Computational seismology: applications

Finite Differences

- Cartesian grids
 - Fault zone waves
 - Los Angeles Basin Earthquake scenarios (Olsen)
- Spherical grids
 - Global SH and P-SV wave propagation
 - Spherical sections waves in subduction zones

Spectral Element Method

- Regular grids
 - Time reversal (Finite source inversion)
 - > Full waveform inversion on a continental scale
- Irregular/unstructured grids
 - Soil-structure interaction
 - Earthquake scenarios
- Global wave propagation (Komatitsch and Tromp)

Discontinuous Galerkin Methods: WHY?

With studies by Jahnke, Fohrmann, Cochard, Käser, Fichtner, Stuppazzini, Ripperger, Nissen-Meyer, Kremers, Brietzke, a.o., (all LMU) as well as Olsen, Komatitsch, Tromp a.o.

The Forward Problem

... a glossary ...

What method should I use for a specific problem?

Numerical Methods

low-order vs. high order methods; FD, FE, SE, FV, DG, BE; global vs. local time stepping

Geometrical complexity, computational grids

regular, unstructured, adaptive meshes; conforming vs. non-conforming meshes; tetrahedral vs. hexahedral grids (combinations)

Parallelization

mesh partitioning, load balancing, optimization, multi-platform implementations, parallel scaling

Large data volume handling

post-processing, visualization, transfer and storage

Finite Differences

- FD approximations in space and time
- Simple to understand
- Compact codes
- Easy to parallelize
- Hard to get boundary conditions (free surface, absorbing) accurate
- "brute force" approach

FD Cartesian Grids

FD – Fault zone wave propagation

Aftershock recordings after the 1999 M7.4 Izmit earthquake

From: Ben-Zion, Peng, Okaya, Seeber, Armbruster, Michael, Ozer, SSA2002

FZ trapped waves

At distance (about 300m) from fault

Observations across FZ

Benchmarking

FZ discontinuities

Shallow fault zones

Volume that generates FZ waves

Fohrmann et al. 2002.

Earthquake scenarios based on FD

A number of stunning visualizations of earthquake scenarios can be found here (code by Kim Olsen, SDSU):

http://visservices.sdsc.edu/projects/scec/t erashake/2.1/

Earthquake scenarios Los Angeles

FD Cartesian Grids 3-D with topography

Volcanoes

What is the contribution of topography to scattering? Can we simulate the seismic signatures of pyroclastic flows?

Blocky topography

Particle Motions

FD Spherical Grids axisymmetric

Waves in spherical coordinates

$$\rho \partial_t v_r = \partial_r \sigma_{rr} + \frac{1}{r} \partial_\theta \sigma_{r\theta} + \frac{1}{r \sin \theta} \partial_\varphi \sigma_{r\varphi} \\
+ \frac{1}{r} (2\sigma_{rr} - \sigma_{\theta\theta} - \sigma_{\varphi\varphi} + \sigma_{r\theta} \cot \theta) + f_r \\
\rho \partial_t v_\theta = \partial_r \sigma_{r\theta} + \frac{1}{r} \partial_\theta \sigma_{\theta\theta} + \frac{1}{r \sin \theta} \partial_\varphi \sigma_{\theta\varphi} \\
+ \frac{1}{r} ((\sigma_{\theta\theta} - \sigma_{\varphi\varphi}) \cot \theta + 3\sigma_{r\theta}) + f_\theta \\
\rho \partial_t v_\varphi = \partial_r \sigma_{r\varphi} + \frac{1}{r} \partial_\theta \sigma_{\theta\varphi} + \frac{1}{r \sin \theta} \partial_\varphi \sigma_{\varphi\varphi} \\
+ \frac{1}{r} ((3\sigma_{r\varphi} + 2\sigma_{\theta\varphi} \cot \theta)) + f_\varphi$$
(.) = 0

Axisymmetric

Models

Equations of motion (velocity – stress)

Grids in spherical geometry

P-SV

SH

SH wave propagation

Red and yellow denote positive and negative displacement

Wavefield for source at 600km depth.

z.B. Igel und Weber, 1995 Chaljub und Tarantola, 1997

Symmetry axis

Benchmarking

DSM: Direct solution method by Geller, Cummins, ...

Towards 3-D global wave propagation

Global P-wave propagation

Waves through random mantle models

SH - Wave effects

Is the mantle faster than we think?

Jahnke, Thorne, Cochard, Igel, GJI, 2008

FD Spherical Grids 3-D sections

Spherical section – regular grid

Waves in spherical sections

Subduction zones

Subduction zones

Can we observe such effects?

PREM+Slab

Spectral element method

Cartesian grids

Synthethic experiment: source inversion

True source

Seismograms

Time reversal – point source

Computational seismology - applications

Time reversal: real network

Time reversal: ideal network

Real data: Tottori earthquake

Reverse movie

Focus time

Projection on fault

Spectral element method

spherical regular grids

Simple example

Ray coverage - initial model

Sensitivity kernels

Final model

Before - After

Improvement

Spectral element method

Unstructured grids

Computational seismology - applications

Grenoble basin

The bridge

Soil – structure interaction

Spectral element method

Global wave propagation (Komatitsch and Tromp)

Cubed Sphere

Alaska, Denali, M 7.9, 2002

Observations - Synthetics

Observations - Synthetics

Computational seismology - applications

Discontinuous Galerkin

Why (the hell) do we need another method?

Computational seismology - applications

Waves on unstructured grids? tetrahedral

Arbirtrarily high-or DER - Discontinuous Galerkin

- Combination of a discontinuous Galerkin method with ADER time integration
- Piecewise polynomial approximation combined with fluxes across elements (finite volumes)
- Time integration as accurate as spatial approximation, applicable also to strongly irregular meshes (not so usually for FD, FE, SE)
- Method developed in aero-acoustics and computational fluid dynamics
- The scheme is entirely local, no large matrix inversion
 -> efficient parallelization
- Drawback: Algorithms on tetrahedral grids slower than spectral element schemes on hexahedra

Several articles in Geophys. J. Int., Geophysics, a.o. by Käser, Dumbser, de la Puente, and co-workers

P - adaptivity

- Use high precision (i.e., high-order polynomials) only where necessary
- High precision where cells are large (high velocities)
- Low precision where cells are small (because of structural heterogeneities)

Käser et al. (2006)

Dumbser, Käser and Toro, GJI, 2007

Mesh Partitioning and Parallel Computing the problem of load blancing

Topographic effects

Topographic Effects

x [km]

12

Regional and Global Wave Propagation crust, crust, crust!

DEISA DIGEST

Extreme computing in Europe

Earthquake scenarios for Europe

SEISMIC HAZARDS AND GROUND MOTION AMPLITUDES WILL BE BETTER ESTIMATED IN THE FUTURE THANKS TO THE EUQUAKE PROJECT. ITS RESEARCH RESULTS WERE ACHIEVED USING SUPERCOMPUTING RESOURCES OFFERED BY DEISA. THE PROJECT STARTED IN JUNE 2008 AND ENDED IN AUGUST 2009.

Global wave propagation

... keeping the number of points per wavelength constant ...

Benchmarking DG vs. SE

The sound of volcanoes

Eruption, 15. Juni, 2006

Reservoir applications

task: model also steel casing!

Summary

- Computational 3-D wave propagation finds is now applications in almost all fields of Earth sciences
- There is not ONE method that works best for all problems
- Making codes work on large computers will be more and more a challenge
- The most promising methods for the coming years seems FD (still), SE, and DG