PAGEOPH, Vol. 128, Nos. 1/2 (1988) 0033-4553/88/020365-35$1.50 + 0.20/0
© 1988 Birkhduser Verlag, Basel

Theoretical Background for the Inversion of Seismic Waveforms,
Including Elasticity and Attenuation

ALBERT TARANTOLA'

Abstract—To account for elastic and attenuating effects in the elastic wave equation, the stress-strain
relationship can be defined through a general, anisotropic, causal relaxation function ¥ %/(x, 7). Then, the
wave equation operator is not necessarily symmetric (‘self-adjoint’), but the reciprocity property is still
satisfied. The representation theorem contains a term proportional to the history of strain. The dual
problem consists of solving the wave equation with final time conditions and an anti-causal relaxation
function. The problem of interpretation of seismic waveforms can be set as the nonlinear inverse problem
of estimating the matter density p(x) and all the functions ¥ #/(x, 7). This inverse problem can be solved
using iterative gradient methods, each iteration consisting of the propagation of the actual source in the
current medium, with causal attenuation, the propagation of the residuals—acting as if they were
sources—backwards in time, with anti-causal attenuation, and the correlation of the two wavefields thus
obtained.

Key words: Inversion, waveforms, attenuation, Green’s function, representation theorem, dual con-
ditions, reciprocity theorem.

1. Introduction

The problem of interpretation of seismic waveforms can be set as the problem of
obtaining the earth model which best predicts the actually observed seismograms.
This opens two questions: i) given an earth model, how to solve the forward problem
of predicting seismograms? and ii) how to solve the inverse problem of obtaining the
optimum earth model? /

The tools for predicting seismograms are the elastic wave equation and the nu-
merical methods developed to obtain solutions, as for instance finite-difference ap-
proximations to derivatives. Finite-difference approximations to the wave equation
have the advantages of having enough flexibility to be almost model-independent and
of accounting, in principle, for a diversity of waves. They are expensive, but nicely
adaptable to the newly emerging class of massively parallel computers.

The inverse problem is essentially an optimization problem in a functional space.
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Difficulties arise because the problem is large sized, and the functional to be mini-
mized is nonquadratic. The modest capabilities of present-day computers prevent the
use of true nonquadratic methods of optimization, like Monte Carlo methods.
Gradient methods can be used which lead to elegant results.

In this paper I first review the mathematics of the forward problem that are useful
for the inverse problem; wave equation, Green’s function, and representation theo-
rem. Secondly, I review the mathematics of functional least squares. Finally, I give
the solution to the seismic inverse problem, with more generality than in my previous
papers, because here I take into account attenuation.

In the problem of interpretation of seismic reflection data the model space has
many degrees of freedom (millions to billions), and methods of inversion based on a
naive use of least-squares formulas do not work. In particular, matrix algebra must
not be used, and partial (or Fréchet) derivatives of data with respect to model
parameters should not be computed. Much work has to be done analytically, in order
to interpret the final formulas of least squares as operations involving only wave
propagations, and no linear algebra computations.

For developing a theory for inversion including attenuation we must first choose
a model. If in the perfectly elastic approximation it is clear that density p(x) and
elastic stiffnesses ¢%*/(x) (or related quantities) are the right earth parameters to
choose, for a more realistic approximation including attenuation, the choice is not so
clear, as many models for attenuation exist. I take here the most optimistic point of
view: that data sets exist which contain enough information rendering a particular
model of attenuation unnecessary, and that the more general parameterization can be
chosen: an arbitrary relaxation function ¢ %/(x, t). The goal of inversion is then to
obtain the density p(x) and the functions ¥ #/(x, ). Of course, some constraints have
to be imposed on the relaxation functions, as for instance causality and symmetry
conditions. If necessary, some soft constraints can also be imposed, as for instance
spatial or temporal smoothness.

Let u(x, 1) be the i-th component of displacement at point x and time ¢. If
X, (r=1,2,...) denote the receiver locations, a possible criterion of goodness of fit
between observed and computed seismograms is the minimization of

§=3 f dt Y |u'(X,s Dobs — u'(X,s Dcal, (1a)

where ‘obs’ and ‘cal’ respectively represent the observed and the calculated displace-
ments from a given earth model. Although results given by this criterion are fairly
good, they are difficult to obtain, and this criterion is replaced by the least-squares
criterion of minimization of

S = Z J‘I] dt Z (ui(xn t)obs - ui(xr5 t)cal) Zs (lb)

which gives less robust results but computations which are manageable with present-
day computers.
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In Section 2 the rate-of-relaxation function is defined, which will be at the center
of our mathematical developments. Section 3 rapidly reviews the fundamental equa-
tion: the elastic wave equation with attenuation. In Section 4 I recall the definition of
the transposed (and adjoint) of an operator, and in Section 5 the transposed of the
wave equation operator is given. The Green function is introduced in Section 6,
leading to the general representation theorems of Section 7, which are independent of
the reciprocity relations shown in Section 8. Section 9 reviews rapidly the Born
approximation, useful for computing the gradient of the least-squares misfit function.
A very formal version of the least-squares theory in functional spaces is developed in
Section 10, and is applied to the problem of interpretation of seismic waveforms in
Section 11. The formula allowing waveform inversion for obtaining the rate-of-
relaxation function is, to my knowledge, original. The last Section addresses the
results obtained.

2. The Rate-of-Relaxation Function

The most general linear relationship between stress, a%(x, £), and strain e%(x, 1),
can be described using a kernel W¥*(x, t; x’, t'):

+00
c¥(x, ) = j dv(x") j dr' Wi, t; X, t)e*(x’,t"), (2a)
| 4 —

which has to be causal, must have some symmetries, and may be a distribution
(containing the delta ‘function’ and/or its derivatives). This is too general for most
seismic purposes. Assuming that the stress-strain relationship is local,

WX, X, 1) ="P§(x; 1, 1)6(x — X)),
gives

+0o0
a¥(x, ) =J dr' v ik(x; t, t)e*(x, t). (2b)

— 00
If the medium properties do not depend on time,
Wik(x; t, t') = P*(x, t — 1),
and

+ o0
a¥(x, 1) =f dt’ Wikl(x, t — 1")e¥(x, t). (20)

—

The function W¥*(x, 1) has to satisfy causality,
' Wikl(x,1) =0 for <0, : 3)
and is assumed to have symmetries:

Pikl(x, 7) = Wk(x, 7) = WHI(x, 1), - (4)
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(from where it follows W¥*(x, 1) = W¥*(x, 1) = ¥*/(x, 1)). Notice that the causality
property allows writing (2c) as

t+
c¥(x, 1) =[ dr W*(x, t — t)e*(x, t").
-~ 00

Instead of the function W¥*(x, 1) it is customary to use the creep function
@ 7*(x, 1) defined by

ei(x, ) = ft dr’ ¢*(x, t — t)é*(x, 1), (5

— 0

or its inverse, the relaxation function y*(x, t) defined by

gi(x, t) = f dr’ y(x, t — t)ek(x, t), (6)

where a dot denotes time differentiation. As we have
Pik(x, 1) = § *(x, 1), @)

Wi*(x, 1) can be named the rate-of-relaxation function.

