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Introduction Motivation

Motivation

Simple concept
Robust
Easy to parallelize
Regular grids
Explicit method
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Introduction History

History

Several Pioneers of solving PDEs with finite-difference method
(Lewis Fry Richardson, Richard Southwell, Richard Courant, Kurt
Friedrichs, Hans Lewy, Peter Lax and John von Neumann)
First application to elastic wave propagation (Alterman and Karal,
1968)
Simulating Love waves and was the frst showing snapshots of
seimsic wave fields (Boore, 1970)
Concept of staggered-grids by solving the problem of rupture
propagation (Madariaga, 1976 and Virieux and Madariaga, 1982)
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Introduction History

History

Extension to 3D because of parallel computations (Frankel and
Vidale, 1992; Olsen and Archuleta, 1996; etc.)
Application to spherical geometry by Igel and Weber, 1995;
Chaljub and Tarantola, 1997 and 3D spherical sections by Igel et
al., 2002
Incorporation in the first full waveform inversion schemes initially
in 2D, e.g. (Crase et al., 1990) and later in 3D (Chen et al., 2007)
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Introduction Finite Differences in a Nutshell

Finite Differences in a Nutshell

Snapshot in space of the
pressure field p
Zoom into the wave field
with grid points indicated
by +
Exact interpolate using
Taylor series
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Introduction Finite Differences in a Nutshell

1D acoustic wave equation

p̈(x , t) = c(x)2 ∂2
x p(x , t) + s(x , t)

p pressure
c acoustic velocity
s source term

Approximation with a difference formula

p̈(x , t) ≈ p(x , t + dt)− 2p(x , t) + p(x , t − dt)
dt2

and equivalently for the space derivative
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Finite Differences and Taylor Series Finite Difference Definition

Finite Differences and Taylor Series
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Finite Differences and Taylor Series Finite Difference Definition

Finite Differences

Forward derivative

dx f (x) = lim
dx → 0

f (x + dx)− f (x)
dx

Centered derivative

dx f (x) = lim
dx → 0

f (x + dx)− f (x − dx)
2dx

Backward derivative

dx f (x) = lim
dx → 0

f (x)− f (x − dx)
dx
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Finite Differences and Taylor Series Finite Difference Definition

Finite Differences

Forward derivative

dx f+ ≈ f (x + dx)− f (x)
dx

Centered derivative

dx f c ≈ f (x + dx)− f (x − dx)
2dx

Backward derivative

dx f− ≈ f (x)− f (x − dx)
dx
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Finite Differences and Taylor Series Finite Difference Definition

Finite Differences and Taylor Series

The approximate sign is important here as the derivatives at point
x are not exact. Understanding the accuracy by looking at the
definition of Taylor Series:

f (x + dx) = f (x) + f ′(x) dx + 1
2! f ′′(x) dx2 + O(dx3)

Subtraction with f(x) and division by dx leads to the definition of
the forward derivative:

f (x+dx)−f (x)
dx = f ′(x) + 1

2! f ′′(x) dx + O(dx2)
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Finite Differences and Taylor Series Finite Difference Definition

Finite Differences and Taylor Series

Using the same approach - adding the Taylor Series for f (x + dx)
and f (x − dx) and dividing by 2dx leads to:

f (x+dx)−f (x−dx)
2dx = f ′(x) + O(dx2)

This implies a centered finite-difference scheme more rapidly
converges to the correct derivative on a regular grid
=⇒ It matters which of the approximate formula one chooses
=⇒ It does not imply that one or the other finite-difference
approximation is always the better one
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Finite Differences and Taylor Series Higher Derivatives

Higher Derivatives

The partial differential equations have often 2nd (seldom higher)
derivatives
Developing from first derivatives by mixing a forward and a
backward definition yields to

∂2
x f ≈

f (x+dx)−f (x)
dx − f (x)−f (x−dx)

dx
dx

=
f (x + dx)− 2f (x) + f (x − dx)

dx2
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Finite Differences and Taylor Series Higher Derivatives

Higher Derivatives

Determining the weights with which the function values have to be
multiplied to obtain derivative approximations
The Taylor series for two grid points at x ± dx , include the function
at the central point as well and multiply each by a real number

af (x + dx) = a
[
f (x) + f ′(x) dx + 1

2! f ′′(x) dx2 + . . .
]

bf (x) = b [f (x)]
cf (x − dx) = c

[
f (x)− f ′(x) dx + 1

2! f ′′(x) dx2 − . . .
]
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Finite Differences and Taylor Series Higher Derivatives

Higher Derivatives

Summing up the right-hand sides of the previous equations and
comparing coefficients leads to the following system of equations:

a + b + c = 0

a− c = 0

a + c =
2!

dx2

⇒
a =

1
dx2

b = − 2
dx2

c =
1

dx2
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Finite Differences and Taylor Series High-Order Operators

High-Order Operators

What happens if we extend the domain of influence for the
derivative(s) of our function f(x)?
Let us search for a 5-point operator for the second derivative

f ′′ ≈ af (x + 2dx) + bf (x + dx) + cf (x) + df (x − dx) + ef (x − 2dx)

a + b + c + d + e = 0
2a + b − d − 2e = 0

4a + b + d + 4e =
1

2dx2

8a + b − d − 8e = 0
16a + b + d + 16e = 0
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Finite Differences and Taylor Series High-Order Operators

High-Order Operators

Using matrix inversion we obtain a unique solution

a = − 1
12dx2

b =
4

3dx2

c = − 5
2dx2

d =
4

3dx2

e = − 1
12dx2 .

with a leading error term for the 2nd derivative is O(dx4)

