmeterStrainmeter
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Borehole breakoutBorehole breakout

Source: www.fracom.fi
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Stress - tractionStress - traction

In an elastic body there are restoring forces if deformation takes place. 
These forces can be seen as acting on planes inside the body. Forces divided 
by an areas are called stresses.
In order for the deformed body to remain deformed these forces have to 
compensate each other. We will see that the relationship between the stress 
and the deformation (strain) is linear and can be described by tensors.

The tractions tk along axis k are  
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Stress tensorStress tensor

... in components we can write this as

jiji nt σ=

where σij ist the stress tensor and nj 
is a surface normal. 
The stress tensor describes the 
forces acting on planes within a body.  
Due to the symmetry condition  

jiij σσ =
there are only six independent elements.

ijσ The vector normal to the corresponding surface

The direction of the force vector acting on that surface
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Stress equilibriumStress equilibrium

If a body is in equilibrium the internal forces and the forces acting 
on its surface have to vanish

0=+∫ ∫ dFtdVf
V F

ii

as well as the sum over the angular momentum

From the second equation the symmetry of the stress tensor can be 
derived. Using Gauss’ law the first equation yields
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Stress - GlossaryStress - Glossary

Stress units bars (106dyn/cm2)
106Pa=1MPa=10bars
1 Pa=1 N/m2

At sea level    p=1bar
At depth 3km p=1kbar

maximum 
compressive 
stress

the direction perpendicular to the minimum 
compressive stress, near the surface mostly 
in horizontal direction, linked to tectonic 
processes.

principle 
stress axes

the direction of the eigenvectors of the 
stress tensor 
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Stresses and faultsStresses and faults
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Stress-strain relationStress-strain relation

The relation between stress and strain in general is described by the 
tensor of elastic constants cijkl

klijklij c εσ =

From the symmetry of the stress and strain tensor and a 
thermodynamic condition if follows that the maximum number if 
independent constants of cijkl is 21. In an isotropic body, where the 
properties do not depend on direction the relation reduces to 

ijijij μεδλσ 2+Θ=

where λ and μ are the Lame parameters, θ is the dilatation and δij is 
the Kronecker delta. 

Generalised Hooke’s Law

Hooke’s Law

( ) ijzzyyxxijkkij δεεεδεδ ++==Θ
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Stress-strain relationStress-strain relation

The complete stress tensor looks like
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There are several other possibilities to describe elasticity:
E elasticity, s Poisson’s ratio, k bulk modulus
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For Poisson’s ratio we have  0<σ<0.5. A useful approximation is λ=μ, 
then σ=0.25. For fluids σ=0.5 (μ=0).
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Stress-strain - significanceStress-strain - significance

As in the case of deformation the stress-strain relation can be 
interpreted in simple geometric terms:

Remember that these relations are a generalization of Hooke’s Law:

l

u

γ l

u

F= D s

D being the spring constant and s the elongation.

μγσ =12 l
uE=22σ
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Seismic wave velocities: P-wavesSeismic wave velocities: P-waves

Material Vp (km/s)

Unconsolidated material
Sand (dry) 0.2-1.0

Sand (wet) 1.5-2.0
Sediments

Sandstones 2.0-6.0
Limestones 2.0-6.0

Igneous rocks
Granite 5.5-6.0
Gabbro 6.5-8.5

Pore fluids
Air 0.3
Water 1.4-1.5
Oil 1.3-1.4

Other material
Steel 6.1
Concrete 3.6
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Elastic anisotropyElastic anisotropy

What is seismic anisotropy?

klijklij c εσ =

Seismic wave propagation in anisotropic media is quite different from 
isotropic media:

• There are in general 21 independent elastic constants (instead of 2 
in the isotropic case)

• there is shear wave splitting (analogous to optical birefringence)
• waves travel at different speeds depending in the direction of 

propagation
• The polarization of compressional and shear waves may not be 

perpendicular or parallel to the wavefront, resp.
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Shear-wave splittingShear-wave splitting
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Anisotropic wave frontsAnisotropic wave fronts

From Brietzke, Diplomarbeit
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Elastic anisotropy - DataElastic anisotropy - Data

Azimuthal variation of velocities 
in the upper mantle observed 
under the pacific ocean.

What are possible causes for 
this anisotropy?

• Aligned crystals
• Flow processes
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Elastic anisotropy - olivineElastic anisotropy - olivine

Explanation of observed effects 
with olivine crystals aligned
along the direction of flow 
in the upper mantle
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Elastic anisotropy – tensor elementsElastic anisotropy – tensor elements
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Elastic anisotropy – applicationsElastic anisotropy – applications

Crack-induced anisotropy 

Pore space aligns itself in the stress field. Cracks 
are aligned perpendicular to the minimum 
compressive stress. The orientation of cracks is 
of enormous interest to reservoir engineers!

Changes in the stress field may alter the density 
and orientation of cracks. Could time-dependent 
changes allow prediction of ruptures, etc. ? 

SKS - Splitting

Could anisotropy help in understanding mantle 
flow processes?
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Equations of motionEquations of motion

We now have a complete description of the forces acting within an 
elastic body. Adding the inertia forces with opposite sign leads us 
from

to

the equations of motion for dynamic elasticity
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Summary: Elasticity - StressSummary: Elasticity - Stress

Seismic wave propagation can in most cases be described by linear elasticity.

The deformation of a medium is described by the symmetric elasticity tensor. 

The internal forces acting on virtual planes within a medium are described by the 
symmetric stress tensor. 

The stress and strain are linked by the material parameters (like spring constants) 
through the generalised Hooke’s Law.

In isotropic media there are only two elastic constants, the Lame parameters.

In anisotropic media the wave speeds depend on direction and there are a maximum 
of 21 independant elastic constants.

The most common anisotropic symmetry systems are hexagonal (5) and 
orthorhombic (9 independent constants).
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