Example 1: Perfect elasticity. Choosing

Pik(x, 1) = c™(x)8(7), (8)
where (-) is the delta ‘function’, gives Hooke’s law
oli(x, t) = c"f"’(x)g"’(x, f). 9
For isotropic media,
% (x) = A (x)0 95" + H(x)(0 767 4 5767), (10)

where 4,(x) and p,(x) are the (elastic) parameters of Lamé, related with the elastic
bulk modulus by

3K(x) = 34,(X) + 2p(x). (11)

As a first approximation, for usual rocks, 4, ~ p,.
Example 2: Elasticity with viscosity. Choosing

PH(x, 1) = c™M(x)8(z) — d™(x)d(z), (12)
gives the Kelvin-Voigt law '
o¥(x, 1) = cH(x)e*(x, 1) + d™(x)éX(x, 1), (13)

which corresponds, in a 1D problem, to a perfectly elastic spring and a perfectly
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viscous dashpot in parallel. For isotropic viscosity,
d™(x) = 2,(x)078% + pu (x)(6 %87 + 6757%). (14)
The viscous bulk modulus is defined by
3k, (%) = 34,(x) + 2p(x). (15)

As a first approximation, for usual rocks, 3k, = 34, + 2, ~0.

Example 3: Constant Q. In a one-dimensional example, KJARTANSSON (1979)
shows that the rate-of-relaxation function

W(r) c——- for ©>0 (16)

l+2v

Y(r) =0 for 1<0 (17

implies a quality factor Q strictly independent on the frequency, and, for a sufficiently
small value of the positive parameter 7, fits most of seismic data.

3. The Fundamental Equation

Let us be interested in the description of elastic waves propagating inside a
volume ¥, surrounded by a surface S. Points inside ¥ will be denoted x, x/, . . . while
points on § will be denoted &, £, . . . From the fundamental laws of physics we can
show (e.g., DAUTRAY and LIONs, 1984) that if we impose to a medium with matter
density p(x) and rate-of-relaxation function W¥/(x, 1), a volume density of force
¢'(x, £), a moment density M¥(x, 1), and a surface traction 7(¢, 7), then the displace-
ment field u'(x, ) satisfies at any point inside V the relationship

(x) 3 “x D) — %(x ) =¢i(x, 1) (18)
where
a¥(x, ) = MY(x, ) + jﬂo dr¥ir(x, t —t ) (x t'), | (19)
and, at the surface,
| n(&o (&, 1) ='¢, 1), (20)

Notice that 6%(x, 1) is the rotal stress (internal plus external origin) and that in the
equations of the previous section the external stress M¥(x, #) was implicitly assumed
to be zero. :
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4. Mathematical Preliminary: Symmetric and Self-Adjoint Operators

Let U be a linear space, whose elements, denoted u, are named vectors. For
instance each element of U may be a displacement field u‘(x, ¢). A linear form over U
is a linear application from U into a space of scalars (identical to the real numbers
of R excepted in that the scalars may have a physical dimension). We will say that a
linear space U is a dual of U if each element of U defines a linear form over U (I prefer
that definition to the traditional definition of mathematicians where the dual is the
space of all linear forms). Let d,e U. The scalar associated to any uelU by @, is
denoted by (fiy, u),. Alternatively, each element u,e U defines a linear form over U
through

ug, @9 = <, up) . 2n

Let U and ® be two linear spaces, and L a linear operator from U into ®. For
instance, L may be the wave equation operator defined in Section 5. An operator L’
mapping ® into U will be named the transposed of L if for any ¢ e® and any ue U

(§, Luyg = <L'§, u)y. (22)

This definition of transposed operators may be compared with the definition of
adjoint operators. The adjoint of an operator may only be defined if the spaces in
consideration have a scalar product. Let for instance the linear operator L map the
linear space U into the linear space ®, and let (u;, u,), and (¢,, ¢,)e denote respec-
tively the scalar products over U and ®. An operator L* mapping ® into U will be
named the adjoint of L if for any ¢ and u,

(¢, Lu)g = (Lf¢, u)y. (23)

Details on the mathematical definition of transposed and adjoint operators may
be found for instance in TAYLOR and LAY (1980).

Transposed operators have an important and very simple property which follows
immediately from the definition of the kernel of an operator: if two operators are
mutually transposed, their integral kernels are identical, excepted in that their vari-
ables are ‘transposed’.

It can easily be seen that if W, and W, are the operators defining the scalar
products over U and ®, respectively:

(), w)y = Wymy, up)y (242)
(91, P0)o = Wod1, o), (24b)

then tfanqused and adjoint are related by
L*=W;'L'W,. (29)

By definition, if L maps U into ®, then L' maps ® into U. In the particular case
where ® can be identified with a dual of U, both L and L map Uinto U. In that case,
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the definition of transpose (22) can be rewritten
<ﬁ5 Lﬁ>0 = <L’ﬁa ﬁ>U’ (26)

with @ and & elements of U. If, in that case, L and L’ have the same domain of
definition, and if for any @ and @ we can replace in (26) L’ by L:

<ﬁs Lﬁ>0 = <Lﬁ9 l‘I>Ua / (27)
we say that L is symmetric, and we write
L=L" (28)

By definition, if L maps U into itself, then L* also maps U into itself. In that case,
the definition of adjoint (23) can be rewritten

(4, L), = (L*q, o). (29)

If, in that case, L and L* have the same domain of definition, and if for any i and
@ we can replace in (29) L* by L:

(4, L), = (L, ), (30)
we say that L is self-adjoint, and we write
L=L* 31

In the problem of wave propagation later studied, there is no natural scalar
product, so the general concept of transposed operator will be preferred to the more
particular concept of adjoint operator.

Practically, when we have an operator L, we can use the two following rules to
obtain the formal transposed: i) a derivative operator is anti-symmetric, i.e., its trans-
posed equals its opposite. ii) if L is an integral operator, we can introduce its integral
kernel; the transposed operator is also an integral operator and the kernel of the
transposed operator is the transposed of the original kernel.

Once we have the formal transposed, we compute the difference

(§, Luyg — (L'§, udy,

and if necessary, we impose restrictions on the spaces U and ® for this difference to
vanish. These restrictions are named dual conditions, and we will see examples in the
next section. Typically, for a differential operator, the dual conditions are boundary
conditions. For an integral operator, there are no dual conditions to impose if the
integrals defining the linear forms have the same bounds as the integrals defining the
operators. If not, we have to impose conditions on the functions outside the bounds.

