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Abstract, Probabilistic formulation of inverse problems leads to the definition of a
probability distribution in the model space. This probability distribution combines
a priori information with new information obtained by measuring some observable
parameters (data). As, in the general case, the theory linking data with model
parameters is nonlinear, the a posteriori probability in the model space may not
be easy to describe (it may be multimodal, some moments may not be defined,
etc.). When analysing an inverse problem, obtaining a maximum likelihood model
is usually not sufficient, as we normally also wish to have information on the
resolution power of the data. In the general case we may have a large number of
model parameters, and an inspection of the margina.l probability densities of interest
may be impractical, or even useless. But it is possible to pseudorandomly generate
a large collection of models according to the posterior probability distribution
and to analyse and display the models in such a way that information on the
relative likelihoods of model properties is conveyed to the spectator. This can be
accomplished by means of an efficient Monte Carlo method, even in cases where
no explicit formula for the a priori distribution is available. The most well known
importarice sampling method, the Metropolis algorithm, can be genera.hzed and this
gives a method that allows ana,ly51s of (possibly highly nonhnear) inverse problems

with complex a priori information and data with an arbitrary noise distribution.

Introduction

Inverse problem theory is the mathematical theo-
ry describing how informa tion about a parameterized
physical system can be derived from observational data,
theoretical relationships between model parameters and
data, and prior information. Inverse problem theory
is largely developed in geophysics, where the inquiry is
how to infer information about the Earth’s interior from
physical measurements at the surface. Examples are es-
timation of subsurface rock density, magnetization, and

conductivity from surface measurements of gravity or

electromagnetic fields. An important class of complex
inverse problems is found in seismology, where recorded
seismic waves at the Earth’s surface or in boreholes are
used to compute estimates of mechanical subsurface pa-
rameters.

In what follows any given set of values representing

a physical system, we call a model. Every model m
can be considered as a point in the model space M .
We will define different probability densities over M .
For instance, a probability density p(m) will repre-
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sent our a priori information on models, and another
probability density, o(m) will represent our a poste-
riori information, deduced from p(m) and from the
degree of fit between data predicted from models and
actually observed data. In fact, we will use the expres-
sion o(m) = kp(m) L(m) [see Tarantola, 1987], where
L(m) , the likelihood function, is a measure of the de-
gree of fit between data predlcted from the model m
and the observed data ( k is an appropriate normaliza-
tion constant). Typically, this is done through the intro-
duction of a misfit function S(m) , connected to L(m)
through an expression like L{m) = k exp(—S(m)) .

In seismology, the misfit function usually measures
the degree of misfit between observed and computed
seismograms as a function of the subsurface model pa-
rameters. It usually has many secondary minima. In
terms of the probability density in the model space, we
deal typically with a (possibly degenerate) global maxi-
mum, representing the most likely solution, and a large
number of secondary maxima, representing other pos-
sible solutions. In such cases, a local search for the
maximum likelihood solution usmg, for instance, a gra-
dient method, is very likely to get trapped in secondary
maxima. This problem is avoided when using a global
search method. A global search is not confined to uphill
(or downhill) moves in the model space and is therefore
less influenced by the presence of local optima. Some
global methods are not influenced at all.
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* The simplest of the global search methods is the ex-
haustive search. A systematic exploration of the (dis-
cretized) model space is performed, and all models
within the considered model subspace are visited. Al-
though this method may be ideal for problems with low
dimensionality (i.e., with few parameters), the task is
computationally unfeasible when problems with many
hodel parameters are considered.

When analyzing highly nonlinear inverse problems of
high dimensionality, it is therefore necessary to severely
restrict the number of misfit calculations, as compared
to the exhaustive search. One way to do this is to
use a Monte Carlo search, which consists of a (possibly
guided) random walk in the model space. A Monte Car-
lo search extensively samples the model space, avoids
entrapment in local likelihood maxima, and therefore
provides a useful way to attack such highly nonlinear
inverse problems.

In resolution studies, the advantages of Monte Carlo
methods becorhe even more significant. Resolution
analysis carried out by means of local methods gives
erroneous results due to the inherert assumption that
only one minimum for the misfit function exists. How-
ever, a Monte Carlo method can take advantage of
the fact that all local likelihood maxima will be sam-
pled, provided a sufficient number of iterations are per-
formed. )

- Early geophysical examples of solution of inverse prob-
lems by means of Monte Carlo methods, are given by
Keilis-Borok and Yanouskaya [1967) and Press [1968,
1971]. Press made the first attempts at randomly ex-
ploring the space of possible Earth models consistent
with seismological data. More recent examples are
given by Rothman [1985, 1986], who nicely solved a
strongly nonlinear optimization problem arising in seis-
mie reflection surveys, and Landa et al. [1989], Mose-
gaard and Vestergaard [1991], Koren et al., [1991], and
Cary and Chapman [1988], who all used Monte Carlo
methods within the difficult context of seismic wave-
form fitting. Cary and Chapman and Koren et al. de-
scribed the potential of Monte Carlo methods, not only
for solving a model optimization problem but also for
performing an analysis of resolution in the inverse prob-
lem. ‘

_ The idea behind the Monte Carlo method is old, but
its actual application to the solution of scientific prob-
lems is closely connected to the advent of modern elec-
tronic computers. J. von Neumann, S. Ulam and E.
Fermi used the method in nuclear reaction studies, and
the name “the Monte Carlo method” (an allusion to the
famous casino) was first used by Metropolis and Ulam
[1949]. Four years later, Metropolis et al. [1953] intro-
duced an algorithm, now known as the Metropolis algo-
rithm, that was able to (asymptotically) sample a space
according to a Gibbs-Boltzmann distribution. This al-
gorithm was a biased random walk whose individual
steps (iterations) were based on very simple probabilis-
tic rules.

- It is not difficult to design random walks that sample
the posterior probability density o(m) . However, in
cases where o(m) has narrow maxima. these maxima.
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(which are the most interesting features of o(m) ) will
be very sparsely sampled (if sampled at all). In such
cases, sampling of the model space can be improved by
importance sampling, that is, by sampling the model
space with a probability density as close to o(m) as
possible. Cary and Chapman [1988] used the Monte

Carlo method to determine o(m) for the refraction
seismic waveform inversion problem, where the travel :

times were used as data, as well as waveforms, and the '
model parameters were the depths as a function of ve- '
locity. They improved the sampling of the model space |

by using a method described by Wiggins [1969, 1972]
in which the model space was sampled according to the
prior distribution p(m) . This approach is superior to a
uniform sampling by crude Monte Carlo. However, the
peaks of the prior distribution are typically much less
pronounced than the peaks of the posterior distribu-
tion. Moreover, the peaks of the two distributions may
not even coincide. It would therefore be preferable to
draw sample models from the model space according to
a probability distribution which is close to the posterior

‘distribution o(m) , the idea being to use a probability

distribution that tends to o(m) as iterations proceed.

Geman and Geman [1984] discussed an application
of simulated annealing to Bayesian image restoration.
For their particular inverse problem, a two-dimensional

deconvolution problem, they derived an expression for -

the posterior distribution from (1) the prior distriby-
tion, (2) a model of the convolutional two-dimensional
image blurring mechanism, and (3) the parameters of
the Gaussian noise model. By identifying this posterior

distribution with a Gibbs-Boltzmann distribution, they |

performed a maximum a posteriori estimation in the
model space, using a simulated annealing algorithm. In
their paper, they mention the possibility of using the
simulated annealing algorithm, not only for maximum
a posteriori estimation but also to sample the model
space according to the posterior distribution. However,
they did not pursue this possibility further, nor did they
describe how to extend this idea to inverse problems in
general. ‘ LT

Marroguin et al. [1987] adopted an approach similar
to that of Geman and Geman. However, they used the
Metropolis algorithm to generate the posterior distribu-
tion, from which they computed model estimates. One
of the problems raised by these authors was that their
Bayesian approach requires an explicit formula for the
a priori distribution. L

Recent examples of using Bayes theorem and the
Metropolis algorithm for generating a posteriori prob-
abilities for an inverse problem are given by Pedersen
and Knudsen [1990] and Koren et al. [1991].

