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Q: What
 

is
 

an „inverse
 

problem“?Q: What
 

is
 

an „inverse
 

problem“?

A: An indirect
 

measurement.

We
 

want
 

to measure
 

some
 

important
 

„EARTH_PROPERTY“
 (e.g., seismic

 
velocity

 
v(x)), and have

 
no tools

 
to do it.

 Instead we know how to measure some other property called
 „DATA“

 
(e.g., traveltime

 
delays

 
dT)

 And we
 

know
 

some
 

phys./math. relationship
 

„MAPPING_FCT“, 
so that:

 DATA = MAPPING_FCT(EARTH_PROPERTY)

If
 

we
 

are
 

able
 

to find an „inverse
 

function“
 

MAPPING_FCT-1

 

so 
that

 EARTH_PROPERTY = MAPPING_FCT-1(DATA),
then

 
the

 
problem

 
is

 
solved.
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Inverse
 

problems
 

are
 

commonInverse
 

problems
 

are
 

common

Seismology

EARTH_PROPERTY: as a function
 

of space
 

(x,y,z), 
e.g., P-velocity

 
or

 
intrinsic

 
attenuation, or

 
rock 

composition
 DATA: Seismograms

 
(and data

 
dreived

 
from

 
them, 

like
 

traveltimes, amplitudes...) at discrete
 

points
 at the

 
surface

 MAPPING_FCT: wave
 

equation
 

(or
 

some
 approximation

 
to it, like

 
rays

 
from

 
Snell´s

 
law)
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Inverse
 

problems
 

are
 

commonInverse
 

problems
 

are
 

common

Medical
 

Imaging: Computed
 

Tomography

EARTH_PROPERTY: structure of tissue in the human 
body

 DATA: X-ray
 

imaging
 

in multiple plane --
 

by
 

how
 much

 
do x-rays

 
get

 
attenuated?

 MAPPING_FCT: wave
 

propagation
 

and attenuation
 (optics, geometrical

 
ray

 
approximation)
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Inverse
 

problems
 

are
 

commonInverse
 

problems
 

are
 

common

Planetary
 

Science:Composition
 

of a Jupiter 
moon

 

EARTH_PROPERTY: density
 

as function
 

of x,y,z
DATA: gravity

 
measurements: deflection

 
of a 

satellite
 

upon
 

its
 

fly-by
 MAPPING_FCT: Newton‘s law

 
of gravity

Common theme: measure
 

interior
 

properties
 

from
 

the
 outside…

 …but
 

not
 

all inverse
 

problems
 

are
 

like
 

that…
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Inverse
 

problems
 

are
 

commonInverse
 

problems
 

are
 

common

Borehole
 

seismics: 

EARTH_PROPERTY: shallow
 

earth
 

properties
 (velocity, density, attenuation,…) as a function

 
of 

depth
 DATA: hydrophone

 
recordings

 
inside

 
the

 
borehoel

MAPPING_FCT: wave
 

equation: reflections
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Inverse
 

problems
 

are
 

commonInverse
 

problems
 

are
 

common

Environmental
 

remediation/hydrology: 

EARTH_PROPERTY: source
 

location(s) and quantity
 of contaminants

 DATA: contaminant
 

sensors
 

in several
 

deep
 

holes
 around

 
a chemical

 
factory

 MAPPING_FCT: diffusion
 

equation/transport
 

in 
porous

 
media
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Summary: What
 

is
 

an inverse
 

problem?Summary: What
 

is
 

an inverse
 

problem?

We are unable to directly measure an interesting
 EARTH_PROPERTY.

 
Instead

 
we

 
measure

 
some

 
other

 
DATA, because

 
we

 
know

 how
 

to derive/compute
 

a physical
 

relationship
 MAPPING_FCT so that:

 
DATA = MAPPING_FCT(EARTH_PROPERTY)
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try
 

to find the
 

„inverse“
 

MAPPING_FCT-1, so that

EARTH_PROPERTY =
 

MAPPING_FCT-1(DATA)
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A realistic experiment: Seismic 
tomography of the Earth’s mantle

 

A realistic experiment: Seismic 
tomography of the Earth’s mantle

Geophysicists‘
 

mission: Discover
 

new
 things

 
about

 
the

 
Earth.

 
If

 
it

 
is

 
a good problem

 
then

 
many

 
other

 people
 

(geologists, geodynamicists, 
economists, etc.) will be

 
interested

 
in 

the
 

results.
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Imaging the subducted
 

Farallon
 

plate under 
North America
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The Farallon plate 140 Myr ago…

Engebretson et al. 1985

F
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…and 80 Myr ago…

Engebretson et al. 1985

F
F
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…and today.