5. The Wave Equation Operator and its Transpose

Let U be the space of all conceivable displacement fields u = {¥’(x, 1)}, and ® the
space of all conceivable source fields ¢ = {¢p‘(x, 7)}. The wave equation operator (with
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attenuation) is the operator L mapping U into ® defined by

(Lu)'(x, 1) = (x)azui(x 1) N dt” Wik(x; t t’)a—u—k(x t") (32)

s - p 6t2 ] 6x’ - 0 s by 5x’ s ’
where Wi(x; 1, t') is causal (the right arrow is to distinguish this function from an
anti-causal function to be introduced later). This allows the wave equation with
attenuation defined by equations (18)—(19) to be written as:

Lu=¢ (33)

where

ij
6;; (x, 1). (34)
In the definition (32) we choose the function Wj*/(x; 1, t') defined in (2b), rather than
the rate-of-relaxation function ¥/*/(x, 1) defined in (2c) because it is not more
difficult to handle and will later help to clarify the properties of the Green function.
To simplify notations, the index (,) in W*/(x; 1, t') will be dropped in what follows.
For a given ¢ e® we can define, for any ue U, the scalar

ix, 1) = p'(x, 1) +

(b, udy = j dV(x) f " dt(x, Duix, 1), (35)

which has the dimension of an action (energy x time). As each element of ® defines
a linear form over U, we can say that ® is a dual of U. Alternatively, for a given ue U
we can define, for any ¢ e®, the action

W, P e =<{P,u), = fy av(x) fll dro’(x, Du'(x, 1. (36)

The spaces U and ® are mutually duals.

Equations (32)—(33) define the linear operator L, mapping U into ®. As U and
® are mutually duals, the transposed operator L’ also maps U into ®. Let us demon-
strate that the transposed of L is the operator L’ defined by

(AN a2ui . 6 e 2 \pijkl ’ auk ’
(Lu) (Xs t) —'P(x) 3{2_ (x’ t)‘g;j_w dt \Pd (X, tst)—ax—/(xst )a (37)

where W§¥(x; t, t') is the anti-causal rate-of-relaxation function defined by
Pi(x; 1, 1) = PPU(x; 1, ), (38)

which means that the operator L’ corresponds to a wave equation with negative
attenuation.
For we have to verify that (26) is satisfied. We have

<, Liidg — (LA, i), = J dV(x) f " dti(x, (Liy(x, )
v to

_ J dv(x) J " a(LA (x, )i, 1),
4 to
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Inserting (32) and (37), integrating per parts, and using the divergence theorem gives
(see Appendix A):

=1

i, Li)e — <L, i), = + f dV(x)('(x, Dp(x, 1) — p(x, Ni'(x, 1)) I

t=1y

+ j as($) J‘l anz'(§, na'(€, 1 — ', nii(x, 1)
s 1o

+f dv(x) J " diE(x, DE9(x, 1) — £9(x, E¥(x, 1)),  (39)
4 1o
where

= o )
Si(x, 1) = J drP(x; 1, 1)E¥(x, 1)

;: (40a)
Six, 1) = J‘ dt"P(x; t, 1)EM(x, 1),
L8
and, where for each sense of the arrows — and «,
pi(x, )= P(X) (x 1 (40b)
3 1 /ou’ o’
i =— —
e’(x, 1) 2<ax,(x, N+ t)) (40c)
+ o0
ci(x, 1) =-[ dr'Po(x; t, t)e¥(x, t) (40d)
and
(&, ) = (&)oY, 1) for EE€S. (40e)

$%(x, 1) corresponds to the stress at time ¢ due to the history of the strain &%(x, 1)
before t,, while £%(x, 1) corresponds to the future of the strain §9(x, 1) after ¢,.

If we restrict the domains of definition of L and L’ respectively to subspaces I and
U such that for any iie U and iie U the right-hand side terms in (39) vanish, then L!
is the transposed of L. The elements of U and U satisfy then dual conditions.

First example of dual conditions: If the field i has a quiescent past:

#(x, 1) =0 for t<t, (41a)
% 10 = (41b)

and satisfies a condition of free surface (computed with positive attenuation):

(&) J de Ve, tt) (a: )=0 for E&eS, (41c)
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and the field @ has a quiescent future:

u(x,t)=0 for t=1, (42a)
ou'
- (%1 =0, ' (42b)
and satisfies a condition of free surface (computed with negative attenuation):
) + y oul k
n'() f drPPUE; 1, 1) 7 & 1) =0 for leS§, (420)
then, the integrals in (39) vanish: conditions (41)—(42) are dual conditions.
Second example of dual conditions: If in the example above we assume conditions
of rigid, instead of free surface:
(&, 0n=0 for &eS, (43)

(&, =0 for ¢EesS, (44)

the integrals in (40) also vanish: conditions (43)—(44), together with the conditions
(41a,b)—(42a,b) are dual conditions.

6. The Green Function

Consider the operator L., defined by the restriction of the formal definition of L
(32) to the subspace U < U of fields satisfying the homogeneous initial conditions
and the conditions of free surface defined by equations (41). Then, for any ¢ belong-
ing to the source space ®, the equation

Ll = ¢ (45)

has one solution i, and only one (if we limit our consideration to functions regular
enough).

This allows L. to be defined, the inverse of Ly,.. It is named the Green operator,
and is denoted G,.: '

Gfree = Lf:eL’ (46)
Equation (45) is then solved formally by
. i= Gfree¢' (47) V

An integral representation of (47) is written

a(x, 1) = J av(x’) J 1 d'Gle(x, ; X, 1)$/(X', 1), (48)
v fo
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and Gi.(x, t; X, t), the kernel of the Green operator, is named the Green function.
Consider now the operator L{,.. defined by the restriction of the formal definition
(32) to the subspace U < U of fields satsifying the homogeneous final conditions and
the conditions of free surface (with negative attenuation) defined by equations (42).

Again, the equation
Licecll = ¢ (49)

has one solution, and only one. Let us denote Gy, the inverse of Lee:

Cfree (L ree) 1 (50)
Equation (49) is solved formally by

a= cfree¢’ (51)
or, introducing the kernel of G..,
#'(x, 1) =J av(x’) J ar free(X, 15 X', 1)/(X, 1), (52)
14 to
By definition, we have
Lfreecfree = I’ (538)
L:'reecfree =L (53b)

Using the definitions of L, and L., and the kernels of G, and Gi.e., €quations
(53) take the explicit form

azG;f’ d + o k
p(X) -~ 2ree( 1 X, t/) _a;‘[ dtu\?ukl(x t, t") afrIee (x,t", %, t)

=678(x —x)o(t —1') (54a)

n’(§) f dr"PE; o, t”) a x (é, X, 1)=0 &eS§ ' (54b)
free(x t;x,t)=0 for t<¢ (54¢)

<ip
aGaf'“(x tx,t)=0 for t<¢, (54d)

and

or? J

2G free o [+ oGke
p(x) - (x,t;x', 1) ~ 3 dt"‘P'f"’(x t,1") ’, (x,t";x', t)

=0%5(x —x)o(t — t’) (55a)

. +o0 _0GE
ni(€) f dt”‘i"f"’—a;—,f(é, 1, X, t)=0 EeS (55b)
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G-;’,’ee(x, ;;x,t)=0 for t=1¢ (55¢)
ip
%"—e(x, 5;x,t)=0 for t=1¢. (55d)

As the inverse of the transposed equals the transposed of the inverse,
Grree = (Grree) ', (56a)
and, as the kernel of the transposed has transposed variables,
Gf,ee(x X, ) =GR (X, t'; X, ). (56b)

Notice that this is not a reciprocity relation: it relates ﬁfm t0 Gp,e., but it does not
express an internal symmetry of Gi,... The reciprocity relationships are analyzed in
Section 8.

