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Infinite Order Finite Differences

Infinite Order Finite Differences

Any finite-difference operation can be
decribed as a convolution operation implying
that the specific finite-difference operator has
a spectral representation that can be
compared with the exact −ik operator

Using Taylor Series for accuracy
improvement (= length of operator)

Using Fourier concepts for calculating exact
derivatives

⇒ Fourier method can be interpreted as an infinite
order finite-difference scheme
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Infinite Order Finite Differences

Infinite Order Finite Differences

Let us restate the previous result of the partial derivative as an inverse
Fourier transform defined as

∂x f (x) =
1√
2π

∫ ∞
∞

∂xF (k)e−ikxdk

=
1√
2π

∫ ∞
−∞
−ikF (k)e−ikxdk

Defining the factors in front of the complex amplitude spectrum F (k) of
function f (x) as

∂x f (x) =

∫ ∞
−∞

D(k)F (k)e−ikxdk , D(k) = −ik
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Infinite Order Finite Differences

Infinite Order Finite Differences

Two functions d(x) and f (x) with complex spectra D(k) and F (k), are
thus linked by

D(k) = F [d ]
F (k) = F [f ]

d ∗ f = F−1[D(k)F (k)]

where F represents the Fourier transform, and ∗ denotes convolution,
defined in the continuous case as

(d ∗ f )(x) :=

∫ ∞
−∞

d(x ′)f (x − x ′)dx ′

and in the discrete case with vectors di , i = 0,1, . . . ,m, and
fj , j = 0,1, . . . ,n

(d ∗ f )k =
m∑

i=0

dk fk−i , k = 0,1, . . . ,m + n
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Infinite Order Finite Differences

Infinite Order Finite Differences

D(k) in general is nothing else but a function defined in the spectral
domain acting like a filter on the complex spectrum F (k).
The convolution theorem implies that

∂x f (x) =

∫ ∞
−∞

d(x − x ′)f (x ′)dx ′

where d(x) is a real function, the spatial representation of spectrum
D(k), in other words

d(x) = F−1[D(k)] .
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Infinite Order Finite Differences

Infinite Order Finite Differences

Limiting the wavenumber domain to the Nyquist wavenumber
kmax = π/dx . Thus D(k) becomes

D(k) = ik [H(k + kmax)− H(kkmax)]

where H() denotes the Heaviside function, and to obtain d(x) we
simply have to inverse transform

d(x) = F−1[ik [H(k + kmax)− H(k − kkmax)]]

leading to

d(x) =
1
πx2 [sin(kmaxx) − kmaxx cos(kmaxx)]
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Infinite Order Finite Differences

Infinite Order Finite Differences

The r.h.s. of the Fourier integral is a multiplication of two spectra:
derivative operator ik
boxcar function and its solution is the sinc function of the form
sin(x)/x

If space is discretized according to

xn = n dx , n = −N, . . . ,0, . . . ,N

In this case the convolution integral becomes a convolution sum

∂x f (x) ≈
n=N∑

n=−N

dnf (x − ndx)

where dn is the difference operator.
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Infinite Order Finite Differences

Infinite Order Finite Differences

Inserting the discretization into

d(x) =
1
πx2 [sin(kmaxx)

− kmaxx cos(kmaxx)]

we obtain analytically the discrete
difference operator

dn =

{
0 for n = 0
(−1)n

ndx for n 6= 0 .
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Infinite Order Finite Differences

Infinite Order Finite Differences

Trunucated Fourier operator Convolutional difference opera-
tors
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Infinite Order Finite Differences

Infinite Order Finite Differences

How can we conveniently compare the
accuracy of such operators?

=⇒ The space representation of the
exact difference operator D(k) = −ik
in the wavenumber domain

Thus, for a finite-difference operator
dFD

n we will obtain

DFD(k) = i k̃ν(k) = F [dFD
n ]
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The Chebyshev Pseudospectral
Method
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The Chebyshev Pseudospectral Method Chebyshev Polynomials

Chebyshev Polynomials

Let us start with the trigonometric relation

cos [(n + 1)φ] + cos [(n − 1)φ] = 2 cos(φ) cos(nφ) n ∈ N .

