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Introduction



Motivation

• Efficiently solving the elastic wave
equation on tetrahedral grids

• Easy implementation of local time
stepping

• High accuracy of frictional boundary
conditions for dynamic rupture problems
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History

• Developed in the Los Alamos National Laboratories for the problem of neutron transport by Reed 1973
formulated on triangular meshes

• In the late eighties Cockburn connected discontinuous Galerkin method with high-order Runge-Kutta-type
time integration schemes (Cockburn et al., 2000)

• First application to elastic wave propagation was published by Kaeser and Dumbser, 2006

• Kaeser et al., 2008 carried out a detailed analysis of the convergence properties of the discontinuous
Galerkin method

• The local time-stepping approach by Dumbser et al., 2007b circumvents the problem of oversampling large
parts of the model and thereby reducing the overall computations.

• De la Puente et al., 2009b reported a first analysis of scaling and synchronization of the discontinuous
Galerkin method which raised the interest of the computational science community in Munich to optimize it.
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The Discontinuous Galerkin Method in a Nutshell

All concepts that have been discussed previously enter in this method

1 Finite-difference extrapolation using e.g. the Euler scheme

2 Calculation of element-based stiffness and mass matrices

3 Flux calculations at the element boundaries as encountered in the
finite-volume method

4 Exact nodal interpolation based on Lagrange polynomials

5 Numerical integration schemes using collocation points
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Wave Equation

1st order wave equation

ρ∂tv = ∂xσ + f

∂tσ = µ∂xv

Matrix-vector form

∂tQ + A∂xQ = f

6



Wave Equation

where σ = σxy = σyx representing the only non-zero stress component, and
implicitly assuming space-time dependencies, Q = (v , σ) is the vector of
unknowns and A contains the coefficients of the equation given by

A =

(
0 −1/ρ
−µ 0

)
.

=⇒ Linear hyperbolic system, having the same form as the classic advection
equation

7



The Discontinuous Galerkin Method in a Nutshell

• The Ansatz is to multiply the equation by an arbitrary test function combined
with describing the unknown fields with the same set of basis functions
(Galerkin principle).

• At the element boundaries the unknown fields can be discontinuous.

• Communication between the elements is achieved through a flux scheme
based on solutions of the Riemann problem.
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The Discontinuous Galerkin Method in a Nutshell

The wavefield inside each element is described by La-
grange polynomials exactly interpolating at appropriate
collocation points. At each time step, a flux term F has
to be evaluated at all element boundaries. The extrap-
olation scheme of the discontinuous Galerkin method
can be expressed as

∂tQk (t) = (Mk )−1(K k Qk (t)− (F k
l − F k

r )Q
k (t))

where Q(t) is the vector of unknowns, M and K are
the elemental mass and stiffness matrices, respectively,
and Fr,l are the flux terms at the left and right bound-
aries. The upper index k denotes the element (source
term is omitted).
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The Discontinuous Galerkin Method in a Nutshell

Implications of a boundary flux and no global system of equations to solve:

1 Obtaining a fully explicit scheme which lends itself to an element-based
parallelization scheme

2 Choice of element size is arbitrary, it has no impact on the solution algorithm
(h-adaptivity)

3 The polynomial order in each element can be arbitrarily chosen and no impact
on the algorithm (p-adaptivity)

4 Considering the boundary points twice to calculate the fluxes implies an
increase in the number of degrees of freedom that of course gets worse
with increasing dimensionality
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Ingredients



Source-free version of the coupled elastic wave equation in 1D

∂tσ − µ∂xv = 0

∂tv −
1
ρ
∂xσ = 0

Matrix notation

∂tQ + A∂xQ = 0

where Q = (σ, v) is the vector of unknowns and matrix A contains the parameters

A =

(
0 −µ
−1
ρ 0

)
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The Wave equation as Hyperbolic System

In the case of a quadratic matrix A with shape m ×m, this leads to an eigenvalue
problem. If we were able to obtain eigenvalues λp such that

Axp = λpxp , p = 1, ...,m

we get a diagonal matrix of eigenvalues

Λ =


λ1

. . .
λm


and the corresponding matrix R containing the eigenvectors xp in each column

R = (x1|x2| . . . |xp)
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The Wave equation as Hyperbolic System

The Jacobian matrix A can now be expressed with the definitions

A = RΛR−1

Λ = R−1AR .