In the present paper we will describe a method for
random sampling of solutions to an inverse problem.
The solutions are sampled at a rate proportional to
their a posteriori probabilities, that is, models consis-
tent with a priori information as well as observations are
picked most often, whereas models that are in iticom-
patible with either a priori information or observations
(or both) are rarely sampled. o
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consisting of two components. The first component gen-
erates a priori models, that is, models sampled with a
frequency distribution equal to the a priori probability
distribution in the model space. This is accomplished
by means of a random walk, a kind of “Brownian mo-
tion” in the model space. The second component ac-
cepts or rejects attempted moves of the a priori random
walk with probabilities that depend on the models abil-
ity to reproduce observations. Output from the com-
bined algorithm consists of a collection of models that
passed the test performed in the second component.
This collection of models is shown to have a frequency
distribution that is (asymptotically) proportional to the
a posteriori probability distribution in the model space.

It is an important property of our method that in
contrast to usual Bayesian inverse calculations, the a
priori distribution need not be given by an explicit for-
mula. In fact, the first component of our algorithm may
consist of a large number of mutually dependent sub-
processes, each of which generates part of the a priori
models.

The definition of which models are accessible from a
siven model is an essential ingredient of the method,
from a practical point of view. We will “jump” from a
model to a neighboring model. But, what is a neigh-
bor? The theory to be developed below is independent
of the particular choice of model perturbations to be
considered, but, as illustrated below, a bad definition of
model neighborhood may lead to extremely inefficient
algorithms.

Probabilistic Formulation of Inverse
Problems

Parameters Taking Continuous Values

The “forward problem” is the problem of predicting
{calculating) the “data values” dca = {dcal’dcal’ -}
that we should observe when making measurements on
acertain system. Let the system be descnbed (param-
derized) by a parameter set m = {m!,m2,...} . One
generally writes as

dcal = g(m) (1)

the, generally nonlinear, mapping from the model space
M into the data space D that solves the forward prob-
lem.

In its crudest formulation, the “inverse problem” con-
sists of the following question: An actual measure-
" ment of the data vector d gave the value dgps =
(&, %4, - ..} . Which is the actual value of the model
parameter vector m?

This problem may well be underdetermined, due to
~ lack of significant data or due to experimental uncer-
" tinties. It can also be overdetermined, if we repeat

similar measurements. Usually, it is both. A better
" question would have been: What information can we
infer on the actual value of the model parameter vector
m?

The “Bayesian approach” to inverse problems, des-
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model vector by a probability density p(m) . Then,
it combines this information with the information pro-
vided by the measurement of the data vector and with
the information provided by the physical theory, as de-
scribed for instance by equation (2), in order to define
a probability density o(in) representing the “a poste-
riori information”. This a posteriori probability density
describes all the information we have. It may well be
multimodal, not have a mathematical expectation, have
infinite variances, or some other pathologies, but it con-
stitutes the complete solution to the inverse problem.
Whatever the particular approach to the problem
may be [e.g., Backus, 1970a,b,c; Tarantola and Valette,
1982a; Tarantola, 1987], we end up with a solution of
the form
o(m) = k p(m) L(m), (2)

where k is an appropriate normalization constant. The
a posteriori probability density o(m) equals the a pri-
ori probability density p(m) times a “likelihood func-
tion” L(m) which, crudely speaking, measures the
fit between observed data and data predicted from the
model m (see an example below).

As an example, when we describe experimental re-
sults by a vector of observed values dobs with Gaus-
sian experimental uncertainties described by a covari-
ance matrix C , then

Bm) = kexp [~3(e(m) - doe)* C* (em) ~ dow)|.
©

If, instead, we describe experimental uncertainties using
a Laplacian function, where d; , are the “observed
values” and ¢* are the estimated uncertainties, then

L(m) = kexp [— Z ﬂ“l‘)o’—db—'] . (4

As a last exa.mple (to be used below), if the measured
data values d’,_ are contaminated by statlstlcally inde-
pendent, random errors ¢€; given by a double Gaussian
probability density function,

fle)=k [a exp (—;—;) + b exp (—%)] )
thenL(m) T [a oo (_ M >
i %1

TR ‘
+ bexp (_ (g (m;U% obs) ):I . (6)

These three examples are very simplistic. While in
this paper we show the way to introduce realistic a priori
information in the model space, we do not attempt to
advance in the difficult topic of reahstlcally describing
data uncertainties.

Discretization of Parameters

So far, the theory has been developed for parameters
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values. Then, at any point m; we can define a proba-
bility density f(m;) , but not a probability, which can
only be defined for a region of the space:

P(meA)=/dm1/dm2... fm).  (7)
~ .

Here, m!,m2,...
the vector m . _

For numerical computations, we discretize the space
by defining a grid of points, where each point represents
a surrounding region Am!Am?2... | small enough for
the probability densities under consideration to be al-
most constant inside it. Then, when we say “the prob-
ability of the point m; ” we mean “the probability of
the region Am!'Am?... surrounding the point m; ”.
In the limit of an infinitely dense grid and assuming a
continuous f(m) , “the probability of the point m; ”
tends to

denote the different components of

f.i = f(mz) Aml Am2 cee (8)
The discrete version of equation (2) is then
pi L(m,)
0= Y 9
Zj p; L(my) ©)
where
oi =o(m;) Am' Am? ..., (10)
and :
pi = p(m;) Am* Am? ... . (11)
For simplicity, we will rather write
pi L
oi= =i 12
Ej pi Lj ( )
where we use the notation

(note that Am! Am?... does not enter into the defi-
nition of L; ).

Once the probability (12) has been defined, we could
design a method to sample directly the posterior prob-
ability o; (and, in fact, the methods below could be
used that way). But any efficient method will proceed
by first sampling the prior probability pi . It will then
modify this sampling procedure in such a way that the
probability o¢; is eventually sampled. This, after all,
only corresponds to the Bayesian viewpoint on proba-
bilities: one never creates a probability ex nihilo but
rather modifies some prior into a posterior.

Monte Carlo Sampling of Probabilities

Essentially, the sampling problem can be stated as
follows: given a set of points in a space, with a proba-
bility p; attached to every point 4 , how can we define
random rules to select points such that the probability
of selecting point i is p; ?
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Terminology

Consider a random process that selects points in the
model space.” If the probability of selecting point i
is p; , then the points selected by the process are
called “samples” of the probability distribution {p;}.
Depending on the random process, successive samples
i,J,k,... may be dependent or independent, in the

sense that the probability of sampling k¥ may or may °

not depend on the fact that ¢ and j have just beén
sampled.

