
1Orthogonal functions

Function approximation: Fourier, Chebyshev, Lagrange

Orthogonal functions
Fourier Series
Discrete Fourier Series
Fourier Transform: properties
Chebyshev polynomials
Convolution
DFT and FFT

Scope: Understanding where the Fourier Transform comes 
from. Moving from the continuous to the discrete world. The 
concepts are the basis for pseudospectral methods and the 
spectral element approach. 
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Fourier Series: one way to derive them

The Problem

we are trying to approximate a function f(x) by another function gn (x) 
which consists of a sum over N orthogonal functions Φ(x) weighted by 
some coefficients an .
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3Orthogonal functions

... and we are looking for optimal functions in a least squares (l2 ) sense ...

... a good choice for the basis functions Φ(x) are orthogonal functions. 
What  are orthogonal functions? Two functions f and g are  said to be 

orthogonal in the interval [a,b] if
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How is this related to the more conceivable concept of orthogonal 
vectors? Let us look at the original definition of integrals:
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Orthogonal Functions

... where x0 =a and xN =b, and xi -xi-1 =Δx ...
If we interpret f(xi ) and g(xi ) as the ith components of an N component 

vector, then this sum corresponds directly to a scalar product of vectors. 
The vanishing of the scalar product is the condition for orthogonality of 

vectors (or functions). 
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Periodic functions
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Let us  assume we have a piecewise continuous function of the form
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... we want to approximate this function with a linear combination of 2π
 periodic functions:
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Orthogonality

... are these functions orthogonal ?
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... YES, and these relations are valid for any interval of length 2π.
Now we know that this is an orthogonal basis, but how can we obtain the 

coefficients for the basis functions?

from minimising f(x)-g(x)
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Fourier coefficients

optimal functions g(x) are given if
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Fourier approximation of |x|

... Example ...

.. and for n<4 g(x) looks like

leads to the Fourier Serie
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Fourier approximation of x2

... another Example ...
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.. and for N<11, g(x) looks like

leads to the Fourier Serie
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Fourier - discrete functions
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.. the so-defined Fourier polynomial is the unique interpolating function to 
the function f(xj ) with N=2m

it turns out that in this particular case the coefficients are given by
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... what happens if we know our function f(x) only at the points
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Fourier - collocation points

... with the important property that ...

... in our previous examples ...
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Fourier series - convergence
f(x)=x2   => f(x) - blue ; g(x) - red; xi - ‘+’
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Fourier series - convergence
f(x)=x2   => f(x) - blue ; g(x) - red; xi - ‘+’
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Gibb’s phenomenon
f(x)=x2   => f(x) - blue ; g(x) - red; xi - ‘+’
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The overshoot for equi- 
spaced Fourier 

interpolations is ≈14% of 
the  step height.
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Chebyshev polynomials

We have seen that Fourier series are excellent for interpolating 
(and differentiating) periodic functions defined on a regularly 
spaced grid. In many circumstances physical phenomena which 
are not periodic (in space) and occur in a limited area. This quest 
leads to the use of Chebyshev polynomials.

We depart by observing that cos(nϕ) can be expressed by a 
polynomial in cos(ϕ):
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... which leads us to the definition:
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Chebyshev polynomials - definition

NnxxxTTn nn ∈−∈=== ],1,1[),cos(),())(cos()cos( ϕϕϕ
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Chebyshev polynomials - Graphical

The first ten polynomials look like [0, -1] 

The n-th polynomial has extrema with values 1 or -1 at  
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Chebyshev collocation points

These extrema are not equidistant (like the Fourier extrema) 
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Chebyshev polynomials - orthogonality

... are the Chebyshev polynomials orthogonal?
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Chebyshev polynomials are an orthogonal set of functions in the 
interval [-1,1]  with respect to the weight function
such that 
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Chebyshev polynomials - interpolation

... we are now faced with the same problem as with the Fourier 
series. We want  to approximate a function f(x), this time not a 

periodical function but  a function which is defined between [-1,1]. 
We are looking for gn (x)  
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... and we are faced with the problem, how we can determine the 
coefficients ck . Again we obtain this by finding the extremum 
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Chebyshev polynomials - interpolation

... to obtain ...
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... surprisingly these coefficients can be calculated with FFT 
techniques, noting that
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Chebyshev - discrete functions
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... leading to the polynomial ...

in this particular case the coefficients are given by
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Chebyshev - collocation points - |x|

f(x)=|x| => f(x) - blue ; gn (x) - red; xi - ‘+’
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Chebyshev - collocation points - |x|

f(x)=|x| => f(x) - blue ; gn (x) - red; xi - ‘+’
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Chebyshev - collocation points - x2

f(x)=x2 => f(x) - blue ; gn (x) - red; xi - ‘+’
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visible at all!
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Chebyshev vs. Fourier - numerical

f(x)=x2 => f(x) - blue ; gN (x) - red; xi - ‘+’

This graph speaks for itself ! Gibb’s phenomenon with Chebyshev?
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Chebyshev vs. Fourier - Gibb’s

f(x)=sign(x-π) => f(x) - blue ; gN (x) - red; xi - ‘+’

Gibb’s phenomenon with Chebyshev? YES!

Chebyshev Fourier
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Chebyshev vs. Fourier - Gibb’s

f(x)=sign(x-π) => f(x) - blue ; gN (x) - red; xi - ‘+’

Chebyshev Fourier
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Fourier vs. Chebyshev

Fourier Chebyshev
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Fourier vs. Chebyshev (cont’d)

Fourier Chebyshev

coefficients

some properties
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• Gibb’s phenomenon for 
discontinuous functions

• Efficient calculation via FFT

• infinite domain through 
periodicity

• limited area calculations

• grid densification at boundaries

• coefficients via FFT

• excellent convergence at 
boundaries

• Gibb’s phenomenon
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The Fourier Transform Pair
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Note the  conventions concerning the sign of the exponents and the factor. 
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Some properties of the Fourier Transform

Defining as the FT: )()( ωFtf ⇒

Linearity

Symmetry

Time shifting

Time differentiation
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Differentiation theorem

Time differentiation )()()( ωω Fi
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Convolution
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The convolution operation is at the heart of linear systems.

Definition:

Properties: )()()()( tftgtgtf ∗=∗
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H(t) is the Heaviside function:
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The convolution theorem

A convolution in the time domain corresponds to a 
multiplication in the frequency domain. 

… and vice versa …

a convolution in the frequency domain corresponds to a 
multiplication in the time domain
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The first relation is of tremendous practical implication!
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Summary

The Fourier Transform can be derived from the problem of 
approximating an arbitrary function. 

A regular set of points allows exact interpolation (or derivation) of 
arbitrary functions

There are other basis functions (e.g., Chebyshev polynomials, 
Legendre polynomials) with similar properties

These properties are the basis for the success of the spectral
element method
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