Applying these definitions to the wave equation

R−1∂tQ + R−1RΛR−1∂xQ = 0

and introducing the solution vector W = R−1Q results in

∂tW + Λ∂xW = 0 .
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The Wave equation as Hyperbolic System

With λ1,2 =
√
µ/ρ = ±c, where c corresponds to the shear velocity, the

eigenvectors can be obtained

r1,2 =

(
±ρc

1

)

interestingly enough containing as elements values of the seismic impedance
Z = ρc that are relevant for the reflection behaviour of seismic waves. Thus the
matrix R (and its inverse) are

R =

(
Z −Z
1 1

)
, R−1 =

1
2Z

(
1 Z
−1 Z

)
.
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The Wave equation as Hyperbolic System

The wave equation in the rotated eigensystem can be stated as

∂t

(
w1

w2

)
+

(
−c 0
0 c

)
∂x

(
w1

w2

)
= 0

with the simple general solution w1,2 = w (0)
1,2 (x ± ct), where the upper index 0

stands for the initial condition (i.e., waveform that is advected). The initial condition
also fullfills W(0) = R−1Q(0), we can therefore relate the so-called characteristic
variables w1,2 to the initial conditions of the physical variables as

w1(x , t) =
1

2Z
(σ(0)(x + ct) + Zv (0)(x + ct))

w2(x , t) =
1

2Z
(−σ(0)(x − ct) + Zv (0)(x − ct))
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The Wave equation as Hyperbolic System

To obtain the final analytical solution for velocity v and stress σ using Q = RW as

σ(x , t) =
1
2

(σ(0)(x + ct) + σ(0)(x − ct))

+
Z
2

(v (0)(x + ct)− v (0)(x − ct))

v(x , t) =
1

2Z
(σ(0)(x + ct)− σ(0)(x − ct))

+
1
2

(v (0)(x + ct) + v (0)(x − ct)) .

In compact form, the solution can be expressed as

Q(x , t) =
m∑

p=1

wp(x , t)rp

16



Solution to Scalar Advection Equation

Denoting q(x , t) for the unknown scalar solution and a for the given (possibly space
dependent) advection (wave) velocity to obtain the source-free wave equation

∂tq(x , t) + a ∂xq(x , t) = 0

The physical domain of each element is denoted by Dk with left and right boundaries xk
l

and xk
r , respectively. Note the varying element sizes (h-adaptivity).
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Solution to Scalar Advection Equation

The k elements are non-overlapping which implies a higher number of degrees of
freedom. The solution vector in 1D is

qNp =


q1

1 q2
1 . . . qn

1

q1
2 q2

2 . . . qn
2

...
...

. . .
...

q1
Np

q2
Np

. . . qn
Np


where Np is the number of points per element and n the overall number of elements. The
collocation points are Gauss-Lobatto-Legendre stored as

xNp =


x1

1 x2
1 = x1

Np
. . . xn

1

x1
2 x2

2 . . . xn
2

...
...

. . .
...

x1
Np

= x2
1 x2

Np
. . . xn

Np

 .
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Solution to Scalar Advection Equation

The global solution requires the adoption of flux concepts. Therefore a special
sign is introduced that links the element-level to the global solution as

q(x , t) ≈ qh(x , t) =
n⊕

k=1

qk
h (x , t)

where
⊕

indicates global assembly, n is the overall number of elements and h is
the size of element k .
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Weak formulation

To obtain the weak formulation of the scalar advection equation we multiply it

∂tq(x , t) + a ∂xq(x , t) = 0

with a general test function φj(x), integrate over the k-th element domain Dk to
obtain ∫

Dk

∂tq(x , t)φj(x)dx +

∫
Dk

a∂xq(x , t)φj(x)dx = 0
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Weak formulation

And partially integrate replacing the term containing the space derivative by∫
Dk

a∂xq(x , t)φj(x)dx = [aq(x , t)φj(x)]xr
xl

−
∫

Dk

aq(x , t)∂xφj(x)dx

where xr and xl are the right and left boundaries of element k , and we assume
constant velocity a inside the element.

