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Finite Elements

Basic formulation
Basis functions
Stiffness matrix
Poisson‘s equation

Regular grid
Boundary conditions
Irregular grid

Numerical Examples

Scope: Understand the basic concept of the finite element 
method with the simple-most equation. 
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Formulation

Let us start with a simple linear system of equations

| * y

and observe that we can generally multiply both sides of this 
equation with y without changing its solution. Note that x,y 
and b are vectors and A is a matrix.

bAx =

nyybyAx ℜ∈=→

We first look at Poisson’s equation

)()( xfxu =Δ−
where u is a scalar field, f is a source term and in 1-D
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Poisson‘s equation

fvuv =Δ−

We now multiply this equation with an arbitrary function v(x), 
(dropping the explicit space dependence)

... and integrate this equation over the whole domain. For 
reasons of simplicity we define our physical domain D in the 
interval [0, 1].

∫∫ =Δ−
DD

fvuv

dxfvdxuv ∫∫ =Δ−
1

0

1

0

Das Reh springt hoch,

das Reh springt weit,

warum auch nicht,

es hat ja Zeit.

... why are we doing this? ... be patient ...
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Discretization

As we are aiming to find a numerical solution to our problem it is 
clear we have to discretize the problem somehow. In FE problems 
– similar to FD – the functional values are known at a discrete set 
of points. 

... regular grid ...

... irregular grid ...

Domain D

The key idea in FE analysis is to approximate all functions in 
terms of basis functions ϕ, so that
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Basis function

where N is the number nodes in our physical domain and ci are real 
constants.

With an appropriate choice of basis functions ϕi , the coefficients ci 
are equivalent to the actual function values at node point i. This – of 
course – means, that ϕi =1 at node i and 0 at all other nodes ...

Doesn’t that ring a bell?

Before we look at the basis functions, let us ...
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Partial Integration

... partially integrate the left-hand-side of our equation ...

dxfvdxuv ∫∫ =Δ−
1

0

1

0

[ ] dxuvuvdxvu ∫∫ ∇∇+∇=∇•∇−
1

0

1
0

1

0

)(

we assume for now that the derivatives of u at the boundaries vanish 
so that for our particular problem

dxuvdxvu ∫∫ ∇∇=∇•∇−
1

0

1

0
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…

... so that we arrive at ...

... with u being the unknown. This is also true for our 
approximate numerical system

dxfvdxvu ∫∫ =∇∇
1

0

1

0

... where ...
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was our choice of approximating u using basis functions.

dxfvdxvu ∫∫ =∇∇
1

0

1

0
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Partial integration

... remember that v was an arbitrary real function ... 
if this is true for an arbitrary function it is also true if

... so any of the basis functions previously defined ...

jv ϕ=

... now let’s put everything together ... 

dxfvdxvu ∫∫ =∇∇
1

0

1

0
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The discrete system

The ingredients:
kv ϕ=

i

N

i
icu ϕ∑

=

=
1

~

dxfvdxvu ∫∫ =∇∇
1

0

1

0

~

dxfdxc kk

n

i
ii ϕϕϕ ∫∫ ∑ =∇⎟
⎠

⎞
⎜
⎝

⎛
∇

=

1

0

1

0 1

... leading to ...
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The discrete system

dxfdxc kki

n

i
i ϕϕϕ ∫∫∑ =∇∇

=

1

0

1

01

... the coefficients ck are constants so that for one particular 
function ϕk this system looks like ...

kiki gAb =
... probably not to your surprise this can be written in matrix form

ki
T
ik gbA =
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The solution

... with the even less surprising solution

( ) k
T
iki gAb 1−

=

remember that while the bi ’s are really the coefficients of the basis 
functions these are the actual function values at node points i as well 

because of our particular choice of basis functions.

This become clear further on ...
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Basis functions

... otherwise we are 
free to choose any 
function ...

The simplest choice 
are of course linear 
functions:

+ grid nodes

blue lines – basis 
functions ϕi
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we are looking for functions ϕi
with the following property ⎩
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Basis functions - gradient

To assemble the stiffness matrix we need the gradient (red) of the basis 
functions (blue)
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Stiffness matrix

Knowing the particular form of the basis functions we can now 
calculate the elements of matrix Aij and vector gi

dxfdxc kki

n

i
i ϕϕϕ ∫∫∑ =∇∇

=

1

0

1

01

dxA kiik ∫ ∇∇=
1

0

ϕϕ

kiki gAb =

dxfg kk ϕ∫=
1

0

Note that ϕi are continuous functions defined in the interval [0,1], e.g.
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ϕ
Let us – for now – assume a 

regular grid ... then
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Stiffness matrix –regular grid

... where we have used ...
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Regular grid - gradient

⎪
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Stifness matrix - elements

dxA kiik ∫ ∇∇=
1

0

ϕϕ
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... we have to distinguish various cases ... e.g. ...

dx
dx

dx
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dxdxA
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Stiffness matrix

dxA kiik ∫ ∇∇=
1

0

ϕϕ
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... and ...

dx
dx

dx

dx
dxdx

dxdxA
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∫

∫∫∫
++

ϕϕϕϕ

1221 AA =

... and ...