Inserting n = 0 leads to a trivial statement. However, for n ≥ 1 we
obtain statements like

cos(2φ) = 2 cos2(φ)− 1

cos(3φ) = 4 cos3(φ)− 3 cos(φ)

cos(4φ) = 8 cos4(φ)− 8 cos2(φ) + 1
...
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The Chebyshev Pseudospectral Method Chebyshev Polynomials

Chebyshev Polynomials

Chebyshev Polynomials

cos(nφ) =: Tn(cos(φ)) = Tn(x)

with
x = cos(φ) x ∈ [−1,1] , n ∈ N0

Tn being the n-th order Chebyshev polynomial. Furthermore

|Tn(x)| 6 1 for [−1,1] , n ∈ N0
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The Chebyshev Pseudospectral Method Chebyshev Polynomials

Chebyshev Polynomials

Finally, we can write down the first poly-
nomials in x ∈ [−1,1]

T0(x) = 1
T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 − 1
...
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The Chebyshev Pseudospectral Method Chebyshev Polynomials

Chebyshev Polynomials

A generating function calculates the Chebyshev polynomials of any
order n

Tn+1(x) = 2xTn(x) − Tn−1(x), n ≥ 1

The extremal values x (e)
k of these polynomials have a very simple form

x (e)
k = cos(

kπ
n
) k = 0,1,2, . . . ,n
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The Chebyshev Pseudospectral Method Chebyshev Polynomials

Chebyshev Polynomials

The Chebyshev polynomials form an orthogonal set with respect to the
weighting function w(x) = 1/

√
1− x2.

⇒ Using them as a basis for function interpolation

f (x) ≈ gn(x) =
1
2

c0T0(x) +
n∑

k=1

ckTk (x)

where f(x) is an arbitrary function in the interval [−1,1], Tn(x) are the
Chebyshev polynomials, and ck are real coefficients.
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The Chebyshev Pseudospectral Method Chebyshev Polynomials

Chebyshev Polynomials

By minimizing the least-squares misfit between f (x) and gn(x), the
coefficients ck can be found

ck =
2
π

1∫
−1

f (x)Tk (x)
dx√

1− x2
k = 0,1, . . . ,n

which - after substituting x = cos(φ) - can be written as

ck =
1
π

π∫
−π

f (cos(φ)) cos(kφ)dφ k = 0,1, . . . ,n

These coefficients turn out to be the Fourier coefficients for the even
2π−periodic function f (cos(φ)) with x = cos(φ).
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The Chebyshev Pseudospectral Method Chebyshev Polynomials

Chebyshev Polynomials

The points we need are the extrema of the Chebyshev polynomials
(Chebyshev-) Gauss-Lobatto points defined as

xi = cos(
π

N
i) i = 0,1, . . . ,n .

With these unevenly distributed grid points we can define the discrete
Chebyshev transform as follows. The approximating function is

g∗n(x) =
1
2

c∗0T0 +
n−1∑
k=1

c∗k Tk (x) +
1
2

c∗nTn
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The Chebyshev Pseudospectral Method Chebyshev Polynomials

Chebyshev Polynomials

with the coefficients defined as

c∗k =
2
m

1
2
(f (1) + (−1)k f (−1)) +

m−1∑
j=1

fj cos(
kjπ
m

)


k = 0,1, . . . ,n, n = m

where f (1) and f (−1) are the function values at the interval boundaries
and fj are the values at the collocation points f (x = cos(jπ/m)). The
fundamental property is

g∗m(xi) = f (xi)

where xi are the collocation points.
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The Chebyshev Pseudospectral Method Chebyshev Polynomials

Example

When we have a function f (x) = x3 in the interval [−1,1] using the
Chebyshev transform, the function f (x)

1 can be exactly interpolated at the collocation points
2 converges very rapidly with just a few polynomials

Heiner Igel Computational Seismology 22 / 34



The Chebyshev Pseudospectral Method Chebyshev Polynomials

Chebyshev polynomials

Two cardinal functions with Chebyshev polynomials for grid points
i = n/2 (solid line) and i = n (dashed line) are shown for n = 8
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Chebyshev Derivatives, Differentiation matrices

A convolution operation can be formulated as a matrix-vector product
involving Toeplitz matrices. Defining a derivative matrix Dij

Dij =


−2N2+1

6 for i = j = N

−1
2

xi
1−x2

i
for i = j = 1,2,...,N-1

ci
cj

(−1)i+j

xi−xj
for i 6= j = 0,1,...,N

where N+1 is the number of Chebyshev collocation points
xi = cos(iπ/N), i = 0, . . . ,N and the ci are given as

ci =

{
2 for i=0 or N
1 otherwise
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Chebyshev Derivatives, Differentiation matrices

This differentiation matrix allows us to write the derivative of function
ui = u(xi) simply as

∂xui = Dij uj

where the right-hand side is a matrix-vector product, and the Einstein
summation convention applies.
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Chebyshev Derivatives, Differentiation matrices