21



Weak formulation

What does the rule of partial integration look like with
more than one dimension? The definition is known as∫

Ω
∂xi uvdΩ =

∫
Γ

uvnidΓ

−
∫

Ω
u∂xi vdΩ

where u, v are arbitrary space-dependent functions, Ω

denotes the entire volume, Γ its boundary, and ni is a
vector normal to the boundary.
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Weak formulation

Putting this into the advection equation we obtain for element k∫
Dk

∂tq(x , t)φj(x)dx −
∫

Dk

aq(x , t)∂xφj(x)dx

= − [aq(x , t)φj(x)]xr
xl

Replacing the unknown field q(x , t) by a finite polynomial representation in terms
of a weighted sum over Lagrange polynomials inside each element k of order N
denoted as `i(x), i = 1, . . . ,N + 1 defined in the interval x ∈ [−1,1].
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Weak formulation

With the exact interpolation property of the Lagrange polynomials at the
Gauss-Legendre-Lobatto collocation points xi , here illustrated for an arbitrary
function yi = y(xi)

yi =

Np∑
j=1

yj`j(xi) =

Np∑
j=1

yjδij

we obtain for element k

q(x , t)|x=xi =

Np∑
i=1

qi(t) `i(x)

where Np indicates that in each element the polynomial order may vary, x = xi are
the collocation points.
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Weak formulation

In addition we also replace the test function by Lagrange polynomials. Combining
this we yield

∫
Dk

∂t

Np∑
i=1

qi(t)`i(x)`j(x)dx −
∫

Dk

a
Np∑
i=1

qi(t)`i(x)∂x`j(x)dx

and after re-ordering (omitting space dependencies of polynomials)

Np∑
i=1

[[∫
Dk

`i(x)`j(x)dx
]
∂tqi(t)−

[∫
Dk

a`i(x)∂x`j(x)dx
]

qi(t)
]
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Weak formulation

Recognizing the elemental mass Mij and stiffness Kij matrices in this equation. Assuming
implicit matrix-vector operations we obtain

M ∂tq(t) − K T q(t)

where the matrices are given by

Mij =

∫
Dk

`i (x)`j (x)dx

Kij =

∫
Dk

a`i (x)∂x`j (x)dx

assuming constant velocity a inside element k . Note that the lower index Dk indicates that
we are still in physical space and we have to map to the local coordinate system.
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Elemental Mass and Stiffness Matrices

The matrices (nodal or modal approach) for arbitrary test functions φi(x) are
defined by

Mij =

∫
Dk

φi(x)φj(x) dx

Kij = a
∫

Dk

φi(x)∂xφj(x) dx

containing integrals over (derivatives of) the test functions φ(x). Replacing the
integrals by a weighted sum over the function values f (xi) at carefully chosen
points xi inside the elements ∫

Ω
f (x) dx ≈

N∑
i=1

wi f (xi)

27



Elemental Mass and Stiffness Matrices

We need to map our physical coordinates into an element-based system. In 1D
this is quite simple using as local variable ξ and transforming via

xk (ξ) = xk
l +

(1 + ξ)

2
dx ξ ∈ [−1,1]

where xk
l and xk

r are the left and right physical boundaries of element k . In
general the mapping of the differential used to evaluate integrals is called the
Jacobian defined for element k as

Jk =
dx
dξ

, Jk =
xk

r − xk
l

1− (−1)
=

hk

2

where hk is the size of element k .
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Elemental Mass and Stiffness Matrices

For the elemental matrices we obtain for general test functions

Mij =

∫
Dk

φi(ξ)φj(ξ)Jk dξ

Kij = a
∫

Dk

φi(ξ)∂ξ((Jk )−1)Jkφj(ξ) dξ

= a
∫

Dk

φi(ξ)∂ξφj(ξ)dξ
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Elemental Mass and Stiffness Matrices

Finally, we can replace the test function with the Lagrange polynomials of order Np

leading to the definition of the mass and stiffness matrices

Mij =

∫ 1

−1
`i(ξ)`j(ξ) Jk dξ =

Np∑
m=1

wm `i(xm)`j(xm) Jk

=

Np∑
m=1

wmδim δjm Jk

=

wi Jk if i = j

0 if i 6= j
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Elemental Mass and Stiffness Matrices

