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Pseudospectral Methods

What is a pseudo-spectral Method?
Fourier Derivatives
The Acoustic Wave Equation with the Fourier Method  
Comparison with the Finite-Difference Method
Dispersion and Stability of Fourier Solutions

The goal of this lecture is to shed light at one end of the axis of FD 
(or convolutional) type differential operators. When one uses all 
information of a space-dependent field to estimate the derivative at a 
point one obtains spectral accuracy.
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What is pseudospectral?

Spectral solutions to time-dependent PDEs are formulated 
in the frequency-wavenumber domain and solutions are 
obtained in terms of spectra (e.g. seismograms). This 
technique is particularly interesting for geometries where 
partial solutions in the ω-k domain can be obtained 
analytically (e.g. for layered models). 

In the pseudo-spectral approach - in a finite-difference like 
manner - the PDEs are solved pointwise in physical space 
(x-t). However, the space derivatives are calculated using 
orthogonal functions (e.g. Fourier Integrals, Chebyshev 
polynomials). They are either evaluated using matrix- 
matrix multiplications, fast Fourier transform (FFT), or 
convolutions.
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Fourier Derivatives
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.. let us recall the definition of the derivative using Fourier integrals ...

... we could either ...

1) perform this calculation in the space domain by convolution

2) actually transform the function f(x) in the k-domain and back
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The acoustic wave equation

let us take the acoustic wave equation with variable density
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the left hand side will be expressed with our 
standard centered finite-difference approach 
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... leading to the extrapolation scheme ... 
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The Fourier Method: acoustic wave propagation

where the space derivatives will be calculated using the Fourier Method. 
The highlighted term will be calculated as follows:
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... then extrapolate ...
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… and in 3D …
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.. where the following algorithm applies to each space dimension ...
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… FD in Matlab …

let us compare the core of the algorithm - the calculation of the derivative
(Matlab code)

function df=fder1d(f,dx,nop)
% fDER1D(f,dx,nop) finite difference
% second derivative

nx=max(size(f));

n2=(nop-1)/2;

if nop==3; d=[1 -2 1]/dx^2; end
if nop==5; d=[-1/12 4/3 -5/2 4/3 -1/12]/dx^2; end

df=[1:nx]*0;

for i=1:nop;
df=df+d(i).*cshift1d(f,-n2+(i-1));
end
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… and as PS …

... and the first derivative using FFTs ... 

function df=sder1d(f,dx)
% SDER1D(f,dx) spectral derivative of vector
nx=max(size(f));

% initialize k
kmax=pi/dx;
dk=kmax/(nx/2);
for i=1:nx/2, k(i)=(i)*dk; k(nx/2+i)=-kmax+(i)*dk; end
k=sqrt(-1)*k;

% FFT and IFFT
ff=fft(f); ff=k.*ff; df=real(ifft(ff));

.. simple and elegant ...



Pseudospectral methods

Dispersion and Stability
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Dispersion and Stability

What are the consequences?

a) when dt << 1, sin-1 (kcdt/2) ≈kcdt/2 and w/k=c
-> practically no dispersion

b) the argument of asin must be smaller than one.
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Results @ 10Hz

Example of acoustic 1D wave simulation.
FD3 -point operator

red-analytic; blue-numerical; green-difference
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 3 point - 2 order; T = 6.6 s, Error = 50.8352% 
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Results @ 10Hz

Example of acoustic 1D wave simulation.
FD 5 -point operator

red-analytic; blue-numerical; green-difference
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 5 point - 2 order; T = 7.8 s, Error = 3.9286% 
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Results @ 10Hz

Example of acoustic 1D wave simulation.
Fourier operator

red-analytic; blue-numerical; green-difference
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 Fourier - 2 order; T = 35 s, Error = 2.72504% 
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Results @ 20Hz

Example of acoustic 1D wave simulation.
FD3 -point operator

red-analytic; blue-numerical; green-difference
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 3 point - 2 order; T = 7.8 s, Error = 156.038% 
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Results @ 20Hz

Example of acoustic 1D wave simulation.
FD 5 -point operator

red-analytic; blue-numerical; green-difference
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 5 point - 2 order; T = 7.8 s, Error = 45.2487% 
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Results @ 20Hz

Example of acoustic 1D wave simulation.
Fourier operator

red-analytic; blue-numerical; green-difference
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 Fourier - 2 order; T = 34 s, Error = 18.0134% 
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Computational Speed

Difference (%) between numerical  and analytical solution 
as a function of propagating frequency
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Numerics and Green‘s Functions

The concept of Green’s Functions (impulse responses) plays an 
important role in the solution of partial differential equations. It is also 

useful for numerical solutions. Let us recall the acoustic wave equation
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being the Laplace operator. We now introduce a delta source in
space and time
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(Full proof given in Aki and Richards, Quantitative Seismology, Freeman+Co, 1981, p. 65)
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Numerical Green‘s functions

3 point operator 5 point operator Fourier Method
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Pseudospectral Methods - Summary

The Fourier Method can be considered as the limit of the finite-difference 
method as the length of the operator tends to the number of points 
along a particular dimension. 

The space derivatives are calculated in the wavenumber domain by 
multiplication of the spectrum with ik. The inverse Fourier transform 
results in an exact space derivative up to the Nyquist frequency.

The use of Fourier transform imposes some constraints on the 
smoothness of the functions to be differentiated. Discontinuities lead 
to Gibb’s phenomenon. 

As the Fourier transform requires periodicity this technique is particular 
useful where the physical problems are periodical (e.g. angular 
derivatives in cylindrical problems).

Pseudospectral methods play a minor role in seismology today but the 
principal of spectral accuracy plays an important role in spectral 
element methods


	Pseudospectral Methods
	What is pseudospectral?
	Fourier Derivatives
	The acoustic wave equation
	The Fourier Method: acoustic wave propagation
	… and in 3D …
	… FD in Matlab …
	… and as PS … 
	Dispersion and Stability
	Dispersion and Stability
	Results @ 10Hz
	Results @ 10Hz
	Results @ 10Hz
	Results @ 20Hz
	Results @ 20Hz
	Results @ 20Hz
	Computational Speed
	Numerics and Green‘s Functions
	Numerical Green‘s functions
	Pseudospectral Methods - Summary

