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Infinite Order Finite Differences



Infinite Order Finite Differences

• Any finite-difference operation can be decribed as a
convolution operation implying that the specific
finite-difference operator has a spectral
representation that can be compared with the exact
−ik operator

• Using Taylor Series for accuracy improvement (=
length of operator)

• Using Fourier concepts for calculating exact
derivatives

⇒ Fourier method can be interpreted as an infinite order
finite-difference scheme
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Infinite Order Finite Differences

Let us restate the previous result of the partial derivative as an inverse Fourier
transform defined as

∂x f (x) =
1√
2π

∫ ∞
∞

∂xF (k)e−ikxdk

=
1√
2π

∫ ∞
−∞
−ikF (k)e−ikxdk

Defining the factors in front of the complex amplitude spectrum F (k) of function
f (x) as

∂x f (x) =

∫ ∞
−∞

D(k)F (k)e−ikxdk , D(k) = −ik
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Infinite Order Finite Differences

Two functions d(x) and f (x) with complex spectra D(k) and F (k), are thus linked
by

D(k) = F [d ]

F (k) = F [f ]

d ∗ f = F−1[D(k)F (k)]

where F represents the Fourier transform, and ∗ denotes convolution, defined in
the continuous case as

(d ∗ f )(x) :=

∫ ∞
−∞

d(x ′)f (x − x ′)dx ′

and in the discrete case with vectors di , i = 0,1, . . . ,m, and fj , j = 0,1, . . . ,n

(d ∗ f )k =
m∑

i=0

dk fk−i , k = 0,1, . . . ,m + n
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Infinite Order Finite Differences

D(k) in general is nothing else but a function defined in the spectral domain acting
like a filter on the complex spectrum F (k).
The convolution theorem implies that

∂x f (x) =

∫ ∞
−∞

d(x − x ′)f (x ′)dx ′

where d(x) is a real function, the spatial representation of spectrum D(k), in other
words

d(x) = F−1[D(k)] .

5



Infinite Order Finite Differences

Limiting the wavenumber domain to the Nyquist wavenumber kmax = π/dx . Thus
D(k) becomes

D(k) = ik [H(k + kmax)− H(kkmax)]

where H() denotes the Heaviside function, and to obtain d(x) we simply have to
inverse transform

d(x) = F−1[ik [H(k + kmax)− H(k − kkmax)]]

leading to

d(x) =
1
πx2 [sin(kmaxx) − kmaxx cos(kmaxx)]
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Infinite Order Finite Differences

The r.h.s. of the Fourier integral is a multiplication of two spectra:

• derivative operator ik

• boxcar function and its solution is the sinc function of the form sin(x)/x

If space is discretized according to

xn = n dx , n = −N, . . . ,0, . . . ,N

In this case the convolution integral becomes a convolution sum

∂x f (x) ≈
n=N∑

n=−N

dnf (x − ndx)

where dn is the difference operator.
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Infinite Order Finite Differences

Inserting the discretization into

d(x) =
1
πx2 [sin(kmaxx)

− kmaxx cos(kmaxx)]

we obtain analytically the discrete differ-
ence operator

dn =

{
0 for n = 0
(−1)n

ndx for n 6= 0 .
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Infinite Order Finite Differences

Truncated Fourier operator
Convolutional difference operators
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Infinite Order Finite Differences

How can we conveniently compare the accu-
racy of such operators?

=⇒ The space representation of the ex-
act difference operator D(k) = −ik in the
wavenumber domain

Thus, for a finite-difference operator dFD
n we

will obtain

DFD(k) = i k̃ν(k) = F [dFD
n ]
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Chebyshev Pseudospectral
Method



Chebyshev Polynomials

Let us start with the trigonometric relation

cos [(n + 1)φ] + cos [(n − 1)φ] = 2 cos(φ) cos(nφ) n ∈ N .

