
1Finite element method

Finite Elements

Basic formulation
Basis functions
Stiffness matrix
Poisson‘s equation

Regular grid
Boundary conditions
Irregular grid

Numerical Examples

Scope: Understand the basic concept of the finite element
method with the simple-most equation.

2Finite element method

Formulation

Let us start with a simple linear system of equations

| * y

and observe that we can generally multiply both sides of this
equation with y without changing its solution. Note that x,y
and b are vectors and A is a matrix.

bAx =

nyybyAx ℜ∈=→

We first look at Poisson’s equation

)()(xfxu =Δ−
where u is a scalar field, f is a source term and in 1-D

2

2
2

x∂
∂

=∇=Δ

3Finite element method

Poisson‘s equation

fvuv =Δ−

We now multiply this equation with an arbitrary function v(x),
(dropping the explicit space dependence)

... and integrate this equation over the whole domain. For
reasons of simplicity we define our physical domain D in the
interval [0, 1].

∫∫ =Δ−
DD

fvuv

dxfvdxuv ∫∫ =Δ−
1

0

1

0

Das Reh springt hoch,

das Reh springt weit,

warum auch nicht,

es hat ja Zeit.

... why are we doing this? ... be patient ...

4Finite element method

Discretization

As we are aiming to find a numerical solution to our problem it is
clear we have to discretize the problem somehow. In FE problems
– similar to FD – the functional values are known at a discrete set
of points.

... regular grid ...

... irregular grid ...

Domain D

The key idea in FE analysis is to approximate all functions in
terms of basis functions ϕ, so that

i

N

i
icuu ϕ∑

=

=≈
1

~

5Finite element method

Basis function

where N is the number nodes in our physical domain and ci are real
constants.

With an appropriate choice of basis functions ϕi , the coefficients ci
are equivalent to the actual function values at node point i. This – of
course – means, that ϕi =1 at node i and 0 at all other nodes ...

Doesn’t that ring a bell?

Before we look at the basis functions, let us ...

i

N

i
icuu ϕ∑

=

=≈
1

~

6Finite element method

Partial Integration

... partially integrate the left-hand-side of our equation ...

dxfvdxuv ∫∫ =Δ−
1

0

1

0

[] dxuvuvdxvu ∫∫ ∇∇+∇=∇•∇−
1

0

1
0

1

0

)(

we assume for now that the derivatives of u at the boundaries vanish
so that for our particular problem

dxuvdxvu ∫∫ ∇∇=∇•∇−
1

0

1

0

)(

7Finite element method

…

... so that we arrive at ...

... with u being the unknown. This is also true for our
approximate numerical system

dxfvdxvu ∫∫ =∇∇
1

0

1

0

... where ...

i

N

i
icu ϕ∑

=

=
1

~

was our choice of approximating u using basis functions.

dxfvdxvu ∫∫ =∇∇
1

0

1

0

~

8Finite element method

Partial integration

... remember that v was an arbitrary real function ...
if this is true for an arbitrary function it is also true if

... so any of the basis functions previously defined ...

jv ϕ=

... now let’s put everything together ...

dxfvdxvu ∫∫ =∇∇
1

0

1

0

~

9Finite element method

The discrete system

The ingredients:
kv ϕ=

i

N

i
icu ϕ∑

=

=
1

~

dxfvdxvu ∫∫ =∇∇
1

0

1

0

~

dxfdxc kk

n

i
ii ϕϕϕ ∫∫ ∑ =∇⎟
⎠

⎞
⎜
⎝

⎛
∇

=

1

0

1

0 1

... leading to ...

10Finite element method

The discrete system

dxfdxc kki

n

i
i ϕϕϕ ∫∫∑ =∇∇

=

1

0

1

01

... the coefficients ck are constants so that for one particular
function ϕk this system looks like ...

kiki gAb =
... probably not to your surprise this can be written in matrix form

ki
T
ik gbA =

11Finite element method

The solution

... with the even less surprising solution

() k
T
iki gAb 1−

=

remember that while the bi ’s are really the coefficients of the basis
functions these are the actual function values at node points i as well

because of our particular choice of basis functions.

This become clear further on ...

12Finite element method

Basis functions

... otherwise we are
free to choose any
function ...

The simplest choice
are of course linear
functions:

+ grid nodes

blue lines – basis
functions ϕi

1

2

3

4

5

6

7

8

9

10

we are looking for functions ϕi
with the following property ⎩

⎨
⎧

≠=
=

=
ijxxfor

xxfor
x

j

i
i ,0

1
)(ϕ

13Finite element method

Basis functions - gradient

To assemble the stiffness matrix we need the gradient (red) of the basis
functions (blue)

1
2

3
4
5

6
7
8
9

10

14Finite element method

Stiffness matrix

Knowing the particular form of the basis functions we can now
calculate the elements of matrix Aij and vector gi

dxfdxc kki

n

i
i ϕϕϕ ∫∫∑ =∇∇

=

1

0

1

01

dxA kiik ∫ ∇∇=
1

0

ϕϕ

kiki gAb =

dxfg kk ϕ∫=
1

0

Note that ϕi are continuous functions defined in the interval [0,1], e.g.

