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Stress-strain regimes

* Linear elasticity (teleseismic waves)
- rupture, breaking
- stable slip (aseismic)

- stick-slip (with sudden ruptures)
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Linear and non-linear stress and strain

P Q

Linear stress-strain

Stress vs. strain for a loading cycle with rock that breaks. For wave
propagation problems assuming linear elasticity is usually sufficient.
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Principal stress, hydrostatic stress

Horizontal stresses are
influenced by tectonic
forces (regional and
local). This implies that
usually there are two
uneven horizontal
principal stress
directions.

Example: Cologne Basin
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When all three orthogonal principal stresses are equal
we speak of hydrostatic stress.
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Elasticity Theory

A time-dependent perturbation of an elastic medium
(e.g. a rupture, an earthquake, a meteorite impact, a
nuclear explosion etc.) generates elastic waves
emanating from the source region. These
disturbances produce local changes in stress and
strain.

To understand the propagation of elastic waves we
need to describe kinematically the deformation of
our medium and the resulting forces (stress). The
relation between deformation and stress is governed
by elastic constants.

The time-dependence of these disturbances will lead
us to the elastic wave equation as a consequence of
conservation of energy and momentum.
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Some mathematical basics - Vectors @

The mathematical description of deformation processes heavily
relies on vector analysis. We therefore review the fundamental
concepts of vectors and tensors.

Usually vectors are written in boldface type, x is a scalar but y is
a vector, y;are the scalar components of a vector

Y, ay, ay, + bx,
y=|Y, ay =| ay, ay +bx =| ay, +bx,
Ys ay, ay, + bx,

Scalar or Dot Product

cza+tb  geb=(ab +a,b,+ab,)=a|b|cosd

a=c-b |a|=\/af+a§+a§
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Vectors - Triple Product @

The vector cross product is defined as: I ]
axb=la, a, a,
b, b, b
Y The triple scalar product is defined as
ae(bxc)
bxc which is a scalar and represents the
volume of the parallelepiped defined by
ab,andc.
Y/ It is also calculated like a determinant:
> X
B aedl a, a, a,
ae(bxc)=[b, b, b
z G G G
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Vectors - Gradient

Assume that we have a scalar field ®(x), we want to know how
it changes with respect to the coordinate axes, this leads to a
vector called the gradient of @

o @

VO =|0,d
0,

o
' 0
With the nabla operator V = 8y and 0, =—

0

z

The gradient is a vector that points in the direction of maximum
rate of change of the scalar function ®(x).

What happens if we have a vector field?
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Vectors - Divergence + Curl @

The divergence is the scalar product of the nabla operator with
a vector field V(x). The divergence of a vector field is a scalar!

VeV =0V +0V, +0d,V,
Physically the divergence can be interpreted as the net flow out

of a volume (or change in volume). E.g. the divergence of the
seismic wavefield corresponds to compressional waves.

The curl is the vector product of the nabla operator with a
vector field V(x). The curl of a vector field is a vector!

i k| (aV,-dy,
VxV=[0, 8, 08,|=|0V,-0yV,
V, V, V,| oV, oV,

The curl of a vector field represents the rotational part of that
field (e.g. shear waves in a seismic wavefield)
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Vectors - Gauss' Theorem

Gauss' theorem is a relation between a volume integral over the
divergence of a vector field F and a surface integral over the
values of the field at its surface S:

dS=nJ-dS

IFOdS=IVOFdV
S V

/

S

.. it is one of the most widely used relations in mathematical physics.
The physical interpretation is again that the value of this integral can be
considered the net flow out of volume V.
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Deformation @

Let us consider a point P, at position r relative to
some fixed origin and a second point Q, displaced
from P, by dx

Unstrained state:
Relative position of point Pyw.r.t.
Y Qo is OX.

Strained state:
Relative position of point Py has
been displaced a distance v to P,

and point Qg a distance v o Q;

Relative positive of point P;w.r.t. Q
is Oy= Ox+ Ou. The change in
relative position between Q and P is
just ou.

v
X
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Linear Elasticity

The relative displacement in the
unstrained state is u(r). The
relative displacement in the
strained state is v=u(r+ ox).

So finally we arrive at expressing
the relative displacement due to
strain:

ou=tr+ 6x)-ur)

We now apply Taylor's
theorem in 3-D to arrive at:

What does this equation mean?