Illustration of differentiation
matrices (n=64). Top left:
Exact Fourier differentiation
matrix for regular grid (full).
Top right: Exact Chebyshev
differentiation matrix for
Chebyshev collocation
points. Increasing weights
at the corners overshadows
interior values. Bottom
Left: Standard 2-point
finite difference operator
(banded). Bottom Right:
Tapered Fourier operator
(12-point). Matrix is banded.
For illustration purposes the
square root of the absolute
values are shown.
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Chebyshev Derivatives, Differentiation matrices

By testing the differentiation, we define a func-
tion to seismic wavefield calculations as

f (xi) = sin(2xi)−sin(3xi)+sin(4xi)−sin(10xi)

in the interval xi ∈ [−1,1], where the discrete
points are the Chebyshev collocation points
xi = cos(πi/n), i = 0, . . . ,n given for n = 63.
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Elastic 1D with Chebyshev Method

Elastic 1D wave equation using the standard 3-point operator

ρi
uj+1

i − 2uj
i + uj−1

i
dt2 = (∂x [µ(x)∂xu(x , t)])j

i + f j
i

where the lower index i corresponds to the spatial discretization and
the upper index j to the discrete time levels.
The displacement field as well as the geophysical parameters like
density ρi and shear modulus µi are defined on the irregular
Chebyshev collocation points.
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The Chebyshev Pseudospectral Method Elastic 1D with Chebyshev Method

Example

Distance between grid points is 80
times smaller at the boundaries
The time step for a stable
simulation requires cdt/dx ≤ ε

⇒ Grid distance near boundary is re-
sponsible for the global simulation time
step

Parameter Value
nx 200
c 3000 m/s
ρ 2500 kg/m3

dt 6 ×10−8 s
dxmin 1.2 ×10−4 m
dxmax 0.015 m
f0 100 kHz
ε 1.4
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The Chebyshev Pseudospectral Method Elastic 1D with Chebyshev Method

Result

% Time extrapolation
%
for i = 1:nt,
%
% (...)
% Space derivatives
du=D*u’; du=mu./rho.*du;
du=D*du;
% (...)
% Time extrapolation unew=2*u-
uold+du’*dt*dt;
% Source injection
unew=unew+gauss./rho*src(i)*dt*dt;
% remapping
uold=u;
u=unew;
% (...)
end
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The Chebyshev Pseudospectral Method Elastic 1D with Chebyshev Method

Result

To obtain a stable solution we need a very small time step that is only
needed at the boundaries. Mathematically the time step scales with
O(N−2).

In principle we can stretch the spatial grid such that the grid points close
to the boundaries are further apart while the grid point distances at the
centre remain basically unchanged. If that stretching function is ξ(x)
then the derivative of a function f (x) on the stretched grid is defined as

∂x f (x) =
∂f
∂ξ

dξ
dx

.
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The Chebyshev Pseudospectral Method Elastic 1D with Chebyshev Method

Summary

Pseudospectral methods are based on discrete function approximations that allow exact
interpolation at so-called collocation points. The most prominent examples are the Fourier
method based on trigonometric basis functions and the Chebyshev method based on
Chebyshev polynomials.

The Fourier method can be interpreted as an application of discrete Fourier series on a
regular-spaced grid. The space derivatives can be obtained exactly (except for rounding
errors). Derivatives can be efficiently calculated with the discrete Fourier transform
requiring n log n operations.

The Fourier method implicitly assumes periodic behavior. Boundary conditions like the free
surface or absorbing behaviour are difficult to implement.

The Chebyshev method is based on the description of spatial fields using Chebyshev
polynomials defined in the interval [−1, 1] (easily generalized to arbitrary domain sizes).
Exact interpolation is possible when the discrete fields are defined at the Chebyshev
collocation points given by xi = cos(πi/n), i = 0, . . . , n. Therefore, the derivatives can
also be evaluated exactly and errors accumulate only due to the finite-difference time
extrapolation.
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The Chebyshev Pseudospectral Method Elastic 1D with Chebyshev Method

Summary

Because of the grid densification at the boundaries of the Chebyshev collocation points
very small time steps are required for stable simulations when n is large. This can be
avoided by stretching the grids by a coordinate transformation.

A main advantage of the Chebyshev method is an elegant formulation of boundary
conditions (free surface or absorbing) through the definition of so-called characteristic
variables.

Pseudospectral methods have isotropic errors. Therefore they lend themselves to the
study of physical anisotropy.

The derivative operations of pseudospectral methods are of a global nature. That means
every point on a spatial grid contributes to the gradient. While this is the basis for the high
precision, it creates problems when implementing pseudospectral algorithms on parallel
computers with distributed memory architectures. As communication is usually the
bottleneck, efficient and scalable parallelization of pseudospectral methods is difficult.
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