An important class of efficient Monte Carlo (i.e., ran-
dom) sampling methods is the random walks. The pos- °

sible paths of a random walk define a graph in the model

space (see Figure 1). All models in the discrete model
space are nodes of the graph, and the edges of the graph
define the possible steps of the random walk. The graph

defines the “neighborhood” of a model as the set of all

models directly connected to it. Sampling is then made .
by defining a random walk on the graph: one defines the
probability P;j for the random walker to go to point -

i if it currently is at the neighboring point j . P;is:

called the “transition probability”. (As, at each step,

the random walker must go somewhere, including the :

possibility of staying at the same point, P;; satisfies
> Pij = 1.) For the sake of mathematical simplic-
ity, we shall always assume that a graph connects any
point with itself: staying at the point is considered as
a “transition” (a “step”), and the current point, having
been reselected, contributes with one more sample.
Consider a random walk, defined by the transition

probabilities {P;;} , and assume that the model where -
it is initiated is only known probabilistically: there is |

a probability ¢; that the random walk is initiated at
point 1 .

Then, when the number of steps tends to :

infinity, the probability that the random walker is af
point ¢ will converge to some other probability p; :

[Feller, 1970]. We say that {p;} is an “equilibrium

Figure 1. Part of a graph in the model space. The

graph defines the possible steps of a random walk in the
space. The random walk obeys some probabilistic rules
that allow it to jump from one model to a connected
model in each step. The random walker will, asymp-
totically, have some probability, say p; , to be at point
¢ at a given step. The neighborhood of given model
is defined as the models to which a random walker can
go in one step, if it starts at the given model. Thus a
neighborhood is defined solely through the graph and
does not need to be a metric concept.
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probability distribution” of {P;;} . (Then, {p;} is an
eigenvector with eigenvalue 1 of {Pj;} : Zj Pyjp; =
p; .) If the random walk always equilibrates at the same
probability {p;} , independent of the initial probability
{¢;} , then there is only one equilibrium probability
{p:i} . (Then, {p;} is a unique eigenvector of {P;;}.)
This is the case if the graph is “connected”, that is, if
it is possible to go from any point to any other point
in the graph (in a sufficient number of steps) [Feller,
1970].

Many random walks can be defined that have a given
probability distribution {p;} as their equilibrium prob-
ability. Some random walks converge more rapidly
than others to their equilibrium probability. Succes-
sive models 4,7, k,... obtained with a random walk
will, of course, not be independent unless we only con-
sider models separated by a sufficient number of steps.
Instead of letting p; represent the probability that a
(single) random walker is at point ¢ (in which case
Y.,pi =1), we can let p; be the number of “particles”
at point . Then, ) .p; represents the total number
of particles. None of the results presented below will
depend on the way {p;} is normalized.

If, at some moment, the probability for the random
walker to be at a point j is p; and the transition
probabilities are P;; , then fi; = P;jp; represents the
probability that the next transition will be from j to
i: while Pj; is the conditional probability of going
to point ¢ if the random walker is at j, f;; is the
unconditional probability that the next step will be a
transition to ¢ from j .

When p; is interpreted as the number of particles
at point 7, fi; is called the “flow”, as it can be inter-
preted as the number of particles going to point ¢ from
point j in a single step. (The flow corresponding to
an equilibrated random walk has the property that the
mmmber of particles p; at point ¢ is constant in time.
Thus that a random walk has equilibrated at a distribu-
tion {p;} means that in each step, the total flow into
a given point is equal to the total flow out from the
point. Since each of the p; particles at point ¢ must
move in each step (possibly to point ¢ itself), the flow
has the property that the total flow out from point ¢
and hence the total flow into the point must equal p; :
E]‘ fij = 3k fri = pi ) The concept of flow is impor-
tant for designing rules that sample probabilities (see
Appendix A).

Naive Walks

Consider an arbitrary (connected) graph, as the one
suggested in Figure 1, and denote by n; the number
of neighbors of point ¢ (including the point ¢ itself).
Consider also a random walker that performs a “naive
random walk”. That is, when he is at some point j ,
he moves to one of j’s neighbors, say neighbor i, cho-
sen uniformly at random (with equal probability). It is
easy to prove (see Appendix B) that the random walk
so defined equilibrates at the probability distribution
given by p; = n;/ >, n; , i.e., with all points having a
probability proportional to their number of neighbors.

12,435

Uniform Walks

* Consider now a random walker that when he is at

some point j , first chooses, uniformly at random, one
of j’s neighbors, say neighbor ¢ , and then uses the
following rule to decide if he moves to ¢ or if he stays
at j:

1. If n; <n; (ie., if the “new” point has less neigh-
bors than the “old” point (or the same number), then
always move to 1. ]

2. If n; > n; (ie., if the “new” point has more
neighbors than the “old” point), then make a random
decision to move to % , or to stay at j , with the
probability n;/n; of moving to .

It is easy to prove (see Appendix B) that the random
walk so defined equilibrates at the uniform probability,
i.e., with all points having the same probability. This
method of uniform sampling was first derived by Wig-
gins [1969).

The theory developed so far is valid for general, dis-
crete (and finite) spaces, where the notion of metric is
not necessarily introduced. In the special case of metric,
Euclidean spaces, it is possible to choose Cartesian co-
ordinates, and to define the points in the space, where
the random walk will be made, as a standard Carte-
sian grid of points. Let us, for instance, choose a graph
as the one indicated in Figure 2. Then, away from the
boundaries, the rule above degenerates into a (uniform)
random choice of one of the 2N +1 neighbors that any
point has (including itself) in a space of dimension N .
It can be shown (see Appendix B) that the walks so
defined produce symmetric flows.

Modification of Random Walks

Assume that some random rules are given that define
a random walk having {p;} as its equilibrium proba-
bility (uniform or not). How can the rules be modified
so that the new random walk equilibrates at the prob-
ability
_ piLi
2iPiL;

Consider the following situation. Some random rules
define a random walk that samples the prior probability
{p:} . At each step, the random walker is at point j ,

o (14)

Figure 2, Part of a Cartesian graph in an Euclidean
space. In this case, the definition of rules that sample
points with the uniform probability is trivial.



12,436

and an application of the rules would lead to a transition
to point ¢ . If that “proposed transition” i «— j was
always accepted, then the random walker would sample
the prior probability {p;} . Let us, however, instead
of always accepting the proposed transition 4 «— i,
sometimes thwart it by using the following rule to decide

if he is allowed to move to ¢ or if he is forced to stay

at j:

LIf L; > L; (ie., if the “new” point has higher (or
equal) likelihood than the “old” point), then accept the
proposed transition to 4.

2.If L; < L; (ie., if the “new” point has lower
likelihood than the “old” point), then make a random
decision to move to i , or to stay at j , with the
probability L;/L; of moving to i.

Then it can be proved (see Appendix C) that the
random walker will sample the posterior probability o;
defined by equation (14). This modification rule, remi-
niscent of the Metropolis algorithm, is not the only one
possible (see Appendix C). .

To see that our algorithm degenerates into the Me-
tropolis algorithm [Metropolis et al., 1953] when used
to sample the Gibbs-Boltzmann distribution, put ¢; =
exp(~E;/T) />, exp(—E;/T) , where E; is an “en-
ergy” associated to the j-th point in the space and T
is a “temperature”. The summation in the denomina-
tor is over the entire space. In this way, our acceptance
rule becomes the classical Metropolis rule: point i is

always accepted if E; < E; , but if E; > E; ,itisonly -

accepted with probability p° = exp (—(E; - E;) /T) .
Accordingly, we will refer to the above acceptance rule
as the “Metropolis rule”.