Engebretson et al. 1985

F
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150 million years of textbook-like 
subduction?

A single large plate 
has been subducting 
beneath the North 
American west coast 
for 150+ million years. 
No significant 
interference from other 
plates.

Ren et al 2007, after Engebretson 
1985
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A simple story? Yes, but.
Extensive mountain building and volcanism far inland 
(since ~70 Myr). Not a “conventional” volcanic arc.

Why is the North American Cordillera so wide and stands 
so high?
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The “Laramide orogeny”: 
Rapid uplift, far inland at ~70 Myr ago

Laramide orogeny (70-50 Myr): 
basement uplift by thrust 
faulting, volcanic arc along 
trench has shut off.

A shallow inland sea covers 
the Rocky Mountain area

75 Myr ago 65 Myr ago

graphics: Blakely (online)
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Geologists’ explanation: Laramide 
thrust faulting was caused by 
anomalously flat subduction

Extremely flat slab scrapes along 
bottom of continental crust
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…but Western North America has 
stood high ever since.

NASA satellite photo of Western U.S.; 
mountains are from Laramide times

CO
NMAZ

UT

WY
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Our tomographic experiment

•We use teleseismic P-wave seismograms from large 
earthquakes (magnitude >= 5.8, 1990-2007)

•Many new USArray stations in Western U.S since 2005

637 earthquake 
sources

1125 broadband receivers 
(seismometers)
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Tomography step by step

observed 
seismogram

•deconvolve 
source time 
function

•extract scalar 
observables 
dT(f), dA(f)

compute 
sensitivity 
kernels

=
*

parameterizepredicted 
seismogram

solve

result: earth 
model

dv
dQ

dT

dA
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Result: 3-D model of P-wave velocities 
under North America
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Locations of interesting cross-sections

B
49ºN

42ºN

A

C
D

PA

F
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The big picture: Not one, but two 
episodes of whole mantle subduction

B
49ºN

42ºN

A

C
D

PA

F

42ºN
S2S2 F2F2

F1F1S1S1
CC

dVp /Vp in %
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Image of the subducted Farallon 
slab in the mantle 

•Seismically fast material is contoured (fast means cold).

•Color signifies depth. We can confidently image ~1500 km deep.

•Crust and lithosphere not rendered.
de

pt
h/

km
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•F1 must have been part of the Laramide flat slab. It still fills the 
transition zone.

•Lower end of S2/N2 subducted ~55 Myr ago.

N1 N2

S2

S2
S1

W

F1

F2

F2

F2

de
pt

h/
kmF1

S2

Interpretation: a frontal plate break ended 
the Laramide era at ~50 Myr
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Interpretation: a frontal plate break ended 
the Laramide era at ~50 Myr

55 Myr ago

40 Myr ago

Today

All velocities in a 
hotspot frame.
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How does this work?How does this work?

Some
 

intuitive examples…Some
 

intuitive examples…
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Tomography: Intuitive example 1Tomography: Intuitive example 1

Surface
 

waves
 

(of a certain
 

frequency) have
 

sampled
 

the
 shallow

 
mantle

 
of North America, along

 
the

 
shown

 raypaths.
 Your

 
prior

 
guess

 
is

 
that

 
traveltime

 
~ length

 
of ray, 

meaning
 

v(x,y)=v0

 

= const. everywhere. 
In reality

 
you

 
observe

 
anomalies

 
in the

 
traveltime

 
DATA:

Red ray
 

means
 

traveltime
 

was longer
 

than
 

expected.
Blue ray

 
means

 
traveltime

 
was as expected.

Red rays
 

must
 

have
 

traversed
 

some
 

slow
 

material. Where
 exactly

 
is

 
is

 
located?
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Tomography: Intuitive example 1Tomography: Intuitive example 1
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Tomography: Intuitive example 1Tomography: Intuitive example 1

Idea: Consider
 

ray
 

crossingsIdea: Consider
 

ray
 

crossings
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Tomography: Intuitive example 1Tomography: Intuitive example 1
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Tomography: Intuitive example 1Tomography: Intuitive example 1

It
 

worked
 

pretty
 

well.

Why
 

is
 

the
 

reconstruction
 

not
 

perfect?

It
 

worked
 

pretty
 

well.