=⇒ Accuracy improvement
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Finite Differences and Taylor Series High-Order Operators

High-Order Operators

Graphical illustration of the
Taylor Operators for the
first derivative for higher
orders
The weights rapidly
become small for
increasing distance to
central point of evaluation
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Finite-Difference Approximation of Wave Equations

Finite-Difference Approximation of
Wave Equations
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Finite-Difference Approximation of Wave Equations

Acoustic waves in 1D

To solve the wave equation, we start with the
simplemost wave equation:
The constant density acoustic wave equation
in 1D

p̈ = c2 ∂2
x p + s

impossing pressure-free conditions at the two
boundaries as

p(x) |x=0,L= 0
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Finite-Difference Approximation of Wave Equations

Acoustic waves in 1D

The following dependencies apply:

p → p(x, t) pressure
c → c(x) P-velocity
s → s(x, t) source term

As a first step we need to discretize space and time and we do that
with a constant increment that we denote dx and dt.

xj = jdx , j = 0, jmax

tn = ndt , n = 0, nmax
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Finite-Difference Approximation of Wave Equations

Acoustic waves in 1D

Starting from the continuous description of the partial differential
equation to a discrete description. The upper index will correspond to
the time discretization, the lower index will correspond to the spatial
discretization

pn+1
j → p(xj , tn + dt)

pn
j → p(xj , tn)

pn−1
j → p(xj , tn − dt)

pn
j+1 → p(xj + dx , tn)

pn
j → p(xj , tn)

pn
j−1 → p(xj − dx , tn)

.
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Finite-Difference Approximation of Wave Equations

Acoustic waves in 1D

pn+1
j − 2pn

j + pn−1
j

dt2 = c2
j

[
pn

j+1 − 2pn
j + pn

j−1

dx2

]
+ sn

j .

the r.h.s. is defined at same
time level n
the l.h.s. requires information
from three different time levels

n − 1
i

n + 1

j − 1 j j + 1
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Finite-Difference Approximation of Wave Equations

Acoustic waves in 1D

Assuming that information at time level n (the presence) and n − 1 (the
past) is known, we can solve for the unknown field pn+1

j :

pn+1
j = c2

j
dt2

dx2

[
pn

j+1 − 2pn
j + pn

j−1

]
+ 2pn

j − pn−1
j + dt2sn

j

The initial condition of our wave simulation problem is such that
everything is at rest at time t = 0:

p(x , t)|t=0 = 0 , ṗ(x , t)|t=0 = 0.
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Finite-Difference Approximation of Wave Equations

Acoustic waves in 1D

Waves begin to radiate as soon as the source term s(x , t) starts to
act
For simplicity: the source acts directly at a grid point with index js
Temporal behaviour of the source can be calculated by Green’s
function

s(x , t) = δ(x − xs) δ(t − ts)

where xs and ts are source location and source time and δ()
corresponds to the delta function
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Finite-Difference Approximation of Wave Equations

Acoustic waves in 1D

A delta function contains all frequencies and we cannot expect that our
numerical algorithm is capable of providing accurate solutions
Operating with a band-limited source-time function:

s(x , t) = δ(x − xs) f (t)

where the temporal behaviour f(t) is chosen according to our specific
physical problem
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Finite-Difference Approximation of Wave Equations

Example

Simulating acoustic wave propagation in a 10km column (e.g. the
atmosphere) and assume an air sound speed of c = 0.343m/s. We
would like to hear the sound wave so it would need a dominant
frequency of at least 20 Hz. For the purpose of this exercise we
initialize the source time function f (t) using the first derivative of a
Gauss function.

f (t) = −8 f0 (t − t0) e
− 1

(4f0)
2 (t−t0)2

where t0 corresponds to the time of the zero-crossing, f0 is the
dominant frequency
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Finite-Difference Approximation of Wave Equations

Example

What is the minimum spatial
wavelength that propagates inside the
medium?
What is the maximum velocity inside
the medium?
What is the propagation distance of
the wavefield (e.g., in dominant
wavelengths)?
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Finite-Difference Approximation of Wave Equations

Example

Sufficient to look at the relation between frequency and wavenumber:

c =
ω

k
=

λ

T
= λ f

where c is velocity, T is period, λ is wavelength, f is frequency, and
ω = 2πf is angular frequency

dominant wavelength of f0 = 20Hz
substantial amount of energy in the wavelet is at frequencies
above 20 Hz
=⇒ λ = 17m and λ = 7m for frequencies 20Hz and 50Hz,
respectively
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Finite-Difference Approximation of Wave Equations

Matlab code fragment

% Time extrapolation
for it = 1 : nt,
(...)
% Space derivatives
for j=2:nx-1
d2p(j)=(p(j+1)-2*p(j)+p(j-1))/dxˆ 2;
end
% Extrapolation
pnew=2*p-pold+cˆ 2*d2p*dtˆ 2;
% Source input
pnew(isrc)=pnew(isrc)+src(it)*dtˆ 2;
% Time levels
pold=p;
p=pnew;
(...)
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Finite-Difference Approximation of Wave Equations

Result

Choosing a grid increment of
dx = 0.5m −→ about 24 points per
spatial wavelength for the dominant
frequency
Setting time increment dt = 0.0012 −→
around 40 points per dominant period
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Finite-Difference Approximation of Wave Equations

Summary

Replacing the partial derivatives by finite differences allows partial
differential equations such as the wave equation to be solved directly for
(in principle) arbitrarily heterogeneous media

The accuracy of finite-difference operators can be improved by using
information from more grid points (i.e., longer operators). The weights
for the grid points can be obtained using Taylor series
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