Seismic Tomography
Data, Modeling, Uncertainties

Heiner Igel, LMU Munich
Seismic tomography
global and continental scales

Ricard et al., 2005
Fichtner et al., 2009
Ritsema et al., 2004
Fact or fiction?
Significant geodynamic feature?
Amplitude correct?
Spatial scale correct?
Depth correct?
What went so horribly wrong?

Christchurch, February 2011

Tohoku-Oki, March 2011
Outline

- Introduction: *earthquakes*, seismic observations, the seismo-tomographic problem

- „Classic“ tomography using *seismic rays*

- Full *waveform inversion* using 3-D simulation technology – adjoint approach

- Summary and Outlook
Sources of seismic energy

Epicenters 1963 - 1998
358,214 Events
Observational networks

Approx. 1000 instruments in Europe alone

It is unlikely that we populate the oceans with seismometers in the near future!
... new classes of continental scale tomographic models are around the corner ...
What is the nature of observations and their sensitivities to Earth’s structure in seismology?
... on a seismically quiet day ...

March 11, 2011, seismometer located in Germany
March 11, 2011, Tohoku-Oki earthquake M9.0

... that turns catastrophic ...
Decreasing frequency content
Increasing spatial wavelengths

Temporal scales (vertical ground motion)

raw broadband data

Increasing non-linearity
Increasing computational cost

120 minutes
Simplified convolutional model

The (noise free) seismic observation is a convolution of the source signal with a Green‘s function ...

\[U(\omega, r) = S(\omega) G(\omega, r) I(\omega, r) \]

Raw data in seismic archives, usually ground velocities in three orthogonal directions

Source mechanism, the magnitude, the source time behaviour

Impulse response of the Earth, contains all information on Earth's internal structure, site conditions -> tomography

Seismic instrument response affects amplitudes and phase information

The problem is linear w.r.t. sources (see talk by M. Mai)
Let’s briefly summarize …

- Seismograms are affected by structure and source
- The seismic tomography problem requires (in principle) the source to be known (or assumed to be known)
- There are two strategies to solve the inverse problem
 - Reduce information drastically (travel times)
 - Reduce physics to a high-frequency approximation (ray theory)
 - Identify specific signals in seismic data (P and S wave arrivals, reflections, etc.)
 - Use linear inverse theory to solve for 3-D velocity structure

Classic seismic tomography

- Use (low-passed) full waveforms as data
- Solve complete forward problem (3-D elastic wave propagation)
- Apply adjoint techniques to relate data perturbation to Earth model perturbation
- Iteratively minimize overall misfit between data and synthetics

Full waveform inversion (FWI)
Seismic tomography using rays

We ignore surface wave inversion and inversion of free oscillation spectra as the mathematical structure is similar.
Seismic ray theory

... is a non linear problem as the ray path depends on the seismic velocity model ... after linearization ...

$$\Delta d = G \Delta m$$

- **Travel time perturbations** with respect to an initial model
 - Dimension m
- **Sensitivity** of the i-th measurement to the j-th model parameter (basis function, pixel)
 - Dimension $m \times n$
- Solution model (**seismic velocities**)
 - Dimension n
What is a travel time perturbation?

“Picking the onset is at best ambiguous or inaccurate, sometimes impossible.” (Nolet)
Operator that relates the model (perturbation) to the observable (travel time perturbation). In general it is an integral over the ray path (volume in case of finite frequencies)

\[
T = \int_{\text{raypath}} \frac{ds}{v}
\]

The ij entries to G correspond to the i-th ray path affected by the j-th slowness value (pixel or basis function).

The choice of the basis functions strongly affects the density of G
We can describe the effect of model perturbations on an observable (e.g., travel time dT) by a sensitivity kernel K_X for Earth model parameters seismic velocities (V_P, V_S) and density:

$$
\delta T = \int \left[K_P \frac{\delta V_P}{V_P} + K_S \frac{\delta V_S}{V_S} + K_\rho \frac{\delta V_\rho}{V_\rho} \right] d^3r
$$

Issues:
- Trade offs
- Amplitude information
- Little sensitivity on density
- Low velocity anomalies
Ray-based tomographic problems have (only) P and/or S velocities as unknowns (not density, impedance, etc).