... so that finally the stiffness matrix looks like ...
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Stiffness matrix

dxA kiik ∫ ∇∇=
1

0

ϕϕ
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1
O

dx
Aij

... so far we have ignored sources and boundary conditions ...
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Boundary conditions - sources

... let us start restating the problem ...

)()( xfxu =Δ−

... which we turned into the following formulation ...

dxfdxc kki

n

i
i ϕϕϕ ∫∫∑ =∇∇

=

1

0

1

01

... assuming ...

i

N

i
icu ϕ∑

=
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~ with b.c. Ni
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i
i uucu ϕϕϕ )1()0(~
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++=∑

−

=

where u(0) and u(1) are the values at the  boundaries of the domain [0,1]. 
How is this incorporated into the algorithm? 
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Boundary conditions

)()( xfxu =Δ−

... which we turned into the following formulation ...

dxfdxc kki

n

i
i ϕϕϕ ∫∫∑ =∇∇

=

1

0

1

01

... in pictorial form ...

dxudxudxfdxc knkkki

n

i
i ∫∫∫∫∑ ∇∇+∇∇+=∇∇
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)1()0( ϕϕϕϕϕϕϕ

=

boundary condition 

boundary condition 

source heterogeneity (f) 

... the system feels the boundary conditions through the (modified) source term

AT b = g
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Numerical Example

)()( xfxu =Δ−

Domain: [0,1]; nx=100; 
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=u(1)=0

f(nx/2)=1/dx;

for it = 1:nit,

uold=u;

du=(csh(u,1)+csh(u,-1));

u=.5*( f*dx^2 + du );

u(1)=0;

u(nx)=0;

end

Matlab
 

FD code

% source term
s=(1:nx)*0;s(nx/2)=1.;
% boundary left u_1  int{ nabla phi_1  nabla phij }
u1=0;   s(1) =0;
% boundary right  u_nx int{ nabla phi_nx nabla phij }
unx=0; s(nx)=0;

% assemble matrix Aij

A=zeros(nx);

for i=2:nx-1,
for j=2:nx-1,

if i==j, 
A(i,j)=2/dx;

elseif j==i+1
A(i,j)=-1/dx;

elseif j==i-1
A(i,j)=-1/dx;

else
A(i,j)=0;

end
end

end
fem(2:nx-1)=inv(A(2:nx-1,2:nx-1))*s(2:nx-1)';
fem(1)=u1;
fem(nx)=unx;

Matlab
 

FEM code
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Regular grid

)()( xfxu =Δ−

Domain: [0,1]; nx=100; 
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=u(1)=0

Matlab FD code (red)

Matlab FEM code (blue)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

x

u(
x)

 FD (red) - FEM (blue) 
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Regular grid - non zero b.c.

)()( xfxu =Δ−

Domain: [0,1]; nx=100; 
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=0.15
u(1)=0.05

Matlab FD code (red)

Matlab FEM code (blue)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

u(
x)

 FD (red) - FEM (blue) -> Regular grid 

% Quelle

s=(1:nx)*0;s(nx/2)=1.;

% Randwert links  u_1  int{ nabla phi_1  nabla 
phij }

u1=0.15;   s(2) =u1/dx;

% Randwert links  u_nx int{ nabla phi_nx nabla 
phij }

unx=0.05; s(nx-1)=unx/dx;
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Stiffness – irregular grid
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Example

)()( xfxu =Δ−

Domain: [0,1]; nx=100; 
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=u0; u(1)=u1

for i=2:nx-1,

for j=2:nx-1,

if i==j,

A(i,j)=1/h(i-1)+1/h(i);

elseif i==j+1

A(i,j)=-1/h(i-1);

elseif i+1==j

A(i,j)=-1/h(i);

else

A(i,j)=0;

end

end

end

i=1   2       3      4   5      6        7
+   +      +      +   +      +       +

h1    h2       h3      h4     h5       h6

Stiffness matrix A
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Irregular grid – non zero b.c.

)()( xfxu =Δ−

Domain: [0,1]; nx=100; 
dx=1/(nx-1);f(x)=d(1/2)
Boundary conditions:
u(0)=0.15
u(1)=0.05

Matlab FD code (red)

Matlab FEM code (blue)

+ FEM grid points 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

u(
x)

 FD (red) - FEM (blue) 

FEM on Chebyshev grid
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Summary

In finite element analysis we approximate a function defined in 
a Domain D with a set of orthogonal basis functions with 
coefficients corresponding to the functional values at some 
node points. 

The solution for the values at the nodes for some partial 
differential equations can be obtained by solving a linear 
system of equations involving the inversion of (sometimes 
sparse) matrices. 

Boundary conditions are inherently satisfied with this 
formulation which is one of the advantages compared to finite 
differences. 

In finite element analysis we approximate a function defined in 
a Domain D with a set of orthogonal basis functions with 
coefficients corresponding to the functional values at some 
node points. 

The solution for the values at the nodes for some partial 
differential equations can be obtained by solving a linear 
system of equations involving the inversion of (sometimes 
sparse) matrices. 

Boundary conditions are inherently satisfied with this 
formulation which is one of the advantages compared to finite 
differences.
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