Inserting n = 0 leads to a trivial statement. However, for n ≥ 1 we obtain
statements like

cos(2φ) = 2 cos2(φ)− 1

cos(3φ) = 4 cos3(φ)− 3 cos(φ)

cos(4φ) = 8 cos4(φ)− 8 cos2(φ) + 1
...
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Chebyshev Polynomials

Chebyshev Polynomials

cos(nφ) =: Tn(cos(φ)) = Tn(x)

with
x = cos(φ) x ∈ [−1,1] , n ∈ N0

Tn being the n-th order Chebyshev polynomial. Furthermore

|Tn(x)| 6 1 for [−1,1] , n ∈ N0
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Chebyshev Polynomials

Finally, we can write down the first polynomi-
als in x ∈ [−1,1]

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 − 1
...
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Chebyshev Polynomials

A generating function calculates the Chebyshev polynomials of any order n

Tn+1(x) = 2xTn(x) − Tn−1(x), n ≥ 1

The extremal values x (e)
k of these polynomials have a very simple form

x (e)
k = cos(

kπ
n
) k = 0,1,2, . . . ,n
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Chebyshev Polynomials

The Chebyshev polynomials form an orthogonal set with respect to the weighting
function w(x) = 1/

√
1− x2.

⇒ Using them as a basis for function interpolation

f (x) ≈ gn(x) =
1
2

c0T0(x) +
n∑

k=1

ckTk (x)

where f(x) is an arbitrary function in the interval [−1,1], Tn(x) are the Chebyshev
polynomials, and ck are real coefficients.
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Chebyshev Polynomials

By minimizing the least-squares misfit between f (x) and gn(x), the coefficients ck

can be found

ck =
2
π

1∫
−1

f (x)Tk (x)
dx√

1− x2
k = 0,1, . . . ,n

which - after substituting x = cos(φ) - can be written as

ck =
1
π

π∫
−π

f (cos(φ)) cos(kφ)dφ k = 0,1, . . . ,n

These coefficients turn out to be the Fourier coefficients for the even 2π−periodic
function f (cos(φ)) with x = cos(φ).
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Chebyshev Polynomials

The points we need are the extrema of the Chebyshev polynomials (Chebyshev-)
Gauss-Lobatto points defined as

xi = cos(
π

N
i) i = 0,1, . . . ,n .

With these unevenly distributed grid points we can define the discrete Chebyshev
transform as follows. The approximating function is

g∗n(x) =
1
2

c∗0T0 +
n−1∑
k=1

c∗k Tk (x) +
1
2

c∗nTn
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Chebyshev Polynomials

with the coefficients defined as

c∗k =
2
m

1
2
(f (1) + (−1)k f (−1)) +

m−1∑
j=1

fj cos(
kjπ
m

)


k = 0,1, . . . ,n, n = m

where f (1) and f (−1) are the function values at the interval boundaries and fj are
the values at the collocation points f (x = cos(jπ/m)). The fundamental property is

g∗m(xi) = f (xi)

where xi are the collocation points.
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Example

When we have a function f (x) = x3 in the interval [−1,1] using the Chebyshev
transform, the function f (x)

1 can be exactly interpolated at the collocation points
2 converges very rapidly with just a few polynomials
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Chebyshev polynomials

Two cardinal functions with Chebyshev polynomials for grid points i = n/2 (solid
line) and i = n (dashed line) are shown for n = 8
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Chebyshev Derivatives,
Differentiation matrices



Chebyshev Derivatives, Differentiation matrices

A convolution operation can be formulated as a matrix-vector product involving
Toeplitz matrices. Defining a derivative matrix Dij

Dij =


−2N2+1

6 for i = j = N

−1
2

xi
1−x2

i
for i = j = 1,2,...,N-1

ci
cj

(−1)i+j

xi−xj
for i 6= j = 0,1,...,N

where N+1 is the number of Chebyshev collocation points xi = cos(iπ/N),
i = 0, . . . ,N and the ci are given as

ci =

{
2 for i=0 or N
1 otherwise
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Chebyshev Derivatives, Differentiation matrices

This differentiation matrix allows us to write the derivative of function ui = u(xi)

simply as
∂xui = Dij uj

where the right-hand side is a matrix-vector product, and the Einstein summation
convention applies.
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Chebyshev Derivatives, Differentiation matrices