Kij =

∫ 1

−1
`i(ξ)∂x`j(ξ) dξ =

Np∑
m=1

a wm `i(xm)∂x`j(xm)

=

Np∑
m=1

a wmδim∂x`j(xm)

=a wi∂x`j(xi) .
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The Flux Scheme

The key task in the discontinuous Galerkin scheme concerns the question what
values to allocate to the points at the element boundaries. This involves the use of
flux schemes.
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The Flux Scheme

Starting with the r.h.s. of this equation∫
Dk

∂tq(x , t)φj(x)dx −
∫

Dk

aq(x , t)∂xφj(x)dx

= − [aq(x , t)φj(x)]xr
xl

The originial form holds also for higher dimensions∫
∂Dk

a q(x , t)φj(x) n dx

where n = ±1 denotes the vector normal to the boundary, in 1D taking the values
n = −1 and n = 1 at the left and right boundaries.
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The Flux Scheme

Replacing the space-dependent part of q(x , t) by a sum over Lagrange polynomials to
obtain

Np∑
i=1

∫
∂Dk

`j (x) `i (x) a qi (t) n dx

and also replacing the arbitrary test function with the same function. The orthogonality of
the Lagrange polynomials and the fact that we are integrating over the surface ∂Dk leads
to

Np∑
i=1

(`i (xk
r ) `j (xk

r )(a q(xk
r ))∗ − `i (xk

l ) `j (xk
l )(a q(xk

l ))∗)

= `j (xk
r )(a q(xk

r ))∗ − `j (xk
l )(a q(xk

l ))∗

where we introduced the starred terms (a q(xk
r ,l ))∗ that are the values at the element

boundaries.
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The Flux Scheme

Therefore, we introduce the general flux vector with elements
Fj(a,qk (x , t)), j = 1, ..,Np as

Fj(a,qk (x , t)) = [`j(x) (a q(x , t))∗]
xk

r
xk

l

In vector form

F =


F1

0
...
0

FNp

 =


−(a q(x , t))∗(xk

l )

0
...
0

(a q(x , t))∗(xk
r )

 .
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The Flux Scheme

At the left boundary the outside value in element k − 1 is denoted with "‘+"’ and the
value inside element k with "‘-"’. The starred value q ∗ (xk

l ) is the flux that needs to
be defined as a function of the boundary values of the adjacent elements.
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The Flux Scheme

Taking the average of the values from both sides of the boundaries - also called
the central flux - can be expressed as

F c
1 =

1
2

ak (q(xk−1
r , t) + q(xk

l , t))

F c
Np

=
1
2

ak (q(xk
r , t) + q(xk+1

l , t))

The simplemost, stable choice is the so called upwind flux

F up
1 =

ak q(xk
l ) if ak ≤ 0

ak−1 q(xk−1
r ) if ak−1 > 0

F up
Np

=

ak+1 q(xk+1
l ) if ak+1 ≤ 0

ak q(xk
r ) if ak > 0
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The Flux Scheme

Centered and upwind fluxes can be formulated in a compact way. This formulation
reads

F1 = −a
1
2

(q(xk
l ) + q(xk−1

r ))− |a|
2

(1− α)(q(xk−1
r )− q(xk

l ))

FNp = a
1
2

(q(xk
r ) + q(xk+1

l )) +
|a|
2

(1− α)(q(xk
r )− q(xk+1

l ))

where α = 0 corresponds to the upwind flux and α = 1 to the centered flux
scheme.
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The Discontinuous Galerkin
Method Put To Action



The Discontinuous Galerkin Method Put To Action

In matrix notation we yielded for one element

M∂tq(t) − K T q(t) = −F (a,q(t))

requiring an extrapolation scheme of the form

∂tq(t) = M−1(K T q(t) − F (a,q(t)))

where F (a,q(t)) is the flux vector as defined above. We seek to extrapolate the
system from some initial conditions and obtain using the simple Euler method for
each element

q(tn+1) ≈ q(tn) + dt
[
M−1(K T q(tn) − F (a,q(t))

]

where for the flux scheme F() we use the upwind approach. 39



The Discontinuous Galerkin Method Put To Action

Employing a high-order extrapolation procedure known as predictor-corrector
method (or Heun’s method, or two-stage Runge-Kutta method). At time step ti
using time increment dt

k1 = f (ti , yi)

k2 = f (ti + dt , yi + dtk1)

yi+1 = yi +
1
2

dt(k1 + k2)