As an example, let us consider the case of inde-
pendent, identically distributed Gaussian uncertainties.
Then the likelihood function describing the experimen-

tal uncertainties (equation (3)) degenerates into

L(m) = k exp (—E‘(::l—)) , (15)
where
1 N i N
S(m) = 5> (¢'(m) — diy,) (16)
i=1

is the misfit function, m is a model vector, d is a
data vector, g(m) is the forward modeling function,
and s? is the total “noise” variance. In this example,
s% is the same for all N data values. The acceptance
probability for a perturbed model becomes in this case

P 1 if S(mnew) < S(mf’ld)
accept exp (— %“—9-) if S(mnew) > S(mold)
(17)
where

AS = S(mpey) — S(meyq) - (18)

This means that the perturbation is accepted if the per-
turbed model improves the data fit, and has a proba-
bility of being accepted of Poccept = exp(—AS/s?) if
it degrades the data fit. From (17) we see that in the
case of uniform a priori distribution, our algorithm be-
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comes identical to the traditional Metropolis algorithm 1
by identifying the misfit function S with the thermody- '
namic energy E and by identifying the noise variance :
5% with (k times) the thermodynamic temperature T. i

Starting a Random Walk

~

We have just shown how a random walk sampling
some prior probability {p;} can be modified by the Me-
tropolis rule to sample the posterior probability {o;}. "
This procedure is very suitable for solution of inverse :
problems. Usually, we will define some probabilistic ©
rules that, when applied directly, would generate mod- "
els mi,my,... that, by definition, would be samples '
of the prior probability {p;} . The application of the =
Metropolis rule defined above will modify this random
walk in the model space so that it produces samples of -
the posterior probability {o;} instead. o
The fact that we have a random walk that samples |
the prior does not imply that we have an expression that
allows us to calculate the value of the prior probability -
pi of any model m; . The numerical example below
gives an example of this. Of course, using the random
walk that samples the prior and making the histograms -
of the models selected would be a numerical way of ob- '
taining the value of the prior probability p; for every
model m,; , but this is not a question that normally ‘
arises. '
Using random rules that, if unmodified, generate
samples of the prior and using the Metropolis rule to
modify this random walk in order to sample the pos-
terior corresponds to the Bayesian way of modifying a -
prior probability into a posterior. This approach will
usually lead to efficient random walks, since the algo-
rithm only explores the (usually) very limited subset of
models that are consistent with our a priori information.
It often happens that we have data of different na-
ture, as for instance in geophysics, when we have grav-
ity, magnetic, or seismic data. Then, typically, data

uncertainties are independent, and the total likelihood 1

of a model, L(m) , can be expressed as a product of’
partial likelihoods: L(m) = Li(m) La(m) ... , one for l[
each data type. Using the Metropolis rule directly t K
the total likelihood L(m) would force us to solve the -
full forward problem (usually the most time-consuming |
part of the algorithm) to every model proposed by the .
prior random walk. Instead, we can use the Metropolis =
rule in cascade: If the random walk sampling the prior -
is modified first by considering the partial likelihood =
Li(m) , then we define a random walk that samples =
the product of the prior probability density p(m) and*
Li(m) . In turn, this random walk can be modified by =
considering the partial likelihood Ly(m) , and so on,;
until the posterior probability density that takes into =
account the total data set is sampled. Practically this!
means that, once a model is proposed by the rules sam- £
pling the prior, the forward problem is solved for the
first data subset. The proposed model may then be ac- |
cepted or rejected. If it is rejected by the Metropol ;
rule (typically when there is a large misfit between the
synthetic data and the observed data for this first data

i TV TV
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subset), then there is no need to solve the forward prob-
lem for the other data subsets, and the rules sampling
the prior have to propose a new model. More gener-
ally: Each time the Metropolis rule rejects a model at
some stage of the algorithm; we go back to the lower
level and propose a new model. When the solution of
the forward modehng is inexpensive for certain data
subsets, using this “cascade rule” may render the al-
gorithm much more efficient than usmg the Metropolis
rule to the total data set. :

If, for some reason, we ate not able to dn‘ectly design
a random walk that samples the prior, but we have an
expression that gives the value of the prior probability
pi for any model m; (an example is given by expres-
sion (19) below), we can, for instance, start a random
walk that sampleés the model space with uniform prob-
ability (see the section on uniform walks). Using the
Metropolis rules given above but replacing the likeli-
hood values L; by thé prior probabilities p; , we will
obviously produce a random walk that samples the prior
(the product of a constant times p; equals p;). Then,
in cascade, we can use the Metropohs rule, with the
likelihood values L; , to modxfy this random walk into
a random walk that samples the posterior probability

;= const p; L; .

A second option is to modify directly a uniform ran-
dom walk (using the Metropolis rule above but with the
product p; L; instead of L; ) into a walk that directly
samples the posterior, but this results, generally, in an
inefficient random walk.

Multiétep Iterations

An algorithm will converge to a unique equilibrium
distribution if the graph that describes the move of a
random walker in a single iteration is connected [Feller,
1970] Often, it is convenient to split up an iteration
in a number of steps, having its own graph and its own
transition probabilities. A typical example is a random
walk on a set of discrete points in an N-dimensional
Euclidean space, as the one suggested in Figure 2. In
this case the points are located in a regular grid having
N mutually perpendicular axes, and one is typically
interested in dividing an iteration of the random walk
into N steps, where the nth move of the random walker
is in a direction parallel to the nth axis.

The question is now: if we want to form an itera-
tion consisting of a series of steps, can we give a suffi-
cient condition to be satisfied by each step such that the
complete iteration has the desired convergence proper-
ties? It is easy to see that if the individual steps in
an iteration all have the same distribution {p;} as an
equilibrium distribution (not necessarily unique), then
the complete iteration also has. {p;} as an equilibrium
distribution. (The transition probability matrix for a
complete iteration is equal to the product of the transi-
tion probability matrices for the individual steps. Since
the vector of equilibrium probabilities is an eigenvector
with eigenvalue 1 for each of the step transition proba-
bility matrices, it is also an eigenvector with eigenvalue
1, and hence the equilibrium distribution, for the tran-
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sition probability matrix for the complete lteratlon ) If
this distribution is to be the unique equilibrium distri-
bution for the complete iteration, then the graph of the
complete iteration must be connected. That is, it must
be possible to  go from any point to any other point by
performing iterations consisting of the specified steps. -

If the steps of an iteration satisfy these sufficient con-
ditions, there is also another way of defining an iteration
with th'e desired, unique equilibrium distribution. In-
stead of performing an iteration as a series of steps, it
is possible to define the iteration as coris1st1ng of one of
the steps, chosen fandomly (with any distribution hav-
ing nonzero probablhtles) among the possible steps (see
Appendix D) Of course, a step of an iteration can, in
the same way, be built from substeps and in this way
acquire the same (not necessarily unique) equilibrium
distribution as the substeps.

Sampllng the a Priori Probablhty
Densﬂ:y

We have previously assumed that we were able to
sample the a priori probability density p(m) Let us
see how this can be achieved.

There are two ways of defining the a priori probab111ty
distribution:

1. By defining a (pseudo) random process (i.e., a set of
pseudo random rules) whose output is models assumed
to represent pseudo random realizations of p(m)

2. By explicitly giving a formula for the a priori prob—
ability density p(m).

Let us see an example of each.

First Example

- From nearby wells we may have found that in a cer-
tain area of locally horizontal stratlﬁcatlon, the distri-
bution of layer thicknesses is approx1mately an €xpo-
nential distribution, and the mass densities in the layers
follow a log-normal distribution. Hence we can decide
to generate one dimensional Earth models for mass den-
sity by the following random walk in the model space:

In each iteration:

1. Select a layer uniformly at random.

2. Choose a new value for the layer thlckness accord-
ing to the exponentlal distribution.

3. Choose a value for the mass dens1ty inside the Iayer,
according to the log-normal distribution.

If we decide to discretize the model at constant Az
intervals, m = {p(z1), p(z2), ...} will have some proba-
bility distribution (representing our a priori knowledge)
for the parameters {p(21), p(z2),...} which we may
not need to characterize explicitly.