Illustration of differentiation ma-
trices (n=64). Top left: Ex-
act Fourier differentiation matrix
for regular grid (full). Top right:
Exact Chebyshev differentiation
matrix for Chebyshev collocation
points. Increasing weights at the
corners overshadows interior val-
ues. Bottom Left: Standard
2-point finite difference operator
(banded). Bottom Right: Ta-
pered Fourier operator (12-point).
Matrix is banded. For illustration
purposes the square root of the
absolute values are shown.
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Chebyshev Derivatives, Differentiation matrices

By testing the differentiation, we define a function to
seismic wavefield calculations as

f (xi) = sin(2xi)− sin(3xi) + sin(4xi)− sin(10xi)

in the interval xi ∈ [−1,1], where the discrete
points are the Chebyshev collocation points xi =

cos(πi/n), i = 0, . . . ,n given for n = 63.
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Elastic 1D with Chebyshev Method



Elastic 1D with Chebyshev Method

Elastic 1D wave equation using the standard 3-point operator

ρi
uj+1

i − 2uj
i + uj−1

i
dt2 = (∂x [µ(x)∂xu(x , t)])j

i + f j
i

where the lower index i corresponds to the spatial discretization and the upper
index j to the discrete time levels.
The displacement field as well as the geophysical parameters like density ρi and
shear modulus µi are defined on the irregular Chebyshev collocation points.
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Example

• Distance between grid points is 80 times
smaller at the boundaries

• The time step for a stable simulation
requires cdt/dx ≤ ε

⇒Grid distance near boundary is responsible
for the global simulation time step

Parameter Value
nx 200
c 3000 m/s
ρ 2500 kg/m3

dt 6 ×10−8 s
dxmin 1.2 ×10−4 m
dxmax 0.015 m
f0 100 kHz
ε 1.4
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Result

% Time extrapolation
%
for i = 1:nt,
%
% (...)
% Space derivatives
du=D*u’; du=mu./rho.*du;
du=D*du;
% (...)
% Time extrapolation unew=2*u-uold+du’*dt*dt;
% Source injection
unew=unew+gauss./rho*src(i)*dt*dt;
% remapping
uold=u;
u=unew;
% (...)
end
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Result

• To obtain a stable solution we need a very small time step that is only needed at the
boundaries. Mathematically the time step scales with O(N−2).

• In principle we can stretch the spatial grid such that the grid points close to the
boundaries are further apart while the grid point distances at the centre remain
basically unchanged. If that stretching function is ξ(x) then the derivative of a
function f (x) on the stretched grid is defined as

∂x f (x) =
∂f
∂ξ

dξ
dx

.
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Summary

• Pseudospectral methods are based on discrete function approximations that allow exact interpolation at
so-called collocation points. The most prominent examples are the Fourier method based on trigonometric
basis functions and the Chebyshev method based on Chebyshev polynomials.

• The Fourier method can be interpreted as an application of discrete Fourier series on a regular-spaced
grid. The space derivatives can be obtained exactly (except for rounding errors). Derivatives can be
efficiently calculated with the discrete Fourier transform requiring n log n operations.

• The Fourier method implicitly assumes periodic behavior. Boundary conditions like the free surface or
absorbing behaviour are difficult to implement.

• The Chebyshev method is based on the description of spatial fields using Chebyshev polynomials defined
in the interval [−1, 1] (easily generalized to arbitrary domain sizes). Exact interpolation is possible when
the discrete fields are defined at the Chebyshev collocation points given by xi = cos(πi/n), i = 0, . . . , n.
Therefore, the derivatives can also be evaluated exactly and errors accumulate only due to the
finite-difference time extrapolation.
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Summary

• Because of the grid densification at the boundaries of the Chebyshev collocation points very small time
steps are required for stable simulations when n is large. This can be avoided by stretching the grids by a
coordinate transformation.

• A main advantage of the Chebyshev method is an elegant formulation of boundary conditions (free surface
or absorbing) through the definition of so-called characteristic variables.

• Pseudospectral methods have isotropic errors. Therefore they lend themselves to the study of physical
anisotropy.

• The derivative operations of pseudospectral methods are of a global nature. That means every point on a
spatial grid contributes to the gradient. While this is the basis for the high precision, it creates problems
when implementing pseudospectral algorithms on parallel computers with distributed memory
architectures. As communication is usually the bottleneck, efficient and scalable parallelization of
pseudospectral methods is difficult.
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