If instead of L., we define L4 as the restriction of L to the subspace of fields
satisfying the homogeneous initial conditions and the conditions of rigid surface
defined by equations (43), and L}, as the restriction of L’ to the subspace of fields
satisfying the dual conditions defined by equations (42a,b) and (44), we can introduce
Giigia and G4 as above. The equivalent of equations (54)—(55) is

2 + 00 "kp
P(X)a 6;2"““( X, X, t ;jj dt"P*(x; t, ") G““’d(x t"; X, t')
=678(x —x)3(t — ") (57a)
G, t;X,1)=0 EeS (57b)
Gruu(x, ;X,t)=0 for 1<r (57¢)
5(2"8"’( X, ;x,t)=0 for t<¢, (57d)
and

277ip

0 0 +oo kp
p(X) GrlSld (x t; x’ [)‘——J dt’ q;ukl(x t t”) c'ingld

(x, t"; x/, t/)

= 5”’6(x —x)(t —t') (58a)

or? ox’

Glyalé, 1,8, 1)=0 &eS (58b)
Glia(x, t; X, ') =0 for t>1¢ (58¢c)
aGa"S“‘(x 5x,1)=0 for t>¢, (58d)

and we also have

G:fgid(xi L x,9 t’) = Glr,iigid(x,’ t/a X, t)- (59)
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7. Representation Theorems

Let G¥(x, t; X', t’) be any Green’s function satisfying the wave equation associ-
ated with the dual problem (i.e., with negative attenuation in our case):

2/5ip kp

a G a + oo . 06
p(x) _apﬁ (X, 1, X t ) —é—]J- dt”q’"kl(x; t, t”) - y

(x’ t!l; x/’ t/)
=8%5(x —x)o(t —t’), (60a)

and with final conditions of rest:

GP(x, t;x,1)=0 for t=¢t (60b)
oG |
% (x,2;x,t)=0 for t2=1¢. (60c)

As no surface conditions have yet been specified, there exists an infinity of such
Green’s functions.

Let u'(x, t) be an arbitrary field, not necessarily satisfying a wave equation. For
any t', ty<t’ <t,, we have

uP(x', t) = J dv(x) J ! dtd?8(x — x')o(t — 1)u'(x, 1). (61)
4 to

Inserting (60a) into (61), using the final conditions (60b-c), integrating per parts, and
using the divergence theorem gives (see Appendix B)

t
WX, 1) = J dV(x) f LdiG(x, X, ), 0)
4 to

+ | dS(¢) f dtG(&, t; X', t')T(E, 1)
S to

— [ ds(&) f K dt[nf(f) f o dr"P(E g, t t", X, t’)]u‘(c, 3}
S to — 0

»

+ dV(x)p(x)[éw(x to; X/, z) (x 1) —

P
p

(x to; X', tOHu'(x, to):l

I u oG )

— | dV(x) j dt—;(x, X, 1) ZY(x, 1) (62)
4 1o ax

where

+ k
Fix, 0 = p(x) ;2 (x 1) — J dt"P(x; 1, t" %(x, t"), (63)
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Ti(x, t) = J ° dt”‘I”/"’(f t, t”)a 5 (x, 1), (64)
and
(A () —n’(é)f dt"PIH(E; ¢, t") (fS, t"). (65)

Equation (62) is a quite general representation theorem, but remember that the
Green function is not defined uniquely. Notice that it is because we have imposed a
negative attenuation in the definition (60) of G that we have in (63) and (65) expres-
sions which correspond to the usual source field and surface tractions of a field
propagating with positive attenuation.

Example: Let us be interested in a field 4%(x, ¢) defined, for t€[t,, t,], by

220 i
P00 555 (6 ) = 2 (%, 1) = (. (662)
o B + 0 " aﬁk
G9(x, £) = M(x, i) +f dt L) S5 (% 1) (66b)
n(&)é¥(En =1i(&, 1) for EeS (66¢)

and assume that the history of the field is known for ¢ < ¢,. Then, choosing for G the
operator Gy, satisfying free boundary conditions (55), introducing the transposed
operator Gy, using (62) we obtain, using equation (56b) and the divergence
theorem, and relabelling variables,

'(x, 1) —J dV(X)J dr' Glelx, 1; X', 1)¢(X, 1)

+ dS(g,) J dt’Gfree(x’ t; C,’ t’)rj(gl, t/)

JS

"'J

- dV(x)f dr' —= (%, t; X, VY MK(X', 1) + TK(x/, 1))

~

+ dV(x)p(x)[Gme(xtx t—to)a”j(xt = 1)

JV

-

aGfree

5 6 LX = 1)i#(X "=’0)]’ (67)

where Z(x, 1) is the stress due to the strain for ¢ < ¢, not already relaxed:

Ti(x, 1) =f° A i(x; ¢, z) (x ). (68)

— 0
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Notice that the partial derivatives of the Green function are with respect to the source
space-time coordinates.

In equation (67) the fields ¢, t, M, X, u,, and v,, can be named ‘generalized
sources’ of the field u. Then this equation defines a linear operator from the space of
generalized sources into the space of displacements. This operator can be named the
‘generalized Green operator’.

8. Reciprocity Theorems

In the previous definition of Green functions, we have used a function
Wik (x; t, 1"): the medium parameters may depend on time. Then there is no rec1proc-
ity relation satisfied.

If we assume that the medium parameters do not depend on time,

\P‘f"’(x; 1, t') - "Pijkl(x; t—t, O), (69)

then, changing ¢ by —r switches from the dual problem defined by (55) into the
primal problem (54), and the dual problem (58) into the primal problem (57). Then

free(x t X t ) = Gfree(x g x/s _t/)a (70)
and
G.Zgid(x, LX) = G—j;égid(x’ -5 x, =) (71)

As the density p(x) is also independent on time, the whole wave equation is
invariant by translation on time. Then

Gho(x, t;x,t)=G? ree(X, t — 1/, X', 0), (72)
and
Grjlgxd(x L X t ) = Gngd(x’ t— t,; X/, 0) (73)

From (70) and (72) it follows the reciprocity relation for G,

Glreo(X, 7, X, 0) = Giioo(X', 75 X, 0), (74)

while from (71) and (73) it follows the reciprocity relation for G igia:

GZgid(x’ 7;x,0) = -’:;gid(x/s 7; X, 0). (75)

The response at point x along the i-th axis for a source at point x’ along the j-axis,
equals the response at point x” along the j-axis for a source at point x along the i-th
axis. For both experiments, the source starts at 0 and we record at .
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Notice that to any Green’s function G¥(x, ; X', t') we can associate the Green
function of the dual problem G¥(x, t; X', t'), that they satisfy necessarily the property
Gi(x, t; X', ') = GH(X, t'; X, 1), . (76)

but that to satisfy a reciprocity property we need more structure: an equivalence
between primal and dual problems under some change of variables.