In this example, the pseudo random procedure pro-
duces, by its very definition, samples mj;my,... of
the a priori probability density p(m) . These s_amplés
will be the input to the Metropolis decision rule. We
recommend in particular this way of handling the a pri-
ori information, as it allows arbitrarily complex a priori
information te enter the solution to an inverse problem.
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For an example of this procedure, see the section on
numerical éxample.

Séqdnd Example

We may choose the probability density

p(m) =k exp (- Z Mﬁl) . (19)

a-a
«

where m® represent components of the vector m .

_ In this example, where we only have an expression
for p(m) , we have to generate samples from this distri-
bution. This can be done in many different ways. One
way is to start with a naive walk, as described above,
and then use the Metropolis rule to modify it, in order
to sample p(m) .

Samijling the a Posteriori Probability
Density

In the previous section we described how to perform
a random walk in the model space producing samples
m;, m3,ms,... of the a priori probability p(m) . In
order to obtain samples of the a posteriori probability
o(m) = k p(m) L(m) we simply need to use the results
given in the section on modification of random walks: if
m; ‘is the “current point” and if the random walk sam-
pling the prior would move from point m; to point m;
(and whatever the used rules may be), accept the move
if L(m;) > L(m;) , and decide randomly to accept or
reject the move if L(m;) < L(m;) , with a probability
P = L(m;)/L(m;) of accepting the move.

Numerical Example

We now illustrate the theory developed in this paper
with the inversion of gravity data. This is a classical
example for testing any theory of inversion, and sjmilar
examples are given by Dorman [1975], Parker [1977]
and Jackson [1979). _ ‘

As the relationship between mass density and gravity
data is strictly linear, one may wonder why we should

illustrate a Monte Carlo method, with its inherent abil-

ity to solve nonlinear problems, with the gravity inver-
sion example. The reason is that our major concern is
not the possibility of solving nonlinear problems, but
the possibility of using, in standard geophysical inverse
problems, realistic a priori information in the model
space and realistic description of data uncertainties.
This is what forces us to leave the comfortable realm
of least squares and related methods and to develop
the notions described here. It should be noted that the
complex a priori knowledge used in this example renders
the a posteriori distribution non-Gaussian.

The _Problem

We consider a subsurface with a vertical fault, ex-
tending from the surface to infinite depth, as depicted
in Figure 3. At the left of the fault the medium is ho-
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Figure 3. The geological model considered in our nu-
merical example.

mogeneous, while at the right of the fault the medium is
depth dependent and characterized by a vertical profile
of mass density p(z) .
The contrasts of mass density across the vertical fault
produce a gravity anomaly at the surface. Let us as-
sume that we have observed the horizontal gradient of
the vertical component of the gravity at 20 equispaced
points to the right of the fault, the first point being lo-
cated 2 km from the fault, and the last point being
located 40 km from the fault. The forward problem of
computing the data values d; = d(z;) from the density
contrast function is solved by '

z Ap(z)
224227

d(z) = 92y = 2 / iz (20)
8:1: 0 :

where z is the horizontal distance from the fault, z is

the depth, g(z) is the vertical component of the grav-

ity, Ap(z) is the horizontal density contrast across the

fault at depth z , and G is the gravitational constant.

The a Priori Information

Let us assume that in addition to the “hard” model

constraints ‘descri'bed‘ above, we have the following a.
priori knowledge about the subsurface structure: The
density of the rock to the left of the vertical fault is

known to be 2570 kg/m>. To the right of the fault isa :

stack of (half) layers, and we have the a priori informa-
tion that the thicknesses ¢; of the layers are distributed
according to the exponential probability density

1O =7 o (—é) ,

where £p , the mean layer thickness, has the value ¢, =
4 km. g

Independently of the thickness of the layers, the mass
density for each layer follows an empirical probability
density, displayed in Figure 4. To simplify the calcu-
lation, the stack of layers is assumed to have a total
thickness of 100 km, resting on a homogeneous base-
ment having the same mass density as the half space at
the left of the fault (2570 kg/m?), and the top layer is
truncated (eroded) at the surface. |

(21)
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Prior mass density distribution
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Figure 4. The a priori probability density _function
for the mass density inside each layer. The a priori
probability density function for the thickness of each
layer is an exponential function.

True Model, Experimental Uncertainties, and
Observed Data Values

The measured data is assumed to be the response of a
‘true model” (Figure 5). The exact data corresponding
to the true model are shown in Figure 6. The measured
data values are assumed to be contaminated by statis-
tically independent, random errors &; modeled by the
sum of two Gaussian probability dens1ty functions,

: a €2
10 = o p("z‘a‘)

(1-a) ( 2 )
+ Y e (-, 22
Varo, P\ 723 (22)
where we have chosen the constants ai 0.25107%2,

7,=12510"%"2 , and a = 0.25 (see Figure 7).

The simulated observatlons, which are formed by
summing the “true” data and the simulated noise, are
displayed in Figure 6. Then, the likelihood function
L(m) , measuring the degree of fit between synthetic
and observed data is the one given by equation (6).

The Sampling Algorithm

The prior random walk. Let us now describe
how our algorithm works. First, we define the graph
in the model space that will guide our random walk.

True model Smoothed true model
0 0 —r . ,‘
20 20 -
7 o g “or -
N 60 S 6o 4
80| 80} -
1% ™ 5000 1005~ 75000

pz) [kg/m’]

p(z) [kg/m’]

Figure 5. The true model used to generate synthetlc
data. )
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True data and observed data

I I T

Figure 6. Synthetic data (solid line) used for the in-
version, generated from the “true model” of Figure 5,
and the “observed data” (points with error bars), equal
to the “true data” plus some noise.

To ensure efficiency of the algorithm, it is important
that very few of the possible steps in the model space
lead to a radical change i in the synthetlc data generated
from these models.

A simple way of sampling the a priori probability in
the model space would be to use a random walk that
generates successive models totally independently. To
generate a new model, we could, for instance, pseudo-
randomly generate layer thicknesses £3,%; ... from bot-
tom to top, according to the exponential dlstrlbutlon
given by equation (21), until they add up to the 100
km of total thickness (“eroding”, if necessary, the top
layer) Then we could pseudorandomly generate, inside
each layer, the corresponding value for the mass d_ens1ty,
according to the empirical distribution displayed in Fig-
ure 4. However this would produce a radical change in
the synthetic data in each step of the random walk, and
therefore it would be a very inefficient algorithm. The
reason is that if the current model is one having a high
posterior probability, a radical change would most likely
lead to one of the very abundant models having a low
posterior probability and would therefore be rejected by
the algorithm.

Another way to produce samples of the a priori prob—
ability in the model space could be the following: Given
a sample of the prior (i.e., given a model), we could pro-
duce another sample by, for instance, randomly choos-

800 T T T

600 [~

400 -

x10

Figure 7. The arbitrary function used to model data
uncertainties, as a sum of two Gaussians.
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ing a layer and replacing its thickness by a new thickness
drawn from the exponential distribution given by equa-
tion (21) or by replacing its mass density by a new mass
density drawn from the empirical distribution displayed
in Figure 4. ‘

It is obvious that iterating this procedure, we would
always produce models whose layer thicknesses and
mass densities are distributed properly; i.e., we would
produce samples of the prior probability in the model
space. Successive models will be “close” in some sense,
but our numerical experimentation has shown that they
are still too far apart: when testing models produced
by this prior random walk by the likelihood function
L(m) (see below), the probability of being accepted as
samples of the a posteriori probability is extremely low:
The reason is that when perturbing one layer thickness,
all the layers above are shifted (remember that we go
from bottom to top), and this strongly changes the syn-
thetic data. ‘ ’

Therefore we decided to define the neighbors of a
model as the models we can get, not by changing the
thickness of a layer but by creating or destroying a
new intérface in the model (in a way described below).
Then, all the other layers remain intact, and we only
make a small perturbation in the synthetic data.