Possible parametrizations: blocks, complex volumes, splines, spherical harmonics, irregular tetrahedra, etc.
Solution to the Inverse Problem

Basic least squares (LS) solution of the linear (ized) inverse problem with D containing the cumulative effects of the regularization (smoothing) constraints (e.g., Tikhonov regularization)

$$\Delta m_{LS} = (G^T G + D)^{-1} G^T \Delta d$$

Solution of this equation with conjugate gradient, LSQR, or other.

Typical dimensions:

$\Delta d \rightarrow 10^7$ travel time perturbations

$\Delta m \rightarrow 10^5 \cdot 10^6$ unknowns
Example

(a) Synthetic (input) model
(b) Synthetic model + ray coverage
(c) Starting model + ray coverage
(d) Recovered (output) model

Rawlinson et al., 2010
Regularization and smoothing

Decreasing misfit

Increasing model complexity
Increasing number of degrees of freedom

Courtesy: L. Boschi
Examples

Rows of R for a well resolved pixel at 700 km depth

Boschi (2003)
Exploring null spaces using SVD
misfit remains the same ($< \varepsilon$)

Original

Modified

Courtesy: de Wit and Trampert
Ray-based tomography – future directions
... from infinite to finite frequencies ...

- Extracting travel times at different frequencies facilitates the solution of the system and adds information on the model (?)
- Finite-frequency tomography using complete kernels calculated with 3-D wave propagation tools
- Using Monte Carlo type techniques to quantify resolution (see talk by R. Zhang) in a Bayesian framework
- Calculating resolution matrix R for really big systems (not done yet)
The *real* thing:

Full waveform inversion
Forward problem

\[\rho \ddot{u}_i - \frac{\partial}{\partial x_j} \left(C_{ijkl} \frac{\partial}{\partial x_k} u_l \right) = f_i \]

density \quad elastic tensor \quad force density

elastic displacement field, \ u

t=200 s

t=600 s

wave field @ 100 km depth
Seismology (waves and rupture) has a good **benchmarking** culture!
Three stages of FWI

<table>
<thead>
<tr>
<th>Forward Problem</th>
<th>Sensitivities</th>
<th>Inversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Seismic wave propagation through heterogeneous Earth models</td>
<td>- Quantify misfit between theory and observations</td>
<td>- Find appropriate step length</td>
</tr>
<tr>
<td>- Dissipation & anisotropy</td>
<td>- Relate data perturbation to model perturbation (adjoint -> gradient)</td>
<td>- Calculate model update</td>
</tr>
<tr>
<td>- Spectral-element discretisation of the seismic wave equation</td>
<td>- Improve gradient (preconditioning)</td>
<td>- Adapt temporal and spatial scales (multigrid)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Iterate until satisfactory fit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Estimate uncertainties?</td>
</tr>
</tbody>
</table>
Misfit calculation

\[\chi = \sqrt{\int_1^T [u(t) - u_0(t)]^2 \, dt} \]

advantages
- easy and fast to implement
- uses the complete waveform

disadvantages
- not robust
- very nonlinearly related to long-wavelength structure
- over-emphasises large-amplitude waves
Time – frequency misfits

- quasi-linearly related to Earth structure
 - improves convergence
- independent of amplitudes
 - reliably measurable, deep structure information
- applicable to complex waveforms
 - interfering waves, unidentifiable waves
- continuous in frequency
 - no discrete frequency bands
1. Start from initial Earth model m_0

2. Update according to $m_{i+1} = m_i + \gamma_i h_i$, with $\chi(m_{i+1}) < \chi(m_i)$
Multi-scale approach

Bleibinhaus et al., 2007
The gradient (adjoint based)

1. Solve the forward problem
 - forward field u
 - synthetic seismograms

2. Evaluate the misfit χ

3. Solve the adjoint problem
 - also a wave equation
 - runs backwards in time away from the receiver
 - source determined by the misfit

4. Compute the gradient by correlating u and u^i
 \[
 \frac{\partial \chi(m)}{\partial m_i} = \int_{\text{Earth}} \int_{\text{time}} [u * u^i] \, dt \, d^3x
 \]

