
Introduction

Computational Seismology: An Introduction

Aim of lecture:

 Understand why we need numerical methods to understand our

world

 Learn about various numerical methods (finite differences, 

pseudospectal methods, finite (spectral) elements) and understand 

their similarities, differences, and domains of applications

 Learn how to replace simple partial differential equations by their

numerical approximation

 Apply the numerical methods to the elastic wave equation

 Turn a numerical algorithm into a computer program (using Matlab, 

Fortran, or Python)
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Structure of Course

 Introduction and Motivation

 The need for synthetic

seismograms

 Other methodologies for simple 

models

 3D heterogeneous models

 Finite differences

 Basic definition

 Explicit and implicit methods

 High-order finite differences

 Taylor weights

 Truncated Fourier operators

 Pseudospectral methods

 Derivatives in the Fourier domain

 Finite-elements (low order)
 Basis functions

 Weak form of pde‘s

 FE approximation of wave equation

 Spectral elements
 Chebyshev and Legendre basis

functions

 SE for wave equation
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Literature

 Lecture notes (ppt)  www.geophysik.uni-muenchen.de/Members/igel

 Presentations and books in SPICE archive www.spice-rtn.org

 Any readable book on numerical methods (lots of open manuscripts

downloadable, eg http://samizdat.mines.edu/)

 Shearer: Introduction to Seismology (2nd edition, 2009,Chapter 3.7-

3.9)

 Aki and Richards, Quantitative Seismology

(1st edition, 1980)

 Mozco: The Finite-Difference Method for 

Seismologists. An Introduction. 

(pdf available at spice-rtn.org)

3Computational Seismology
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Why numerical methods?
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Example: seismic wave propagation

homogeneous medium

Seismometers

explosion

In this case there 

are analytical solutions? 

Are they useful?
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Analytical solution for a double couple point source
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Near field term 

contains the 

static 

deformation

Intermediate 

terms

Far field terms: 

the main 

ingredient for 

source 

inversion, ray 

theory, etc.

Ground displacement

Aki and Richards (2002)

… pretty complicated for such a simple problem, no way to do anything analytical in 2D or 3D!!!!
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Why numerical methods?
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Example: seismic wave propagation

layered medium

Seismometers

explosion

... in this case quasi-analytical 

solutions exist, applicable for example 

for layered sediments ... 
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Why numerical methods?
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Example: seismic wave propagation

long wavelength 

perturbations

Seismometers

explosion

… in this case high-frequency 

approximations can be used

(ray theory)
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Example: seismic wave propagation

Generally heterogeneous

medium

Seismometers

explosion
… we need numerical 

solutions!

Why numerical methods?
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Applications in Geophysics

Computational Seismology 9

global seismology – spherical coordinates – axisymmetry

- computational grids – spatial discretization – regular/irregular grids

finite differences – multidomain method
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Global wave propagation

Computational Seismology 10

PcP
pP

P

PKP

Inner core

Outer core

Mantle

global seismology – spherical coordinates - axisymmetry

finite differences – multidomain method
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Global wave propagation
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finite differences – multidomain method

global seismology – spherical coordinates - axisymmetry
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Earthquake Scenarios
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visservices.sdsc.edu
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Seismology and Geodynamics
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Ocean Mixing of Isotopes
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isotope mixing in the oceans

Stommel-gyre 

input of isotopes near the boundaries (e.g. rivers)

diffusion – reaction – advection equation
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Computational grids and memory
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Example:   seismic wave propagation, 2-D case

grid size: 1000x1000

number of grid points: 106

parameters/grid point: elastic  parameters (3), displacement (2), 

stress (3) at 2 different times 

-> 16 

Bytes/number: 8

required memory: 16 x 8 x 106 x 1.3 x 108

130 Mbyte memory (RAM)

You can do this on a standard 

PC!
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… in 3D …
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Example:   seismic wave propagation, 3-D case

grid size: 1000x1000x1000

number of grid points: 109

parameters/grid point: elastic parameters (3), displacement (3), 

stress (6) at 2 different times 

-> 24

Bytes/number: 8

required memory: 24 x 8 x 109 x 1.9 x 1011

190 Gbyte memory (RAM)

These are no longer grand challenges but 

rather our standard applications on 

supercomputers 
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Discretizing Earth
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... this would mean

...we could discretize our planet with volumes of the 

size

4/3 (6371km)3 / 109 ≈ 1000km3

with an representative cube side length of 10km.