' More precisely, the neighbors of a model are the mod-
els we can get by performing one of the following three
perturbations: (1) changing the mass density in one
layer, (2) adding a new layer boundary and assigning
. mass densities to the layers above and below it, or (3)

removing one layer boundary and assigning a mass den-

sity to the new compound layer. To complete the de-
scription of our algorithm, we will now specify the ran-
dom rules used by the random walk on the graph.

" In ‘each iteration it is first decided which kind of
model perturbation step 'should be performed next.
Performing a “pure” layer density perturbation has the
same probability (0.5) as performing a layer boundary
perturbation (removing or adding a boundary).

- In case of a step involving a pure layer mass density
perturbation, a layer is selected uniformly at random
and a (new) density is chosen for that layer according
- to the density histogram of Figure 4. ‘

- In case of a layer boundary perturbation step we face
the problem of adding or removing layer boundaries
in such a way that if the step was iterated alone, it
would leave the (a priori) distribution of models un-
changed. In particular, the exponential layer thickness
distribution (1/£y) exp(—£/fo) should be maintained.

There is a simple solution to this problem: we exploit

the fact that (approximately) exponentially distributed

layer thicknesses can be obtained by assuming that the
probability that a layer interface is present at a given
depth (sample point) is equal to (40 m / £) = 0.01 and
independent of the presence of other layer interfaces.

* A layer boundary perturbation step therefore works
as follows. First, we select one of the 2500 discrete
points of the current mass density function, uniformly
at random. We then randomly decide if there should
exist a layer boundary at that point or not. The prob-

ability for the point to be a layer boundary is 0.01.
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In case this operation creates a new layer boundary,
we generate a mass density for the layers above and
below the new layer boundary according to the a priori
probability distribution shown in Figure 4. o
" In case this operation removes a layer boundary, we
generate a mass density for the new compound layer
(consisting of the layers above and below the removed
layer boundary) according to the a priori probability
distribution. - [

This exactly corresponds to the a priori information
we wanted to input to our problem: the random walk in
the model space so defined is sampling the probability
density describing our a priori information.

The posterior random walk. Let us now describe
how the above prior random walk is modified into a new
random walk, sampling the posterior distribution. '

Every time a model perturbation is attempted by the
prior random walk, the gravity response is computed
from the perturbed layer sequence myeyy by summing
up the contributions from the layers in the interval be-

tween 0 km depth and 100 km depth. The contribution

from a homogeneous half layer is given by

{ D? + 22
GAp log (m)

where d is the depth to the top of the homogenous
half layer, D is the depth to the bottom of the half
layer, Ap is the layer density, and z is the horizontal

distance to the edge of the half layer.

From the computed gravity response g(mpers) and
the observed gravity response d,p; the value of the :
likelihood function L(mpet) is computed using equa- |
tion (6). The attempted perturbation is now accepted

or rejected according to the Metropolis rule, using the

likelihoods L(mey:) and L(miper) of the current and -

perturbed models, respectively (see the section on sam-
pling the a posteriori probability density).
- This completes the description of the algorithm used
in our numerical example. There are, however, a few re-
maining issues concerning the use of its output models.
Most importantly, we want independent samples from
the a posteriori distribution. =

If independent sample models are required, one has to
wait some time between saving the samples. In practice,
a single test run of, say, 1000 iterations is performed,
and the value of the likelihood function is recorded for
the current model of each iteration. After some itera-
tions the likelihood has risen from the usually very low
value of the initial model to a rather stable “equilib-
rium level”, around which it fluctuates during the re-
maining iterations. By calculating the autocorrelation
function for the equilibrium part of this series of likeli-
hood values, it is possible to estimate the waiting time
(in iterations) between statistically independent likeli-
hood values. This waiting time is a very rough measure
of the minimum waiting time between statistically inde-
pendent model samples from o(m) . The waiting time
between saving model samples in our computations is
100 iterations. A discussion of the validity of the above

@

measure is beyond the scope of this paper. It shall, °
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however, be noted that the described method is only
approximate and that the crucial problem of estimat-
ing how many iterations are needed to yield a sufficient
number of samples (to characterize a glven inverse prob-
lem) is still unsolved.

Making of a Movie

First, the comparison between computed and ob-
served data is “turned off”, so as to generate a sample
of models representing the a priori probability. This has
two purposes. First, it allows us to make statistics and
to verify that the algorithm is working correctly. More
importantly, it allows us to really understand which sort
of a priori information we are inputting to the prob-
lem. Figure 8, for instance, shows 30 of the models
representing the a priori probability distribution, of the
many tens of thousands generated. We call this figure
a “movie”, as this is the way the whole set of generated
models is displayed on a computer screen. These 30
models give an approximate idea of the sort of a priori
information used. Of course, more models are needed if
we want a more accurate representation of the a priori
probability.

We may not be interested in the models per se but
only in smooth Earth models (for instance, if we know
that only smooth properties are resolved by the data).
The movie of Figure 8, then easily becomes the smooth
movie displayed in Figure 9 (where the density at each
point is arbitrarily chosen to be a simple average over
250 points surrounding it).

“Turning on” the comparison between computed and
observed data, i.e., using the Metropolis rule, the ran-
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dom walk sampling the prior distribution is modified
and starts sampling the posterior distribution. Fig-
ure 10 shows a movie with some samples of the pos-
terior distribution, and Figure 11 shows the smoothed
samples.

Let us first concentrate on the a posteriori movie of
Figure 10. It is obvious that many different models
are possible. This is no surprise, as gravity data do
not constrain strongly the Earth model. But it is im-
portant to look at Figure 12. We display the a priori
and the a posteriori data movie, i.e., the synthetic data
corresponding to models of the a priori random walk
in the model space and the synthetic data correspond-
ing to models of the a posteriori random walk in the
model space, when the Metropolis rule is biasing the
prior random walk towards the posterior. Even though
the models in the posterior movie of Figure 10 are quite
different, all of them predict data that, within experi-
mental uncertainties, are models with high likelihood:
gravity data alone can not have a preferred model.

Let us now analyze the smoothed models of Figure 11.
They do not look as “random” as the models without
smoothing: they all have a zone of high-density contrast
centered around 10 km depth, which is a “structure”
resolved by the data.

Answering Questions

From the viewpoint defended here, there are no well-
posed questions or ill-posed questions, but just ques-
tions that have a probabilistic answer.

Making histograms. We may be interested in the
value of the mass density at some depth, say 2y . Each

A priori models
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Figure 8. Some images of a movie representing the a priori probability density.
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Smoothed a priori models
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Figure 9. Same as Figure 8 but with the models smoothed.

of our many samples (of both the a priori and the a
posteriori probability in the model space) has a partic-
ular value of the mass density at zo . The histogram of
these values clearly represents the marginal probability
distribution for the mass density at that point.