9. The Born Approximation

Let us consider the field u'(x, #) defined by the system of equations

20"
Ox’

0%u

P00 S (%, 1) = 555 (%, 1) = (., ), (77a)

a¥(x, )= M¥x, t) + JUNO dr'Y(x, t —t') g—l;i: (x,t), (77v)
(&€ 1) =14(& 1) for Ee€S, (77¢)
ui(x, ty) = a(x), (77d)
2 %19 = B, (770
ui(x, )=y4(x, ¢ for t<t, (77f)
A perturbation of the model parameters
p(x) = p(X) + 5p(x) (78a)
Wik(x, 1) - PH(x, 1) + §P7(x, 1) (78b)

leads to a perturbation of the displacement field
u'(x, ) - u'(x, ) + dul(x, ). (78¢)

For the use of gradient methods, we need the first order approximation to
ou'(x, t). Inserting (78) into (77), subtracting (77), and dropping second-order terms
we arrive easily at

0%5u’ 0dc¥ )
P(X) 75 (%, 1) —— - (%, ) = 8¢(x, 1), (792)
" ) ) too o6u*
069 (x,1)=O0MY(x, ) + dr'WH(x, t —t)) e (x, 1),
| (79b)

n(&)éc¥(E, )=0 for &€, (79¢)
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ou(x, ty) =0, (79d)
05“ = (x10)= (79)
ou'(x,t)=0 for t<t,, (79)

where d¢ and 6M are the ‘secondary Born sources’

. 0%’
5¢l(x’ t) = —5P(x) W (x: ’)s (803)

and

+
OMi(x, 1) = f dr' oW (x; t, t ) (x t'). (80b)
The field du defined by this system of equations corresponds to the Born approxima-
tion to displacement perturbation. The intuitive interpretation of equations (79) is as
follows. The field du propagates in the unperturbed medium (because p(x) and
Wikl(x; t, t") appear in the left-hand side, but not 6p(x) and s W¥*/(x; ¢, ¢’). Sources for
this field exist where the medium has been perturbed. They are proportional to the
perturbations dp(x) and §W¥/(x; ¢, t’), and to the reference field u'(x, f). By compari-
son with equations (18) to (20), we see that the source corresponding to the density
perturbation is a force density, while the one corresponding to the perturbation of the
visco-elastic parameters is a moment density.
Using the representation theorem (67) we obtain

SuP(X', 1) = f dV(x) f diGr (X', t'; x, )0di(x, 1)

f dv(x) f dt f'“(x s X, NOMY(x, 1). (81)

Equations (80)—(81) give the explicit expression to the Born approximation.

10. Least Squares in Functional Spaces

Assume that using sources ¢‘(x, 1), T(&, ) and MY(x, 1) (usually of only one type)
we generate a displacement field #'(x, 7) in a medium described by the parameters
p(x) and ¥#/(x, 1), and that we measure the field #'(x, f) at some receiver locations
x, (r=1,2,...). We wish to use the observations (X, f)ops to infer the values of the
parameters p(x) and W¥*/(x, 1) describing the medium.

We assume here that the field #'(x, ¢) satisfies homogeneous initial conditions, and
propagates with a free surface. In this section, the notations L and G will stand
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respectively for Ly, and Gy, (or the corresponding generalized operators introduced
in Section 7). The field i is then defined by the equation Lii = y, where ¥ denotes the
generalized sources (representing ¢'(x, #), t¥(&, f), and/or M¥(x, t)). The operator L
is a function of the medium parameters. To make this dependence explicit, we write
L[{m], where m represents a model of the medium, ie., a set of functions
{p(x), ¥"(x, 7)}. The models of the medium belong to the ‘model space’ M.
Then, i is defined by
Lim]i=y. (82)

The observed values #(x,, 7) will be denoted by d,,. The values #/(x,, f) calculated
from a model m will be denoted by d_,, or d[m]. The data vectors d belong to a ‘data
space’ D.

The aim of least-squares inversion (TARANTOLA and VALETTE, 1982a, 1982b;
TARANTOLA, 1987) is to obtain the model m minimizing the misfit function.

S[m] = %( ”d[m] - dobs"2 + ”m - mprior”2)
= %[<CL—> l(d[m] - dobs)’ (d[m] - dobs)> + <C;ll(m - mprior)s (m - mprior) >];
(83)

where C, is the covariance operator describing data uncertainties, m,;,, is some a
priori model, and C,, is the covariance operator describing uncertainties in m,o.
The gradient § of the misfit function is defined by the first-order development

S(m + 6m) = S(m) + <j, 6m) + O(|6m|?). (84)
It is an element of the dual of the model space (identified with the model space
weighted by Cj,").
The direction of steepest ascent is then (TARANTOLA, 1987a)
v =Cui, (85)
and the algorithm of steepest descent for the minimization of S(m) is
m,,=m, —a,y, (86)
where a, is a constant sufficiently small to ensure
S(m, , ;) < S(m,). (87)

Let us now formally compute the gradient of the misfit function. As the term
(Ci'(m —m,,), (m—m,;,)> is quadratic in m, it makes no problem, and is
dropped (the reader will easily correct for it).

Formally, d is obtained by projecting the field #(x, f) into the observation points
X,:

d = P, (88)
where P is the projector (P? = P) defined by
(Pa)'(x,, 1) = d4'(x,, 1). (89)
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The reader may easily verify that the transposed of P is the operator defined by
(Pra) i(xr t) = Z 5(x - xr)‘?i(xn t)s (90)

where d is an element of the dual of the data space (identified with the data space
weighted by Cp ).

We have
S(m) = K Cp'(Pii — dyy), (Pii — dopy) D, €))
where
L{m]i=y. (92)
A perturbation of the medium parameters
m-m+Jém : (93)
leads to
S(m + dm) = Cp (P(ii + Ali — dp,), (P> + Ad) —d,,.)D, (94)
where Aii is defined by
L{m + ém](id + Aa) = ¢, 95)

and depends (nonlinearly) on dm. Let §i denote the first order approximation to Ad:
At = 81 + O( | 6m|?). (96)
Then
S(m + ém) = 3<Cp ' (P(ii + i) — dpy), (P> + di) —dp0)> + O(||ém|?)
= S(m) + 3(Cz5 (P — d,), Pdii) + 1(C; ' Péa, (Pii — d,,,) )
+0([[om|);
as covariance operators are symmetric,
S(m + ém) = S(m) + {C5'(Pii — d,), Péu) + O(||om|?);
and, introducing the transpose of the projector P,
S(m + o6m) = S(m) + (P'C; ' (Pit — d,y), 611) + O([|6m|?). 7

The field 4, first order approximation to Aii corresponds to the Born approxima-
tion to Aii (see Section 9). It corresponds then to the field created by some Born
secondary generalized sources 6y and propagated into the unperturbed medium m:

ot = G[m]oy . (98)
Equatioﬁ (97) then becomes
S(m + 6m) = S(m) — (P'C;'(Pii — d,), GoY > + O(||dm|?)
= S(m) — <@, &y > + O(||m|?), (99)