40



The Discontinuous Galerkin Method Put To Action

The matrix-vector form of the discontinuous Galerkin method. The system of
questions at an elemental level is illustrated by plotting the absolute matrix/vector
values. N = 3, Np = N + 1 = 4
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The Discontinuous Galerkin Method Put To Action

% Initialize vectors, matrices
Minv = zeros(N+1,N+1,ne);
K = zeros(N+1,N+1,ne);
q = zeros(N+1,ne);
(...)
for k=1:ne,
for i=1:N+1,
Minv(i,i,k)=1./(w(i)*J(k);
end
end
(...)
for k=1:ne,
for i=1:N+1,
for j=1:N+1,
K(i,j,k)=a(k)*w(i)*l1d(j,i);
end
end
end

The most important initialization step is the
calculation of the elemental matrices, mass
M and stiffness K . The following code part
illustrates a possible implementation looping
through all elements ne and calculating these
matrices as a function of the Jacobian J(k) =

hk/2 where hk is the size of element k :
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The Discontinuous Galerkin Method Put To Action

% Flux calculation
F = zeros(N+1,ne);
(...)
for k=1:ne,
F(1,k)= -a*(q(1,k)+q(N+1,k-1))/2 - abs(a)*(1-alpha)/2*(q(N+1,k-1)-q(1,k));
F(N+1,k)= a*(q(N+1,k)+q(1,k+1))/2 + abs(a)*(1-alpha)/2*(q(N+1,k)-q(1,k+1));
end

The flux vector has to be calculated new for each time step (or intermediate step
when using high-order extrapolation schemes) as it depends on the current values
of the wavefield q. alpha can be used to change the flux scheme from central
(alpha = 1) to upwind (alpha = 0).
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The Discontinuous Galerkin Method Put To Action

The element-wise system of equations can be extrapolated by the Euler scheme
as

% Time extrapolation
for it = 1:nt,
(...)
% Initialize flux vectors F (...)
for k=1:ne,
q(:,k) = q(:,k) + dt .* (Minv(:,k) * (K(:,k)’*q(:,k)-F(:,k)));
end (...)
end

where nt is the overall number of time steps, dt is the global time increment, and
ne is the number of elements. Note that can directly update the solution vector q
without intermediate storage at different time level(s).
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The Discontinuous Galerkin Method Put To Action

A high-order extrapolation scheme like the predictor-corrector method can be
implemented as

% Time extrapolation
for it = 1:nt,
(...)
% Predictor corrector scheme
% Initialize flux vectors F for all k
(...)
% First step (predictor)
for i=1:k,
k1(:,k)= Minv(:,k) * (K(:,k)’*q(:,k)-F(:,k));
end
(...)

% Initialize flux vectors F for q+dt*k1
(...)
% Second step (corrector)
for i=1:k,
k2(:,k)= Minv(:,k) * (K(:,k)’*(q(:,k)+dt*k1(:,k))-
F(:,k));
end
(...)
% Update
for i=1:k,
q(:,k)= q(:,k) + dt (k1(:,k) + k2(:,k));
end
(...)
end
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Example

Table 1: Simulation parameters for 1D discontinuous Galerkin advection

Parameter Value Meaning
ne 200 Elements
N 3 Order
a 2500 m/s Velocity
xmax 10000 m x-domain
dxmin 13.82 m Increment
dt 4.4e-4 s Time step
eps 0.08 Courant
σ 300 m Gauss width
x0 1000 m Source x
tmax 3 s Duration

Initiating the simulation with a spatial initial condition using a Gaussian function e−1/σ2(x−x0)2
. A

source term can be added to the system of equations in a straight forward way. 46



Example

47



Summary

• The discontinuous Galerkin method is a finite-element type method. The main difference is that the
solution fields are not continuous at the element boundaries.

• The elemental mass and stiffness matrices are formulated very similar to the classic finite-element
schemes. However, they are never assemble to a global system of equations. Therefore no large system
matrix needs to be inverted.

• Elements are linked by a flux scheme, similar to the finite volume method. This scheme leads to an entirely
local algorithm in the sense that all calculations are carried out at an elemental level. Communication
happens only to direct neighbours.