Why
 

is
 

the
 

reconstruction
 

not
 

perfect?

recovered area true area (was used to 
generate the colored rays)
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Tomography: Intuitive example 2Tomography: Intuitive example 2

Image reconstructionImage reconstruction

original image We smear the image in horizontal 
direction (like an x-ray integrates 
over different body tissues along 
its path)
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Tomography: Intuitive example 2Tomography: Intuitive example 2

Image reconstruction: Generating
 

„DATA“Image reconstruction: Generating
 

„DATA“

We smear over more directions to simulate more x-ray “data”: 
what rays “see” from all these different angles
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Tomography: Intuitive example 2Tomography: Intuitive example 2

Now
 

we
 

try
 

to reconstruct
 

the
 

image (principle
 

of 
destructive/constructive

 
interference):

 

Now
 

we
 

try
 

to reconstruct
 

the
 

image (principle
 

of 
destructive/constructive

 
interference):

Addition of two 
directions of the “data”

Addition of all 8 
directions of the “data”
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Tomography: Intuitive example 2Tomography: Intuitive example 2

Reconstruction
 

result

How
 

could
 

we
 

improve
 

on this?

Reconstruction
 

result

How
 

could
 

we
 

improve
 

on this?
Original Reconstruction
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Basic modelingBasic modeling

Acoustic
 

tomography:

A few
 

bricks
 

are
 

standing
 

next
 

to each
 

other. To 
first

 
order they

 
all have

 
the

 
same, known

 
P-

 velocity
 

v0 (or
 

slowness
 

u0 =1/v0
 

), except
 

for
 small

 
variations: ui

 

= u0
 

+ ∆ui
 

,  where
 

∆ui
 

<< u0
 We

 
want

 
to estimate

 
the

 
small

 
anomalies

 
∆ui
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+∆u2 u0
 

+∆u3
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Basic modelingBasic modeling

Acoustic
 

tomography:

Blocks are
 

x wide
 

and y high.
Traveltime: t1

 

=u1
 

s11
 

+u2
 

s12 +u3
 

s13
 Traveltime

 
anomaly: ∆t1

 

= ∆u1
 

s11
 

+ ∆u2
 

s12 + ∆u3
 

s13
 The

 
sij

 

can
 

be
 

computed
 

from
 

the
 

given
 

geometry
 (general

 
case

 
= Snell‘s

 
law!)
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Basic modelingBasic modeling

Acoustic
 

tomography:

Linear system: two
 

equations, three
 

unknowns
Matrix notation:

Acoustic
 

tomography:

Linear system: two
 

equations, three
 

unknowns
Matrix notation:

u0
 

+∆u1 u0
 

+∆u2

x

y
∆t1s12s11

s21

∆t2

s13

u0
 

+∆u3
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Basic modelingBasic modeling

Acoustic
 

tomography:

For full
 

rank: two
 

equations, two
 

unknowns.
Full rank means:
Matrix notation

 
(and its

 
inverse):

Acoustic
 

tomography:

For full
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equations, two
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inverse):
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Basic modelingBasic modeling

Acoustic
 

tomography:

Does
 

this
 

system
 

have
 

full
 

rank?
How

 
many

 
measurements

 
M need

 
to be

 
made

 
for

 the
 

matrix
 

to have
 

an inverse?
 

Acoustic
 

tomography:
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system
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rank?
How
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 the
 

matrix
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x
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Basic modelingBasic modeling

Acoustic
 

tomography: How
 

about
 

these
 

geometries?

Ideally, each
 

measurement
 

should
 

contribute
 

as 
much

 
new

 
information

 
as possible

 
(„independent“

 measurements
 

--> experiment
 

design)
 

Acoustic
 

tomography: How
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geometries?

Ideally, each
 

measurement
 

should
 

contribute
 

as 
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as possible

 
(„independent“
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Real-world experimentsReal-world experiments

Parameterizations
 

of the
 

unknowns
 

(grid)Parameterizations
 

of the
 

unknowns
 

(grid)

∆u1 ∆u2

Coarse parameterization in 
blocks; few unknowns

vs.

Complex parameterization 
(irregular tetrahedra, 105

 unknowns
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Real-world experimentsReal-world experiments

Source
 

and receiver
 

geometrySource
 

and receiver
 

geometry

Optimally designed source-
 receiver geometry

vs.

“Take what you can get”
 

-->
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Real-world experimentsReal-world experiments

Signals and wave
 

propagation
 

modelingSignals and wave
 

propagation
 

modeling

Sharp pulses modelled
 

as 
optical rays 

vs.

Realistic wavelets with broad 
Fresnel zones -->
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Real-world experimentsReal-world experiments

System to solveSystem to solve

Small sytem, well conditioned, 
exactly determined

vs.

Huge system, ill conditioned, both 
underdetermined and 
overdetermined

ART OF TOMOGRAPHY: 
Finding smart ways to 
solve this anyway.

=

*MAPPING_FCT

DATA EARTH_PROPERTY
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