Figures 13 and 14 show both the prior and posterior
histograms for the mass density at 2 km, 10 km and
80 km depth, respectively. In particular, we see, when
comparing the prior and posterior histograms at 2 km
depth, that the mass density to some extent has been

A posteriori models
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0

i

F—————— = 10000 kg/m’

Figure 10. Some images of a movie representing the a posteriori probability density.
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Smoothed a posteriort models
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Figure 11. Same as Figure 10, smoothed. The smoothed models do not look as “random” as the models without
smoothing (Figure 10): they all have “bump” at about 10 km depth, which is a “structure” resolved by the data.

resolved there: the histogram has been slightly “nar-
rowed”. This is not the case at 80 km depth. Instead of
the value of the mass density at some particular depth,
we may be interested in the average mass density be-
tween, say, 21 and 2o . Taking this average for all
our samples gives the histogram shown at the bottom
of Figure 14.

Computing central estimators, or estimators
of dispersion. Central estimators and estimators of
dispersion are traditional parameters used to charac-
terize simple probability distributions. It is well known
that while mean values and standard deviations are

Computed data
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Figure 12. The a priori and a nosteriori data. maovie.

good measures for Gaussian functions, median values
and mean deviations are better adapted to Laplacian .
(double exponential) functions. We can compute both
estimators {or any other), as we are not dependent on
any particular assumption. '

Marginal distribution at z =2 km
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Figure 13. Prior and posterior histograms for the mass
density respectively at 2 km and 10 km. When compar-
ing the prior and posterior histograms at 2 km depth, we
see that the mass density has been quite well resolved
there: the histasram has heen considerablv “narrawed”.
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Marginal distribution at z = 80 km
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Figure 14. Prior and posterior histograms for the mass
density at 80 km depth, and average mass density be-
tween 7.5 km and 12.5 km. The mass density at 80 km
depth has been less well “resolved” that at 2 km depth
(see Figure 13).

Figure 15 shows the mean value for the mass density,
plus and minus the standard deviation, and the median,
- plus and minus the mean deviation for both the a priori

and the a posteriori movie. Again, these plots represent
the mean and median (and corresponding deviations) of
the a priori and a posteriori probability distributions in
the model space. Notice that the mean and the median
a posteriori models both show the zone of high density
contrast centered around 10 km depth, characteristic of
the true model of Figure 5, a feature well resolved by
our data.

Computing correlations. We may also ask how
correlated are the mass density values at different depth
locations. From our movies, we can, for instance, easily
compute the covariance function C(z,z’) . The correla-
tion function is given by ¢(z,2') = C(z,2')/(0(2)a(2)),
where o(z) is the standard deviation at point z (just
estimated). The correlation function, taking its values

/in the interval (—1,+1) , has a simpler interpretation
than the covariance function.

We have chosen to compute the correlation between
a point arbitrarily chosen at z; = 10 km and all other
points, i.e., the function c(20,2) . The result is dis-
played in Figure 16.

Notice that correlations in the a priori probability dis-
tribution decay approximately exponentially, and that
they are all positive. In the a posteriori probability dis-
tribution, anticorrelations appear. This means, roughly
speaking, that if the mass density of any particular real-
ization is in error at 10 km depth, it is likely that it will
also be in error, but with opposite sign, in the layers
just above and below 10 km.
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The approximate exponential decay of the correla-
tion in the prior probability results from the exponen-
tial probability chosen for the layer thicknesses. The
anticorrelations appearing in the posterior probability
describe the uncertainty in our posterior models due to
the type of information brought by the gravity data.

Discussion

All the results presented in Figures 8 and 9, and the
left parts of Figures 13 to 16 concern the a priori movie
(i-e., they correspond to the sampling of the model space
according to the a priori probability density). - Should
we at this point decide that we are not representing
well enough our a priori information or that we are in-
putting a priori information that we do not actually
have, it would be time to change the way we generate
pseudorandom models. If the a priori movie is accept-
able, we can “switch on” the synthetic data, calculation, -
and the filter described above, to generate samples of
the a posteriori probability distribution, i.e., to produce
the a posteriori movie.

It should be properly understood in which way the
feature at 10 km depth is “resolved” by the data. None
of the models of the a posteriori movie shows a clear
density bump at 10 km depth, as the considered inverse
problem has a highly nonunique solution (i.e., many dif-
ferent models fit the data and are in accordance with

Mean +/- standard deviation
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Figure 15. Mean value for the mass density, plus and
minus the standard deviation, and the median, plus and
minus the mean deviation for both, the a priori and
the a posteriori movie. These represent the mean and
median (and corresponding deviations) of the a priori
and a posteriori probability distributions in the model
space.
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Figure 16. The (left) a priori and (right) a posteriori
correlation functions c(zo,z) for zp = 10 km. Notice
the anticorrelations appearlng in the posterior correla-
tion function.

the a priori information). From the a posteriori movie
we can not conclude that the true model does have the
bump, as many models without it aré acceptable. Sim-
ply, models with the bump, and arbitrary “high fre-
quencies” superimposed have a greater chance of being
accepted.

General Considerations

There are two major differences between our Metro-
polis rule (for solving inverse problems) and the original
Metropolis algorithm. First, it allows an introduction
of non-uniform a priori probabilities. Moreover, an ex-
plicit expression for the a priori probabilities is unnec-
essary: an algorithm that samples the model space ac-
cording to the prior is sufficient. Second, our Metropolis

rule is valid for an arbitrary probability (i.e., it is not

linked to the Gibbs-Boltzmann distribution).

Our algorithm has been developed for sampling of
discrete spaces according to given probabilities. How-
ever, it can be used for optimization. The Metropolis
algorithm is already used in simulated annealing [Kirk-
patrick et al., 1983], where the desired distribution is
changed during the process, starting with a uniform
distribution and ending with a near-delta distribution,
centered at the optimal solution. We could also find the
“best model” by artificially using in the equations val-
ues for the experimental uncertainties that tend to zero.
However, we do not recommend paymg any interest to
this concept of “best model”. :

The method developed above is independent of the
way probablhtles have been normalized. This is im-
portant, as many interesting properties of a probablhty
distribution can be inferred from a random walk, even
before the walk has been so extensive that it allows an
effective estimation of the denominator of equation (14).

Although we have designed a sampling algorithm
(and given proof of its convergence to the desired dis-
tribution), we have only addressed heuristically the dif-
ficult problem of designing efficient algorithms. It can
be shown that the Metropolis rule is the most efficient
acceptance rule of the kind we consider (see Appendix

C), but the acceptance rule is only part of the efficiency
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problem: defining the graph (i.e., how the models can
be perturbed) is a nontrivial task, and we have only
shown an example of it, having no general theory to
propose.

Conclusion

We have described a near-neighbor sampling algo-
rithm (random walk) that combines prior information
with information from measurements and from the the-
oretical relationship between data and model parame-
ters. The input to the algorithm consists of random
models generated according to the prior distribution

p(m) and the corresponding values of the likelihood
function that carries information from measurements
and the theoretical data/model relationship. Output
from the algorithm are pseudo-random realizations of
the posterior distribution o(m) . We applied the algo-
rithm to a highly nonunique, linear inverse problem, to
show the method’s ability to extract information from
noisy data.

The a posteriori distribution contains all the informa-
tion about the parameterized physical system that can
be derived from the available sources. Unfortunately,
this distribution is multidimensional and is therefore
impossible to display directly.

It is important to direct future efforts toward the de-
velopiment of methods for analyzing and displaying key
properties of a posteriori distributions of highly nonlin-
ear inverse problems. For this class of inverse problems,
the a posteriori distributions are typically multimodal,
and traditional techniques for analyzing error and reso-
lution properties of unimodal a posteriori distributions
break down. There is no known way of understand-
ing uncertainties in the result of a highly nonlinear i in-
verse problem. Here, we have defined the a posteriori
probability density o(m) , which contains all the in-
formation, but how to extract it? Clearly, computing
standard deviations or covariances may be meaningless,
if the posterior probability density is far from Gaussian,
which is always the case for highly nonlinear problems.
Also, an extensive exploration of the model space can-
not be made if the space. is of high dimension, as, for
instance, in the problem of interpretation of seismic re-
flection data.