• The discontinuous Galerkin scheme can easily to higher orders, keeping the local nature of the solution
scheme. This leads to high efficiency when parallelizing the scheme.
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Summary

• The solution fields can be extended using nodal and modal approaches. Modal approaches are preferred
for tetrahedral schemes. Nodal solutions are preferred for hexahedral meshes.

• The discontinuous behaviour at the element boundaries and the associated discretization of the element
boundaries increases the number of degrees of freedom compared to other methods.

• The flexibility with polynomial order, element size, local time stepping leads to a formidable problem when
parallelizing a discontinuous Galerkin method: load balancing the computational task is not easy! Solution
to this problem requires tight cooperation with computational scientists.

• In seismology, the discontinuous Galerkin method is useful for problem with highly complex geometries (by
using tetrahedral meshes) and for problem with non-linear internal boundary conditions (e.g., dynamic
ruputure problems).
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Comprehensive Questions

1. What were the key points that led to the development of the discontinuous Galerkin method in seismology?
Discuss the pros and cons of the method compared to finite-element type methods and the finite-difference
method.

2. Explain qualitatively the difference between nodal and modal approaches.

3. Explain why the discontinuous Galerkin method lends itself to parallel implementation on supercomputer
hardware.

4. What is p− and h−adaptivity? Why is it straight forward to have this adaptivity with the discontinuous
Galerkin method and not with others? Give examples in seismology where this adaptivity can be exploited
and why.

5. What is local time-stepping? For what classes of Earth models and/or problems in seismology might it be
useful?

6. What is the problem that arises on computers when using algorithms with h-/p-adaptivity and local time
stepping?

7. What is meant by conservative and non-conservative properties in the context of advection problems?
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Theoretical Problems

8. Show that the advection problem ∂t q + a∂x q = 0 has a hyperbolic form.
9. The coupled 1D wave equation for longitudinal velocity v and pressure p can be formulated with

compressibility K and density ρ as

∂t p + K∂x v = 0

∂t v +
1
ρ
∂x p = 0 .

Formulate the Jacobian matrix of the coupled system of equations and calculate its eigenvalues.
10. Show that the rule of partial integration corresponds to Gauss’ theorem in higher dimensions (assuming on

of the functions under the integral to be unity). Explain the relevance of this for the discontinuous Galerkin
method.

11. Reformulate the nodal discontinuous Galerkin solution allowing the velocity to be variable inside the
element (Note: Compare with the spectral-element formulation).

12. Show that setting α = 0 leads to the upwind flux scheme.
13. Search in the literature for the classical 4-term Runge-Kutta method. Formulate a pseudo-code for the

scalar advection problem for this extrapolation scheme.
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Programming Exercises

14. Using the sample code dg1d find numerically the Courant limit (for a fixed time extrapolation to tmax ),
keeping all other parameters constant, increasing the global spatial order N of the scheme.

15. Formulate an upwind finite-difference scheme for the scalar advection problem and write a computer
programm. Discuss the diffusive behaviour.

16. Modify the sample code dg1d such that each element can have its own polynomial order (p-adaptivity) and
size (h−adaptivity). (Suggestion: Initialize the shape of the solution and other matrices using the maximum
number of degrees of freedom Np

max ).

17. Extend the sample code dg1d for the scalar advection problem to the 4-term Runge-Kutta method.
Compare the accuracy of the method with the lower order extrapolation scheme as a function of spatial
order N inside the elements.
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Programming Exercises

18. Formulate the analytical solution to the advection problem and plot it along with the numerical solution in
dg1d each time you visualize it during extrapolation. Formulate an error between analytical and numerical
result. Analyze the solution error as a function of propagation distance for the Euler scheme and the
predictor-corrector scheme.

19. Explore the p− and h− adaptivity of the discontinuous Galerkin method in the following way. Using an
appropriate Gaussian function defined on the entire physical domain decrease the element size by a factor
of 5 towards the center of the domain. Find an appropriate variation of the order inside the elements to
obtain a reasonable computational scheme (in the sense that the grid point distance does not vary too
much). Hint: Use high order schemes at the edges of the physical domain and low(est) order schemes at
the centre of the domain.
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