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<<
−

−

≤<
−
−

= +
+

+

−
−

−

elsewhere

xxxfor
xx
xx

xxxfor
xx
xx

x ii
ii

i

ii
ii

i

i

0

)(1
1

1

1
1

1

ϕ
Let us – for now – assume a

regular grid ... then

15Finite element method

Stiffness matrix –regular grid

... where we have used ...

⇒

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

<<
−

−

≤<
−
−

= +
+

+

−
−

−

elsewhere

xxxfor
xx
xx

xxxfor
xx
xx

x ii
ii

i

ii
ii

i

i

0

)(1
1

1

1
1

1

ϕ

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<<−

≤<−+

=

elsewhere

dxxfor
dx
x

xdxfor
dx
x

xi

0

~0
~

1

0~1
~

)~(ϕ

1

~

−−=
−=

ii

i

xxdx
xxx

dx

xi

ϕi

16Finite element method

Regular grid - gradient

⎪
⎩

⎪
⎨

⎧
<<−
≤<−

=∇
elsewhere

dxxfordx
xdxfordx

xi

0

~0/1
0~/1

)~(ϕ
1

~

−−=
−=

ii

i

xxdx
xxx

dx

xi

ϕi

1/dx

-1/dx

17Finite element method

Stifness matrix - elements

dxA kiik ∫ ∇∇=
1

0

ϕϕ

1
2

3
4
5

6
7
8
9

10

... we have to distinguish various cases ... e.g. ...

dx
dx

dx
dx

dxdx
dxdxA

dxdxx

x

dxx

x

1111

0
211

1

0
1111

1

1

1

1

==
−−

=∇∇=∇∇= ∫∫∫∫
++

ϕϕϕϕ

dx
dx

dx
dx

dx

dxdxdxA

dx

dx

dxx

x

x

dxx

211

0
2

0

2

2222

1

0
2222

2

2

2

2

=+=

∇∇+∇∇=∇∇=

∫∫

∫∫∫

−

+

−

ϕϕϕϕϕϕ

18Finite element method

Stiffness matrix

dxA kiik ∫ ∇∇=
1

0

ϕϕ

1
2

3
4
5

6
7
8
9

10

... and ...

dx
dx

dx

dx
dxdx

dxdxA

dx

dxx

x

dxx

x

11

11

0
2

21

1

0
2112

1

1

1

1

−
=

−
=

−
=∇∇=∇∇=

∫

∫∫∫
++

ϕϕϕϕ

1221 AA =

... and ...

... so that finally the stiffness matrix looks like ...

19Finite element method

Stiffness matrix

dxA kiik ∫ ∇∇=
1

0

ϕϕ

1
2

3
4
5

6
7
8
9

10

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−−

−−
−

=

11
121

121
11

1
O

dx
Aij

... so far we have ignored sources and boundary conditions ...

20Finite element method

Boundary conditions - sources

... let us start restating the problem ...

)()(xfxu =Δ−

... which we turned into the following formulation ...

dxfdxc kki

n

i
i ϕϕϕ ∫∫∑ =∇∇

=

1

0

1

01

... assuming ...

i

N

i
icu ϕ∑

=

=
1

~ with b.c. Ni

N

i
i uucu ϕϕϕ)1()0(~

1

1

2
++=∑

−

=

where u(0) and u(1) are the values at the boundaries of the domain [0,1].
How is this incorporated into the algorithm?

21Finite element method

Boundary conditions

)()(xfxu =Δ−

... which we turned into the following formulation ...

dxfdxc kki

n

i
i ϕϕϕ ∫∫∑ =∇∇

=

1

0

1

01

... in pictorial form ...

dxudxudxfdxc knkkki

n

i
i ∫∫∫∫∑ ∇∇+∇∇+=∇∇

−

=

1

0

1

0
1

1

0

1

0

1

2

)1()0(ϕϕϕϕϕϕϕ

=

boundary condition

boundary condition

source heterogeneity (f)