In that problem, each model is usually represented
by an image. Using the methods described above, we
should start by generating pseudo random models with
the prior distribution p(m) . The movie should show
models that, on the grounds of our prior information,
are more or less likely. In geophysics, this is the right
time for a geologist to tell us if he agrees with the movie
or if, on the contrary, he sees too many unlikely or
too few likely models. When the geologist is satisfied,
we now can turn to look at the data, and to run the
Metropolis rule, using data misfits, to converge to the
posterior probability distribution o(m) . The movie is
now showing only models which are likely after exami-
nation of prior evidence and of geophysical data.

It must be understood that this point of view is much



12,446

more general than the usual one. For instance, imag-
ine a problem wheré certain parameters can be resolved
deterministically and other parameters can only be re-
solved statistically. This is the case, for instance, when
inverting seismograms to obtain earth models. The ma-
Jjor impedance contrasts, for instance, can be determin-
istically resolved from reflected energy. However, imag-
ine that our space of admissible models contains mod-
els with very fine layering, much finer than the seismic
wavelength. The position of these very fine layers can
not be resolved deterministically, but, as some proper-
ties of the seismograms (coda amplitude decay, etc.) do
contain information on the average density of fine lay-
ers, models (with fine layering) compatible with this in-
formation should be generated. Those fine layers could
of course not be located individually, but if the data,
say, perfectly resolve the average density of a series of
layers, all the selected models should display the same
average density of these layers. A simple illustration of
this possibility has been made here with the “bump” in
our mass density models;

From the final collection of models we can start pos-
ing questions. Ask for instance for any particular prop-
erty of the model, for instance, the depth of a partic-
ular layer, the smoothed matter density distribution,
etc. We have now many examples of that property. It
may happen that all the models give the same value for
it: ‘the property is well constrained by the data. Some,
using old terminology, would say that asking for that
property is a “well-posed question”. On the contrary it
may happen that all the models give absolutely different
answers to the question. ‘ )

In general, we are able to estimate statistics on that
property and give answers with a clear probabilistic
meaning. In almost all the interesting cases, those
statistics will not follow the nice bell-shaped Gaussian
distribution, but this should not be an obstacle to a
proper analysis of uncertainties. We are well aware of
the often tremendous computational task imposed by
this approach to inversion. However, the alternative
may be an uncertain estimation of uncertainties.

Appendix A: Design of Random Walk
With a Desired Equilibrium
Distribution :

The design of a random walk that equilibrates at a
desired distribution {p;} can be formulated as the de-
sign of an equilibrium flow having a throughput of Di
particles at point i . The simplest equilibrium flows are
symmetric, that is, they satisfy fij = fji : the tran-
sition ¢ « j is as likely as the transition § — j. It
is easy to define a symmetric flow on any graph, but
it will in general not have the required throughput of
p; particles at point j . This requirement can be sat-
isfied if the following adjustment of the flow is made:
first, multiply all the flows fij with the same positive
constant ¢ . This constant must be small enough to
assure that the throughput of the resulting flows cf;;
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at every point j is smaller than its desired probability
P; - Finally, at every point j , add a flow fij » going
from the point to itself, such that the throughput at j
gets the right size p; . Neither the flow scaling nor the
addition of f;; will destroy the equilibrium property
of the flow. In practice, it is unnecessary to add a flow
fij explicitly, since it is implicit in our algorithms that
if no move away from the current point takes place, the
move goes from the current point to itself. This rule
automatically adjusts the throughput at j to the right
size p; .

Appendix B: Naive and Uniform
Random Walks

Naive Walks

Consider two arbitrary neighbors, i and j, having
n; and n; neighbors, respectively, and a random walk
with the simple transition probabilities pji=1/n; and
Pij = 1/n; (choosing one of the neighbors, as the next
point, uniformly at random). If we want the equilibrium
flow to be symmetric, Pji%i = Pijq;, which is satisfied
if ¢; = n;. Furthermore, the above probabilities make
all the flows fj; = pjiq; equal to unity. So, the total
throughput through point i is Sufik = Y fii=ni=
g;- Hence ¢; = n; must be the equilibrium distribution
for the random walk. : :

Uniform Walks

The rules for the uniform walk follows now directly
from applying the Metropolis rule (see later) to the
above random walk. The Metropolis acceptance prob-
abilities are P3¢ = min(vj,v;)/v; , where v; = 1/g;
and v; = 1/g; are the “modification probabilities”, -

Appendix C: Modifying a Random Walk
by Introduction of an Acceptance Rule

Consider a random walk P,; with equilibrium distri-
bution p; and equilibrium flow fij - We can multiply
fij with any symmetric flow 1);; , where ¥ < Lj,
forall ¢ and j, and the resulting flow ¢;; = fij¥ij
will also be symmetric and hence an equilibrium flow.
The transition probabilities of a “modified” algorithm
with flow ¢;; and equilibrium probability o; is ob-
tained by dividing ¢;; "with the product probabil-
ity o; = p;L; . This gives the transition probabil-
ity: Ril;wdl' ed fij'(/}ij/ijj = Pij'lﬁij/Lj , which is
equal to the product of two factors: the initial transi-
tion probability, and a new probability: the acceptance
probability P2 = «,;/L;. If we choose to multiply
fi; with the symmetric flow ¥i; = min(L;, L;) , we ob-
tain the Metropolis acceptance probability ﬂ']'.’etmp =
min(L;, L;)/L;, which is one for L, > L; , and equals
Li/L; when L; < L; . Choosing, instead, Yij =
L;L;/(L; + L;) , we get the “logistic rule” with accep-
tance probability Pz.l;.’g = L;/(L; + L;) ., The simplest
algorithm can be derived from ¥y = min, (L;) , giv-
ing the acceptance probability PP = min, (L;) /L; .
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The acceptance rule for this constant flow we call the
“evaporation rule”, as the move by a random walker
away from the current point depends only on the desired
probability at that point and that this recalls the behav-
ior of a water molecule trying to evaporate from a hot
point. A last example appears by choosing v;; = L; L;
which gives the acceptance probability P°°nd = Li .
We refer to this acceptance rule as the “condensatlon
rule”, as it recalls the behavior of a water molecule try-
ing to condensate at a cold point. The efficiency of an
acceptance rule can be defined as the sum of acceptance
probabilities for all possible transitions. The acceptance
rule with maximum efficiency is obtained by simultane-
ously maximizing 1;; for all pairs of points j and 7 .
Since the only constraint on ;; (except for positivity)
is that 1;; is symmetric and i < L; , for all k
and !, we have t;; < L; and v;; < L; . This means
that the acceptance rule with maximum efficiency is the
Metropolis rule, where ;; = min(L;, L;) .

Appendix D: An Iteration Consisting of
a Randomly Chosen Step

In this case, the transition probability matrix for the
iteration is equal to a linear combination of the transi-
tion probability matrices for the individual steps. The
coefficient of the transition probability matrix for a
given step is the probability that this step is selected.
Since the vector of desired probabilities is an equilib-
rium distribution (eigenvector with eigenvalue 1) for
each of the step transition probability matrices, and
since the sum of all the coefficients in the linear combi-
nation is equal to 1, it is also an equilibrium distribution
for the transition probability matrix for the complete it-
eration, This equilibrium distribution is unique, since
it is possrble, following the given steps, to'go from any
point to any other point in the space.
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