Ou.
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Linear Elasticity - symmetric part @

The partial derivatives of the
vector components

ou,
OX,

represent a second-rank tensor which can be resolved into a
symmetric and anti-symmetric part:

1,0u ou 1,0u ou
B, == (S + Ty — = (T - T,

2 OX, OX 2 OX. OX,

- symmetric » antisymmetric

» deformation * pure rotation
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Linear Elasticity - deformation tensor @

The symmetric part is called the
deformation tensor

& =-(—+—)
2 0X; OX

and describes the relation between deformation and displacement in
linear elasticity. In 2-D this tensor looks like

ou, 1 (au Uy)_
OX 2 o0y OX
Ei_
=11 (aux . auy 8uy
2 0y OX o |
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Deformation tensor - its elements @’

Through eigenvector analysis the meaning of the elements of the
deformation tensor can be clarified:

The deformation tensor assigns each point - represented by position
vector y a new position with vector u (summation over repeated
indices applies):

|

Ui =&Y,

The eigenvectors of the deformation tensor are those y's for which
the tensor is a scalar, the eigenvalues A

U; = Ay,
The eigenvalues A can be obtained solving the system:

& — Ad;| =0
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Deformation tensor - its elements

Thus

U, =AY, U, = ﬁ'z Y, U; = /13)/3

... in other words ...
the eigenvalues are the relative change of length along the three
coordinate axes

u
ﬂ’l -1 shear angle
Y1
>
In arbitrary coordinates the diagonal
elements are the relative change of length /

along the coordinate axes and the off-
diagonal elements are the infinitesimal shear
angles.
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Deformation tensor - trace @

The trace of a tensor is defined as the sum over the diagonal
elements. Thus:

Ei =&yt &, tTE,

This trace is linked to the volumetric change after deformation.
Before deformation the volume was V,, . Because the diagonal
elements are the relative change of lengThs along each direction, the
new volume after deformation is

V = (1-|- gxx)(l_l_ gyy)(l-l— 822)

... and neglecting higher-order terms ...

V=1+¢, =V, +¢,

OX,  OX, 6x3

=divu =V eU
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Deformation tensor - applications @

The fact that we have linearised the strain-displacement relation is
quite severe. It means that the elements of the strain tensor should
be «1. Is this the case in seismology?

Let's consider an example. The 1999 Taiwan earthquake (M=7.6) was
recorded in FFB. The maximum ground displacement was 1.5mm
measured for surface waves of approx. 30s period. Let us assume a
phase velocity of 5km/s. How big is the strain at the Earth's surface,
give an estimate !

The answer is that € would be on the order of 10-7«1. This is typical
for global seismology if we are far away from the source, so that the
assumption of infinitesimal displacements is acceptable.,

For displacements closer to the source this assumption is not valid.
There we need a finite strain theory. Strong motion seismology is an
own field in seismology concentrating on effects close to the seismic
source.
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Strainmeter
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Borehole breakout

FRACTURE PROPAGATION AROUND A COMPRESESSED BOREHOLE

Pre-existing fractures around Fractures start to propagate in
Loading 56 MPa a borehole shear mode
ﬂ \ - e
28 MPa

e |0 ) 4=

i

Fracture openin Fracture propagation Fracture propagation
pening mainly in shear mainly in shear

ORORO.

Source: www.fracom.fi
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Stress - traction

In an elastic body there are restoring forces if deformation takes place.
These forces can be seen as acting on planes inside the body. Forces divided
by an areas are called stresses.

In order for the deformed body to remain deformed these forces have to
compensate each other. We will see that the relationship between the stress
and the deformation (strain) is linear and can be described by tensors.

The tractions t, along axis k are

/tkl\
t, =]t

\ s/

... and along an arbitrary direction
t =t.n,
... which - using the summation convention yields ..

t =tn +t,n, +t;n,
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Stress tensor

3

... iIn components we can write this as

where o;; ist the stress tensor and h;
is a surface normal.

The stress tensor describes the
forces acting on planes within a body.

Due to the symmetry condition

Oij = 0jji

there are only six independent elements.

G The vector normal to the corresponding surface
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Stress equilibrium @

If a body is in equilibrium the internal forces and the forces acting
on its surface have to vanish

| f,dV +§t,dF =0
Vv F

as well as the sum over the angular momentum

jxix f.dv +§Xi><tjd|: =0
F

\

From the second equation the symmetry of the stress tensor can be
derived. Using Gauss' law the first equation yields

00 ;.
f+—=0
OX .

J
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Stress - Glossary

Stress units

bars (106dyn/cm?)
106Pa=1MPa=10bars

1 Pa=1 N/m?2

At sea level p=lbar
At depth 3km p=1kbar

maximum the direction perpendicular to the minimum

compressive compressive stress, near the surface mostly

stress in horizontal direction, linked to tectonic
processes.

principle the direction of the eigenvectors of the

stress axes

stress tensor
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Stresses and faults

[Sfress axes and fuul'l's] O3

thrust faults

G:

strike-slip faults
SF.

principal stress axes
G; max

\:r\:> 02 int

* G, min
; | return to menu' \ 7]
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Stress-strain relation @

The relation between stress and strain in general is described by the
tensor of elastic constants ¢y,