... the system feels the boundary conditions through the (modified) source term

AT b = g

22Finite element method

Numerical Example

)()(xfxu =Δ−

Domain: [0,1]; nx=100;
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=u(1)=0

f(nx/2)=1/dx;

for it = 1:nit,

uold=u;

du=(csh(u,1)+csh(u,-1));

u=.5*(f*dx^2 + du);

u(1)=0;

u(nx)=0;

end

Matlab

FD code

% source term
s=(1:nx)*0;s(nx/2)=1.;
% boundary left u_1 int{ nabla phi_1 nabla phij }
u1=0; s(1) =0;
% boundary right u_nx int{ nabla phi_nx nabla phij }
unx=0; s(nx)=0;

% assemble matrix Aij

A=zeros(nx);

for i=2:nx-1,
for j=2:nx-1,

if i==j,
A(i,j)=2/dx;

elseif j==i+1
A(i,j)=-1/dx;

elseif j==i-1
A(i,j)=-1/dx;

else
A(i,j)=0;

end
end

end
fem(2:nx-1)=inv(A(2:nx-1,2:nx-1))*s(2:nx-1)';
fem(1)=u1;
fem(nx)=unx;

Matlab

FEM code

23Finite element method

Regular grid

)()(xfxu =Δ−

Domain: [0,1]; nx=100;
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=u(1)=0

Matlab FD code (red)

Matlab FEM code (blue)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

x

u(
x)

 FD (red) - FEM (blue)

24Finite element method

Regular grid - non zero b.c.

)()(xfxu =Δ−

Domain: [0,1]; nx=100;
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=0.15
u(1)=0.05

Matlab FD code (red)

Matlab FEM code (blue)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

u(
x)

 FD (red) - FEM (blue) -> Regular grid

% Quelle

s=(1:nx)*0;s(nx/2)=1.;

% Randwert links u_1 int{ nabla phi_1 nabla
phij }

u1=0.15; s(2) =u1/dx;

% Randwert links u_nx int{ nabla phi_nx nabla
phij }

unx=0.05; s(nx-1)=unx/dx;

25Finite element method

Stiffness – irregular grid

1

2

3

4

5

6

7

8

9

10

dxA kiik ∫ ∇∇=
1

0

ϕϕ

21
10

2

11
21

1

0
2112

11

11

1

1

11

1

11

1

A
h

dx
h

dx
hh

dxdxA

h

hx

x

hx

x

=
−

=
−

=

−
=∇∇=∇∇=

∫

∫∫∫
++

ϕϕϕϕ

ii
ii hh

A 11

1

+=
−

i=1 2 3 4 5 6 7
+ + + + + + +

h1 h2 h3 h4 h5 h6

26Finite element method

Example

)()(xfxu =Δ−

Domain: [0,1]; nx=100;
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=u0; u(1)=u1

for i=2:nx-1,

for j=2:nx-1,

if i==j,

A(i,j)=1/h(i-1)+1/h(i);

elseif i==j+1

A(i,j)=-1/h(i-1);

elseif i+1==j

A(i,j)=-1/h(i);

else

A(i,j)=0;

end

end

end

i=1 2 3 4 5 6 7
+ + + + + + +

h1 h2 h3 h4 h5 h6

Stiffness matrix A

27Finite element method

Irregular grid – non zero b.c.

)()(xfxu =Δ−

Domain: [0,1]; nx=100;
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=0.15
u(1)=0.05

Matlab FD code (red)

Matlab FEM code (blue)

+ FEM grid points 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

u(
x)

 FD (red) - FEM (blue)

FEM on Chebyshev grid

28Finite element method

Summary

In finite element analysis we approximate a function defined in
a Domain D with a set of orthogonal basis functions with
coefficients corresponding to the functional values at some
node points.

The solution for the values at the nodes for some partial
differential equations can be obtained by solving a linear
system of equations involving the inversion of (sometimes
sparse) matrices.

Boundary conditions are inherently satisfied with this
formulation which is one of the advantages compared to finite
differences.

In finite element analysis we approximate a function defined in
a Domain D with a set of orthogonal basis functions with
coefficients corresponding to the functional values at some
node points.

The solution for the values at the nodes for some partial
differential equations can be obtained by solving a linear
system of equations involving the inversion of (sometimes
sparse) matrices.

Boundary conditions are inherently satisfied with this
formulation which is one of the advantages compared to finite
differences.

	Finite Elements
	Formulation
	Poisson‘s equation
	Discretization
	Basis function
	Partial Integration
	…
	Partial integration
	The discrete system
	The discrete system
	The solution
	Basis functions
	Basis functions - gradient
	Stiffness matrix
	Stiffness matrix –regular grid
	Regular grid - gradient
	Stifness matrix - elements
	Stiffness matrix
	Stiffness matrix
	Boundary conditions - sources
	Boundary conditions
	Numerical Example
	Regular grid
	Regular grid - non zero b.c.
	Stiffness – irregular grid
	Example
	Irregular grid – non zero b.c.
	Summary