384 Albert Tarantola PAGEOPH,

where 1 is defined by
a=GP'Cy'(Pi—d,,), (100a)
ie.,
L =PCp'(Pa—d,,). (100b)
The field @ is created by the sources P'C, '(Pii —d,,,), and satisfies conditions dual
to those satisfied by .
The Born secondary sources éy depend linearly on @ and on dm. Introducing the
notation
oY = (Ai)dom (101)
leads to
S(m + ém) = S(m) — <, (Aid)dm) + O(||6m|>?),
and properly introducing the transpose of the operator (Aii),
S(m + ém) = S(m) + ((Ad)'d, Sm) + O(|Sm|>). (102)

By comparison with (87), the last equation gives the gradient of the least squares
misfit functional S:

$ = (Ad)‘a. (103)
Equation (88) gives then
: y = Cp(Ad) i, (104)
and (89) finally gives
m, ;=m, —a,C,(Ad,)",. (105)

All the partial steps needed for an iteration of the steepest descent algorithm are:

Lim,)a, =y (solve for u,)

4d, =Pii, —d_,, (compute data residuals)

C,dd, = 4d, (solve to obtain the weighted residuals)

o, =P'od, (consider these as sources)

L, =6¢, (solve for a,, i.e., propagate the sources with dual con-
, ditions, solving the dual problem)

7, = (Ai,)"a, (compute the gradient §,, where A has been defined in

' (101))
P = Cr¥, ' (unweight the gradient)
m,, ,=m, —a,y, (update the model)

(106)
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The above formulas correspond to a crude steepest descent method. Current
implementations of gradient methods for the inversion of seismic waveforms
(GAUTHIER et al., 1986; KOLB, 1986; MORA, 1987; PicA, 1987) are rather based in
conjugate gradients (e.g., FLETCHER, 1981; SCALES, 1985), which converge more
rapidly.

11. The Inverse Problem of Interpretation of Seismic Waveforms

This section applies the results of the previous section to the problem of interpre-
tation of seismic reflection data. Typically, a source is fired consecutively at different
locations x, (s =1,2,...), and, for each source position, the displacement u’ is
observed at some locations x, (r = 1, 2, . . .). In all rigor, the time variable 7 runs from
— o0 to 4 0o and there is only one source, concentrated at different points at different
times. More intuitively, we can consider that the time variable is reset to ¢ = ¢, at each
new shot, and we record the earth’s surface displacements until ¢t = ¢,. In that case,
it can easily be seen that the gradient of the misfit function for an experiment with
different sources is simply the sum of the gradients corresponding to each source. We
see thus that, with any of the two points of view, we can limit our consideration to
an experiment with a single source.

The observed seismograms are denoted by u(x, f).,s, While the computed seis-
mograms corresponding to the n-th earth model are denoted u'(x, f),. The recording
time belongs to the interval [¢,, t,).

Let us take in order all the steps (106).

Equation (106a): L[m,]&, = ¥. Let p(x), and ¥#*(x, 1), denote the current earth
model. If the sources of seismic waves are described by the force density ¢(x, ) the
surface traction t/(x, ) and/or the moment density M¥(x, ) then the current dis-
placement field #(x, f), is defined by

o 869 .
p(x)n —67 (X, t)n - E‘; (X, t)n = ¢ (X, t), (107a)
. N + oo - 512"

Gi(x, 1), = M¥(x, 1) + ‘[ dt"P*(x, t — 1), P (X, 1),
(107b)
n(§)é¢, 0, =1 1 for &eS, (107¢c)
i(x, t5), = 0, (107d)

ou'

737 (x9 tO)n = 09 (]07e)

i(x,0,=0 for t<t, (107f)
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where a free surface and homogeneous initial conditions are assumed. The computa-
tion of the field #‘(x, 7), can be performed using any numerical method, as, for
instance, finite-differences (ALTERMAN and KARAL, 1968; VIRIEUX, 1986).

Equation (106b): 6d, = Pi, — d,,,. This simply corresponds to the definition of
the residuals at the receiver locations:

0d'(X,, 1), = (X, 1), — WXy, Dops: (108)

Equation (106c): Cpdd, = dd,. As an example, assume independent and uniform
uncertainties. Then,

58, D, = = 3di(x,0), (109)

Of course, other more realistic choices of the covariance operator describing experi-
mental uncertainties can be made.

Equation (106d): ¢, = P'5d,. From equation (90) we obtain
54) i(x’ t)n = Z 6(x - x,)ét?i(x,, t)n' (110)

This corresponds to a composite source, one point source at each receiver location,
radiating the weighted residuals in phase.

Equation (106e): L4, = 6¢,. As demonstrated in Section 5, to compute the field
u'(x, 1), solution of L'l = 6¢,, means to solve the differential system
0%t fiload .
p(x),, Eé— (X, t)n - @ (x, t)n = 5¢'(X, t),,, (11 la)

+ o0 b
&9(x, 1), = f dar¥i(x, t — 1), g—f; (X, '),

— o0

(111b)

()6, =0 for EesS, (111c)

#(x, t,), =0, (111d)
aai ,

m (x, ), =0, (111e)

i#(x,0,=0 for t>t, (111f)

where instead of a quiescent past, the field has a quiescent future, and where the
attenuation is negative (anti-causal). To solve this problem, we can use the same
computer code needed to solve the system (107), reversing the time (see GAUTHIER
et al., 1986) and changing ¥¥/(x, 1) by W¥*(x, 1) = ¥/(x, —1). Notice that a
reverse-time propagation with negative attenuation is numerically as stable as a
forward time propagation with positive attenuation.
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Equation (106f): 3, = (Au,)"a,. Once the field #/(x, 1), has been computed, we can
turn to the computation of the gradient. The operator A is defined by equation (101):

oy, = (Ai,)ém, (101 again)

where 0y, is the Born secondary generalized source corresponding to the perturba-
tion dm = {Jp, d¥?*'}. Using the results of Section 9 gives

Cii,, (Al,)om) = (i, oy, > = + j dv(x) U di(x, D5(x, z)]ap(x)
Vv

Io

_J dv(x) .roo dt’[j” drg¥(x, HEM(x, t — t’)]én//(x, t). (112)

0
As, by definition of transpose,

<, (Ad,)om) = {(Ad,)",, Sm), (113)
the components of the gradient follow using (103):
ﬁp(x)n = ‘i(x’ t),, ® 5'.(’(9 t)n|1=09 (114)
and
P, 1), = —E9(x, 1), ® E(x, 1), (115)

where the time correlation between two functions f(7) and g(7) has been defined by

S ®gn) = r dr'f(t)g(t’ —1). (116)

to
In Appendix C, I give a more direct demonstration of formulas (114)—(115).