Tape et al., 2007
The sensitivity kernel

The interaction of the regular and the adjoint fields generates a primary influence zone. First-order scattering from within the primary influence zone affects the measurement.

\[
\frac{\partial \chi(m)}{\partial m_i} = \int \int [u * u'] \, dt \, d^3x
\]
An example of full waveform inversion on a continental scale
Gradient is calculated by back propagating adjoint sources (differences between theory and observations at receivers) separately for each of the approx. 40 earthquakes.
Preconditioning

Corrections for geometric spreading effects and reduces the sensitivity with respects to structures near source and receiver
Misfit improvement

east north vertical

data initial model final model $T = 30\text{ s}$
Global misfit improvement
Reconstructed Earth model
Checkerboard test – Resolution?
So what?

strategies to quantify resolution
Why so difficult for FWI?

- Non linear dependence of data on model parameters

- Sensitivity matrix can not be computed explicitly (as in linear problems for moderately large problems)

- Forward problem too expensive to allow fully probabilistic approaches or neural networks (except for lower-dimensional problems, see poster by Käufl et al.)
Point spread functions

Trade off between S velocity perturbation at the yellow star and the S velocity in the neighbouring regions (at certain depth)

Compare with R in previous slides (Boschi, 2003)!
Resolution length

High resolution NS direction

High resolution EW direction
Image distortion

- Point-perturbations displaced by imaging
- Distortion = [position of point perturbation] – [centre of mass of its blurred image]

What you see may be somewhere else!
Tomography using Monte Carlo methods

The use of MC methods is restricted to systems with limited degrees of freedom (dozens for generally nonlinear problems)
What we really should be doing …

\[
\sigma(d,m) = k \frac{\rho(d,m)\Theta(d,m)}{\mu(d,m)}
\]

\[
\text{posterior} = \frac{\text{prior} \times \text{likelihood}}{\text{evidence}}
\]
Open issues with the probabilistic approach

- How can we properly describe prior information?
- How should we describe data uncertainties, errors (if not Gaussian)?
- How should we describe deficiencies in our theory?
- What are optimal parametrization schemes of the Earth model and the model space search

Mosegaard and Tarantola, 1995
Summary and Outlook

- Model space is huge
- Source and receivers unevenly distributed (no fix in sight!)
- Source parameters uncertain (depth, mechanism)
- Forward model inadequate (general anisotropy, Q)
- Trade-offs between Earth properties
- Near surface (crustal) structure inadequately known
- Topography of internal interfaces may be important
Errors in the measurements (instrument orientation, instrument response, flipped polarity, timing errors)

Modeling deficiencies (e.g., numerical dispersion, topography)

Scattering (effects of small scale structures -> mantle is actually faster!)

Noise statistics unknown
Quantifying uncertainties is a research question and not a standardized procedure.

Many of our SCIENCE stories are told without sufficient uncertainty quantification.

Even if we can calculate uncertainties ... how do we convey that information (visually, acoustically)?

Will Exascale really help??
Thank you!
Strategies to estimate resolution

\[\Delta m_\text{out} = (G^T G + D)^{-1} G^T \Delta d \]

\[\Delta m_\text{out} = (G^T G + D)^{-1} G^T G \Delta m_\text{in} \]

Synthetic data for a test model

\[R = (G^T G + D)^{-1} G^T G \approx I \]

Resolution matrix R
Hessian and covariance

Earth model \(m(x) \) and misfit functional

\[
m(x) = [m_1(x), m_2(x), \ldots, m_N(x)]^T
\]

\[
\chi(m) = \chi(\tilde{m}) + \frac{1}{2} \int_G \int_G [m(x) - \tilde{m}(x)]^T H(x, y) [m(y) - \tilde{m}(y)] \, d^3x \, d^3y
\]

\[
\text{Hessian}
\]

... and the equivalence with probabilistic approach ...

\[
\sigma(m) = \text{const.} \, e^{-\chi_g(m)}
\]

\[
\chi_g(m) = \frac{1}{2} \int_G \int_G [m(x) - \tilde{m}(x)]^T S^{-1}(x, y) [m(y) - \tilde{m}(y)] \, d^3x \, d^3y
\]

\[
\text{Variances}
\]

Following strategy suggested by Fichtner and Trampert, GJI, 2011