O = Cijkl E Generalised Hooke's Law

From the symmetry of the stress and strain tensor and a
thermodynamic condition if follows that the maximum number if
independent constants of ¢,y is 21. In an isotropic body, where the
properties do not depend on direction the relation reduces to

where A and p are the Lame parameters, 0 is the dilatation and 3ij is
the Kronecker delta.
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Stress-strain relation @

The complete stress tensor looks like

(A+2p)e, + Mey, +6,,) 21uEy, 2us,
le’ngX 2:ugzy (2’ + 2/’1)822 + ﬂ'(gXX + gyy)

There are several other possibilities to describe elasticity:
E elasticity, s Poisson's ratio, k bulk modulus

e _ M(BA+2u) o=’ K =1+2
A+ u 2(A+ p) 3
ot E
2/ - IL[:
(1+0)(1-20) 2(1+0)

For Poisson's ratio we have 0<c<0.5. A useful approximation is A=y,
then 6=0.25. For fluids 6=0.5 (u=0).
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Stress-strain - significance @

As in the case of deformation the stress-strain relation can be
interpreted in simple geometric terms:

U\ N TA//U
rd

- I I

Y

O = HY GZZZE

_IC

P=K4F=Kg,

Remember that these relations are a generalization of Hooke's Law:

F=Ds

D being the spring constant and s the elongation.
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Seismic wave velocities: P-waves

Material V, (km/s)
Unconsolidated material
Sand (dry) 0.2-1.0
Sand (wet) 15-2.0
Sediments
Sandstones 2.0-6.0
Limestones 2.0-6.0
Igneous rocks
Granite 5.5-6.0
Gabbro 6.5-8.5
Pore fluids
Air 0.3
Water 14-15
Oil 1.3-14
Other material
Steel 6.1
Concrete 3.6
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Elastic anisotropy

What is seismic anisotropy?

Oii = Cij €y

Seismic wave propagation in anisotropic media is quite different from
isotropic media:

* There are in general 21 independent elastic constants (instead of 2
in the isotropic case)

* there is shear wave splitting (analogous to optical birefringence)

» waves travel at different speeds depending in the direction of
propagation

* The polarization of compressional and shear waves may not be
perpendicular or parallel to the wavefront, resp.
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Shear-wave splitting

cracked material

anisotropic layer

A,

o
incident S pulse transmitted S pulse “

model of penny shaped cracks
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Anisotropic wave fronts
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FIGURE 15-1

Asimuthal anisotropy of Pn waves in the Pacific upper mantle.
Deviations are from the mean velocity of §. 159 km/s, Data
points from seismic-refraction results of Morris and others
(1969). The curve is the velocity measured in the latwreatory for
samples from the Bay of Islands ophiolite (Christensen and Salis-
bury, 1979).
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Elastic anisotropy - olivine

b a

T.T2km/s B25kmis
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,I”f ¢/ / /¢ L/ Ly
/ i i ;,-" H%:gl:;'ﬁ;c . ;”;" 6.92 kmfs
T T T DISCONTINUITY 7 T T T
Explanation of observed effects
9.89 km/s T92kmSs . .. .
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in the upper mantle

OLIVINE ORTHOPYROXENE

FIGURE 15-2

Olivine and orthopyroxene orientations within the upper mantle showing compressional
velocities for the three crystallographic axes, and compressional and shear velocities in the
alivine a-c plane and orthopyroxene b-c plane (after Christensen and Lundquist. 1982).
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Elastic anisotropy - tensor elements

TABLE 15-5
Schematic Elastic Constant Matnoes
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Elastic anisotropy - applications @

Crack-induced anisotropy

Pore space aligns itself in the stress field. Cracks
are aligned perpendicular to the minimum
compressive stress. The orientation of cracks is
of enormous interest to reservoir engineers!

Changes in the stress field may alter the density
and orientation of cracks. Could tfime-dependent
changes allow prediction of ruptures, efc. ?

SKS - Splitting

Could anisotropy help in understanding mantle
flow processes?
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Equations of motion @

We now have a complete description of the forces acting within an
elastic body. Adding the inertia forces with opposite sign leads us

from
0o

f+—2=0

" OX

the equations of motion for dynamic elasticity
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Summary: Elasticity - Stress

Seismic wave propagation can in most cases be described by linear elasticity.
The deformation of a medium is described by the symmetric elasticity tensor.

The internal forces acting on virtual planes within a medium are described by the
symmeftric stress tensor.

The stress and strain are linked by the material parameters (like spring constants)
through the generalised Hooke's Law.

In isotropic media there are only two elastic constants, the Lame parameters.

In anisotropic media the wave speeds depend on direction and there are a maximum
of 21 independant elastic constants.

The most common anisotropic symmetry systems are hexagonal (5) and
orthorhombic (9 independent constants).
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