If we are not interested in the attenuating properties of the medium, but only in
the elastic properties, we make the hypothesis

Yikl(x, 1) = c™(x)é(1). (8 again)
Instead of modifying the theory to compute the gradient with respect to the elastic
stiffness, it is clear that only the correlations (155) at zero lag can contribute. Then,
PLUX), = EU(X, 1), ® E(X, D~ 0 (117)

which corresponds to the result demonstrated by TARANTOLA (1987b).
Equation (106g): y, = C,,y. The operator C,, describes the confidence we have on

our a priori model. Assuming for instance that the uncertainties on density are
independent on the uncertainties on the rate-of-relaxation function,

C, 0
cM_[O CJ, (118)
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gives, introducing the corresponding covariance functions,

Yo(X)n = L dV(x")C (X, X' ,(X)ps (119a)

and
+o0 .
Pe(x, 1), = J dV(X’)f dr’CyP " (x,1; X, TP (X, 1), (119b)
vV — oo

Equation (106h): m, ., =m, — a,y,. This gives, finally,

P(X) 4 1= P(X), — 0,7, (X),ss (120)
and
lllijkl(x, T)n +1= \Pijkl(x9 ‘t)n — o,y fgd(x’ T)n' (121)

12. Discussion and Conclusion

For the purposes of inversion of seismic waveforms it seems better to introduce
a completely general rate-of-relaxation function W¥*/(x, 1) rather than to use a partic-
ular model (Standard linear solid, Constant Q, etc.). Some seismic data sets at least
seem to contain enough information to give useful constraints on W¥*/(x, 1), as for
instance seismic reflection data.

The representation theorems are as simple with this general linear model as for the
particular perfectly elastic model. Only a supplementary stress term appears, which
is due to the history of deformation before the initial time. Reciprocity is also
satisfied.

The formulas given in Section 11 correspond to a steepest descent method. Prac-
tically, considerable modification must be introduced. For instance, conjugate gradi-
ents may be used in stead of steepest descent. But more fundamentally, I suggest not
using at the outset all the components of the gradient that may be computed. First
invert for elastic parameters, and, after convergence, allow attenuation to be intro-
duced. This means that, at the beginning, only the values for zero lag of the correla-
tions (115) should be taken into account.

In fact, as suggested by TARANTOLA (1986) the elastic parameters themselves are
highly hierachisized. For instance, with seismic reflection surface data, the long wave-
lengths of the P-wave velocity have to be first computed, then the P-wave impedance
(product of density by velocity). When a good model has been obtained, the S-wave
velocity and S-wave impedance can be computed.

When all these things have satisfactorily converged, then formula (115) is allowed
to one one step further, and to obtain the best model of attenuation.
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Appendix A: Transposed of the Wave Equation Operator. Dual Conditions

The operators L and L’ have been defined by:

. 0%’ 8 [t~ ou*
(L“)‘(x9 t) = p(X) —I;?(x’ t) - —a}; B dt,\Pﬂkl(x; t, t/) E (xa t/), (A'l)
and
) 0%u! 0 [+ . ou*
(L)'(x, H) = p(x) Fre (x, 1) — F L dt" P (x; 1, 1) ™ x,¢), (A-2)
where W*/(x; 1, 1) is a causal function,
Pik(x;1,t) =0 for 1<t © (A-3)
" and
Pikl(x; 1, 1) = PH(x; ', ). (A-4)
We have

<a, Li)g — <L, i), = j dV(x) jtl dt w'(x, H(L)‘(x, 1)

- J dV(x) j " a(L) (x, Di(x, 1),

and, inserting (A-1) and (A-2),

(i, Liyg — LW, 4>, =4 + B, (A-5)
where _
no o 8% ox'
A= dV(x)p(x) | dt| @'(x, ) =5 (X, ) == X, )i (x, 1) [,  (A-6)
v o ot ot
and

B=—| d(x) ! di‘(x, f) 2 +wdt"f"'f"’(x-t t) aﬁk(x t)
= , 10 u ’ ax] s & 6xl t4

— o0

L N dir* iy
+J aIV(x)J~ d’[a—if dr"P*(x; t, t’)a 7 (X, t’)]u’(x, 7). (A-7)
| 4 to X' ) _ X
As
o[ _ow 0 du
|l "t T e et
we have

62 290

A =f dV(x)p(x)[:a"(x, 3] —1;—1 (x, 0 -—%(x, ni'(x, t)]

o (A-8)
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Equation (A-7) can be rewritten
B=C+D,

where

C= —J V() f" dti[a"(x, ) U+ drP(x; 1, :) ,(x t)]]
4 to ax] — o0
+J dv(x) J" dtg‘i—j[[f+ de P 1, z) (x t)]"(x t)J (A-10)

hoon O ikl . Oit* :
D=+| dV(x) dt—(x,1) drP(x; ¢, 1) = (x, t')
V to axj — ox

and

de(x)‘[ dt [f dt"P(x; ¢, t)a ,(x t):I = (x, 7). (A-11)

Using the divergence theorem gives
7 . ) + 00 N aﬁk
—j ds(%) J ani'(€, t)[n’(ﬁ) J dr )57 & t’)]
S 19 — X

nt . teo N o .
+f das(®) J dt[nf(f) L drPrE; 1, 1) g—,({,z’)]ﬁ’(&, . (A-12)

The term D can be rewritten

D= +f dV(x)fldta—a‘:(x,t)[[fo dt'+fldt’ +f+°°dt'] ¥ / aﬁ’:(x,r)}
Vv to axl — o0 to 1 O0x
de(x)f dt[[fo dt+_[ dr’ +f dt]ﬁ"f"’(xtt)—,( t):l 5 (%, 0),

or, using the causality and anti- causahty properties $%/(x; ¢, t') and Pi¥(x; 1, t')
respectively,

de(x)f dt—(x ) [U dt’+f dt ]‘I’”"’(x : z) ,(x t)jl
41 LI , +oo s i . , aﬁk , oa’
—LdV(x) J:O dt[[L dt +L dt ]‘P ki(x; t, t )W(x, t )]axf

D=E+F, (A-13)

ie.,



Vol. 128, 1988 Inversion with Attenuation 391

where
4] 7 /aai . ) , ou* ,
E= +j dV(x)J dtJ. dt Ef(x’ HWP(x; t,t)w(x,t)

'[ dV(x)J~ dtJ‘ dt"P*(x; t, t) ( t) z:.(x, 1), (A-14)

F= +J dV(x) J" dtg—u;(x, t)[J'o dr" P (x; ¢, t) (x t)]

—J AV(x) j dr U drP(x; 1, z)(7 (% z)]@(x . (A-15)

Using (A-4) and the symmetries between indexes ij and kj gives
E=0. (A-16)
This ends the proof for equation (39) of the text.

and

Appendix B: Representation Theorem

Let G¥(x, t; X', t’) be defined by
2/5ip Skp

a G a reo mysij . " a "o of 47
p(X) —— Pre (x,t;x,t aIJ dt‘Pf"’(x,t,t)axl (x,t";x',t")
=0%5(x —x)o(t —t"), (B-la)

GP(x, t;x',t)=0 for t=>1¢ (B-1b)
ip '
62 (x,;x,t)=0 for r=>¢, (B-1¢)

where Wi(x; ¢, t') is anti-causal:
Pikl(x; 1,y =0 for >t (B-2)

For an arbitrary function u‘(x, f) we have, for any t', t, <t’ <t,,

wP(X, 1) = j dv(x) J‘ " dt6PS(x — x)o(t — 1)(x, 1). (B-3)