Assuming that we can sample a wave with 20 points 

per wavelength we could  achieve a dominant period T 

of

T=  /c  = 20s

for global wave propagation!  
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Moore‘s Law – Peak performance
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1960:  1 MFlops

1970: 10MFlops

1980: 100MFlops

1990: 1 GFlops

1998: 1 TFlops

2008: 1 Pflops

20??: 1 EFlops

Roadrunner  @ Los Alamos
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Parallel Computations
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What are parallel computations

Example: Hooke’s Law

stress-strain relation
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These equations hold at each point in time at all points in space

-> Parallelism
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Loops
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... in serial Fortran (F77) ...

for i=1,nx

for j=1,nz

sxx(i,j)=lam(i,j)*(exx(i,j)+eyy(i,j)+ezz(i,j))+2*mu(i,j)*exx(i,j)

enddo

enddo

add-multiplies are carried out sequentially

at some time  t
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Programming Models
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... in parallel Fortran (F90/95/03/05) ...

array syntax

sxx = lam*(exx+eyy+ezz) + 2*mu*exx

On parallel hardware each matrix is distributed on n

processors. In our example no communication between

processors is necessary. We expect, that the

computation time reduces by a factor 1/n.

Today the most common parallel programming model is

the Message Passing (MPI) concept, but ….
www.mpi-forum.org
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Domain decomposition - Load balancing
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Macro- vs. microscopic description
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Macroscopic description:

The universe is considered a continuum. Physical processes 

are described using partial differential equations. The described 

quantities (e.g. density, pressure, temperature) are really averaged 

over a certain volume.

Microscopic description:

If we decrease the scale length or we deal with strong 

discontinous phenomena we arrive at the discrete world

(molecules, minerals, atoms, gas particles). If we are interested

in phenomena at this scale we have to take into account the details

of the interaction between particles.
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Macro- vs. microscopic description
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Macroscopic 

- elastic wave equation

- Maxwell equations   

- convection 

- flow processes

Microscopic

- ruptures (e.g. earthquakes)

- waves in complex media

- tectonic processes

- gases

- flow in porous media
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Partial Differential Equations in Geophysics
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0ρ)(vρ jjt 

conservation equations

mass

iijjijjt f)vv(ρρ)(v  σ momentum

iii gsf  gravitation (g) 

und sources (s)
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Partial Differential Equations in Geophysics
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gravitational potential

Poisson equation

gravitational field

still missing: forces in the medium

->stress-strain relation
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Partial Differential Equations in Geophysics
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stress and strain
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nonlinear stress-strain

relation

prestress and 

incremental stress
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ε jiijij  … linearized ...
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Towards the elastic wave equation
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special case: v      0

small velocities

iijjijjt f)vv(ρρ)(v  σ 

00  jivvv i

We will only consider problems in the low-velocity regime. 
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Special pde‘s
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hyperbolic differential equations

e.g. the acoustic wave equation

spp
K ii xxt 
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K  compression

s   source term

parabolic differential equations

e.g. diffusion equation

TDT it

2

T temperature

D thermal diffusivity
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Special pde‘s

Computational Seismology 30

elliptical differential equations

z.B. static elasticity
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Our Goal

 Approximate the wave equation with a 

discrete scheme that can be solved

numerically in a computer

 Develop the algorithms for the 1-D wave

equation and investigate their behavior

 Understand the limitations and pitfalls of

numerical solutions to pde‘s

 Courant criterion

 Numerical anisotropy

 Stability

 Numerical dispersion

 Benchmarking
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The 1-D wave equation – the vibrating guitar string
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Summary
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Numerical method play an increasingly important role in all domains of

geophysics.

The development of hardware architecture allows an efficient calculation

of large scale problems through parallelization.

Most of the dynamic processes in geophysics can be described with 

time-dependent partial differential equations.

The main problem will be to find ways to determine how best to solve

these equations with numerical methods.