Inserting (B-1a), into (B-3) gives
u’(x',t'y=A+B, (B-4)

where

n azG'ip )
=J dV(x)p(x) J‘ dt a7 (x, t; X', tu'(x, 1), (B-5)
| 4 to
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and
n a te myiikl, ” aékp ” Y i
- de(x) dt P ar"WP(x; t, t") Fp (x,t";x',t") Wi(x, 1). (B-6)
1o -
As
292G | oG . ou 0’
i _ ip ip
ar T m[at“ ¢ m]+é or*’

and, as G?(x, t; X/, t") is anti-causal, we have
n . 62ui
=denJJMWUJJZOM@57@J)
4 t

f dV(x)p(x)I:—G—(x to; X', tWU(X, to) — GP(X, ty; X', t) (x tO)jl (B-7)

Equation (B-6) can be rewritten

B=C+D, (B-8)

o [ o

D= +f dv(x) J dzU+°°dz"W/(x; t, ") 6(5;"( 1" X’ ')] - (x, 0. (B-10)

where

”

X, 1", x, 1) :Iu"(x, H, (B-9)

and

Using the divergence theorem gives

n o[ oG*» .
C= —-[ dS(&)J dt[n’(é)f dr" P (x; t, t") F (x,t"; x/, t’)]u’(x, ). (B-11)
S to — o
Using
PH(x; 1, ") =PHi(x; 1", f) S (B1Y)
changing t &t ”, ij & ki, and reordering gives

f dV(x)j (x 1 x,t") f dr"P(x; ¢, t”) (x t"). (B-13)

The anti-causality property of G?”(x,t;x’,t’) and the causality property of
Pik!(x; 1, t’) allow to change the bounds of integration:

| avo | dtﬂ(x Y Piki(x; ¢, ¢” aik(x t"), (B-14)
= V ’0 axj 3 b b 10 s % ax[ £ b
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1.e.,
oo [ ol [ e
(B-15)
This gives
D=E+F, (B-16)
where

o aGw Yo
E= +j dV(x)J dt —(x, t; X/, t’)f dt"WP(x; t, t” —(x t"), - (B-17)
4 to axj — o
and

JdV(x)J dt — (x X t)f dr" P x; tt") ( t"). (B-18)

Equation (B-17) can be written

E=G+ H, (B-19)
where |
G = +J dV(x)J dt—[@”’(x X, I)J dr" P x; 1, t”) (x t”):|
(B-20)
and

noo 0 (*t* . ou*
H = —j‘ dVv(x) dtG”P(x, t; X/, t’)|:—.[ dat"P*(x; t, 1) - (x, t"):|.
v to ox’ ) _ 0x

(B-21)

Using the divergence theorem gives

G =-+j ds(&) f“ dtG?(&, t; X/, t’)[nj(ﬂ j
S fo

— o0

+ oo

k
a1, 1) 2 z,")].

; (B-22)
This ends the proof for equation (62) of the text.

Appendix C: Alternative Computation of the Gradient

The calculated displacement at the receiver locations d = {#(x,, #)}, is a nonlinear
function of the model parameters m = {p(x), ¥7*/(x, 7)}. A perturbation of the model
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parameters
p(x) = p(x) + 6p(x) (C-1a)
Wik(x, 1) - WI*(x, 1) + SWH(x, 1) (C-1b)
leads to a perturbation of the displacement field
ui(x,, 1) > i(x,, 1) + di'(x,, ). (C-1¢)
Writing the first-order approximation of 5d = {§i#/(x,, #)} as
od=Adp +BoY, (C-2a)
or, explicitly,

+o

Sui(x,, ) =J dV(x)A(x,, t; x)5p(X) + f dvV(x) I dtBHm(x  t; x, )0 WH™(x, 1),
Vv | 4 — 0

(C-2b)

defines the derivative operators of calculated displacements with respect to model
parameters and their kernels.
As demonstrated in Section 9,

2

62(Xt)

our(x’, t)—-—f dV(x)J diGL (X, t'; X, 1)dp(x)

+ o sk
f dV(x) f dt Gf'“( X, f) f dr’ s Wi(x; t, t’)%(x, 1),
(C3)

which can also be written, at the receiver locations,

oui(x,, 1) =J dV(x)[—f dr'Gh.(x,, t; X, t) e (x t)]ép(x)
| 4 t

' teo d ac?;’,ee oi' h
+ | dV(x) dr| — | ar e (x,, 1; X, t) —(x,t' —1) |0W*m(x, 7).
| 4 — 00 1o

- (C-4)
By comparison with (C-2) this gives
AYX,, t;X) = —-[ dr'Gl (x,, t; x, t)az,2 (x, 1), (C-5a)
to
and
ﬁ”k’m(x,, 1X,1) = —-J dr’ aflfj',;“ (x,, t;x, t’ )i— (x,t' —1). (C-5b)
to

The operators A and B defined by (C-5) map the density and rate-of-relaxation
spaces into the data space. Their transposes map the dual of the data space into the
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duals of the density and rate-of-relaxation spaces, i.e., for fixed dd they give

and

or, introducing their kernels,

50 =Y.

roJ

and

SWHIm(x, 1) = Yy

r o

,

5p = A4,

S¥ =B'd,

t
A%, x,, D0E(x,, 1),

to

]

141 -
di(B"y*mi(x, 1, X,, Dé'(X,, 1),

to

(C-6a)

(C-6b)

(C-Ta)

(C-7b)

but, as the kernels of the transposes equal the transposes of the kernels, we can write

5p(x) =Y f L dtA(x,, 1, )84 (x,, 1),
r Jig
and
SPrim(x, 1) =Y j l dtBU*m(x , t, x, T)61'(X,, 1),
r to
i.e.,
R d n N4 s
p(x) = =Y f dt j dt'Gi.(x,,t;x,t )5172 (x, t)oi'(x,, 1),
r Jio to
and
. a o fa . 0Gy dii’ .
jkim _ ’ free . nY% ’ A
SWkim(x, 1) Z j dt j dt o (x,, t; X, t )6x”' (x, t’ — 1)0(x,, 7).
Defining
{* =+ ..
w(x,t) =Y f L dG(x,, 1%, )30 (x, 1)
r to
gives
1, ) Zaj
0p(x) = — | dt'i(x,t')—5 (x,1),
Jio ot
and
o [0 oW oi'
\Iljklm - hdedl n =% r_ .
o (x, 1) ; dt p: (x,t) po (x,t"—1)

(C-8a)

(C-8b)

(C-9a)

(C-9b)

(C-10)

(C-11a)

(C-11b)



396 Albert Tarantola PAGEOPH,

Using (56b) of the text, the definition (C-10) can be rewritten

w(x,1)=Y f " G (x, s x,, )0 (x,, 1), (C-12)
ie.,
(x, 1) = L dv(x') J' dr'GI(x, 1; X', 18X, '), (C-13)
to
where
S6(x, =3 5(x — x,)54(x,, 1). (C-14)

The representation theorem allows then the interpretation of #(x, ) as a field satisfy-
ing final conditions of rest, propagating with anti-causal attenuation, and due to the
sources (C-14).

Using an integration per parts, the causality of #/(x, #) and the anti-causality of
#'(x, 1), equation (C-11a) can also be written

.

5h(x) = f o 1) 2 (1), (C-110)

ot
Formulas (C-11b) and (C-11c) correspond to formulas (114)—(115) of the text.
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