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PREFACE

Humans were naked worms; yet they had an infernal model of the
world. In the course of time up to the present, this model has been updated
many times, following the development of new experimental possibilities
(i.e., the developments of their senses) or the development of their intellect.
Sometimes the updating has been only quantitative, sometimes it has been
qualitative. Inverse problem theory tries to describe the rules human beings
should use for quantitative updatings.

Let S represent a physical system (for instance the whole Universe, or
a planet, or a quantum particle). Assume that we are able to define a set of
model parameters which completely describes S . These parameters may not
all be directly measurable (for instance, the radius of the Earth’s metallic
core is not directly measurable). We can operationally define some observable
parameters whose actual values hopefully depend on the values of the model
parameters. To solve the forward problem is to predict the values of the
observable parameters, given arbitrary values of the model parameters. To
solve the inverse problem is to infer the values of the model parameters from
given observed values of the observable parameters.

The set of observed values usually overdetermines some model parame-
ters while leaving others underdetermined. Schematically, there are two rea-
sons for underdetermination: intrinsic lack of data, and experimental uncerta-
inties. To illustrate the first, consider for instance the problem of estimating
the density distribution of matter inside a planet from knowledge of the
gravitational field at its surface. It is well known that infinitely many differ-
ent distributions of matter density give rise to identical exterior gravitational
fields (Gauss’ theorem), so there is no hope of obtaining a unique solution to
the inverse problem using only gravitational data. Additional information has
then to be used, such as, for instance, some a priori assumptions on density
distribution, or an additional data set, such as seismic observations.

The second reason for underdetermination is uncertainty of knowledge:
observed values always have experimental uncertainties, and physical theories
allowing the resolution of the forward problem are always approximations of
a more complex reality.

Data redundancy can, in general, easily be handled, and present-day
methods do not differ essentially from those used, for instance, by Laplace
in 1799, who introduced the "least-absolute-values" and the "minimax" criter-
ion for obtaining the "best" solution, or by Legendre in 1801 and Gauss in
1809, who introduced the "least-squares" criterion.

Underdetermination is handled differently by differently thinking scho-
ols. Pure mathematicians like to refer to Hadamard’s (1902, 1932) definition
of "ill-posed problems™ a problem is ill-posed if the solution is not unique or
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if it is not a continuous function of the data (ie., if to a "small" perturbation
of data there corresponds an arbitrarily "large" perturbation of the solution).
Examples of ill-posed problems are, for instance: i) the "analytic prolonge-
ment" of stationary fields (if a magnetic field of internal origin is given at a
height h, over the surface of a planet, the problem of calculating the field
at h, is well-posed if h, < h, , and is ill-posed if h, > h, ; ii) the resolu-
tion of a diffusion equation (like the heat-transport equation) when the final
conditions are given, instead of the initial conditions; iii) the inversion of in-
tegral operators (for instance, the typical problem of instrument deconvolu-
tion); iv) the resolution of discrete linear systems with a square matrix, if the
latter is not regular,

In Hadamard’s opinion, ill-posed problems do not have physical sense.
General agreement exists today that ill-posed problems have "well-posed
extensions” which are very meaningful. These well-posed extensions intro-
duce a priori assumptions as to the unknowns. For example, Tikhonov (1963)
assumes some "regularity” properties of the solution, while Franklin (1970)
assumes given a priori statistics on the model space.

Some methods of inversion are known as "exact". They concern problems
where the data set and the unknown set can be related by an inversible
(generally nonlinear) application. Given the application solving the forward
problem, the inverse problem consists in discovering the inverse application
(in the usual mathematical sense of the word inverse). The whole field of
“exact inversion" is neglected in this book, because these methods cannot deal
with data uncertainty and data redundancy in a natural manner. They are in-
teresting for solving mathematical inverse problems, not for data interpreta-
tion.

Inverse problem theory in the wide sense has been developed by people
working with geophysical data. The reason is that geophysicists try to under-
stand the Earth’s interior but are doomed to use only data collected at the
Earth’s surface. Geophysical problems are always underdetermined in some
sense, but as geophysical data contain a lot of information, it is worth-while
to try to develop methods for extracting it. Since long, such methods have
been only empirical. Backus (1970a, 1970b, 1970c) made the first systematic
exploration of the mathematical structure of inverse problems. Backus and
Gilbert (1967, 1968, 1970) introduced interesting concepts, such as, for in-
stance, that of "model resolution". Their work was at the origin of a very
fruitful development of quantitative methods of data interpretation in geo-
physics.

This book resolutely takes the viewpoint that the most general formula-
tion of Inverse Problems is obtained when using the language of probability
calculus, and when using a Bayesian interpretation of probability (Bayes,
1763). Inverse Problem Theory has to be developed from the consideration of
uncertainties (either experimental, or in physical laws), and the right (well-
posed) question to set is: given a certain amount of (a priori) information on
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some model parameters, and given an uncertain physical law relating some
observable parameters to the model parameters, in which sense should I
modify the a priori information, given the uncertain results of some experi-
ments? In my opinion, this in the only approach allowing us to analyze
"error and resolution" in the "solution" with a convenient degree of generality,
even for nonlinear forward problems.

The techniques used today for solving inverse problems are as multivari-
ate as the problems themselves. One of the purposes of this book is to show
that many of the methods used (linear programming, least-squares, maximum
likelihood,...) can coherently be described from a few principles, i.e., that it
is possible to build a theory for inverse problems.

The first part of this book deals exclusively with discrete inverse prob-
lems with a finite number of parameters. Some real problems are naturally
discrete, others contain functions of a continuous variable, and can be dis-
cretized if the functions under consideration are smooth enough compared to
the sampling length, or if the functions can conveniently be described by
their development on a truncated basis.

The advantage of a discretized point of view for problems involving
functions is that the mathematics are easier. The disadvantage is that some
simplifications arising in a general approach can be hidden when using a dis-
crete formulation (discretizing the forward problem and setting a discrete in-
verse problem is not always equivalent to setting a.general inverse problem
and discretizing for the practical computations).

The second part of the book deals with general inverse problems, which
may contain such functions as data or unknowns. As this general approach
contains the discrete case in particular, the separation into two parts corres-
ponds only to a didactical purpose.

Although this book contains a lot of mathematics, it is not a mathemati-
cal book. It tries to explain how a method of acquisition of information can
be applied to the actual world. Many intuitive arguments are discussed
extensively, but not all have yet been justified mathematically. I hope that
researchers in the physical sciences will find the compromise acceptable, and
that researchers in applied mathematics will find some of the unsolved prob-
lems interesting.

Considerable effort has been made so that this book can serve either as a
reference manual for researchers neeeding to refresh their memories on a
given algorithm, or as a textbook for a course in Inverse Problem Theory.

Albert Tarantola
Paris, October 1986
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CHAPTER 1

THE GENERAL DISCRETE INVERSE PROBLEM

Far better an approximate answer to the right question,
which is often vague,

than an exact answer to the wrong question,

which can always be made precise.

John W, Tukey, 1962.

Central in this chapter is the concept of "state of information" over a
parameter set. It is postulated that the most general way of describing a state
of information over a parameter set is by defining a probability density over
the corresponding parameter space. It follows that the results of the measure-
ments of the observable parameters (data), the a priori information on model
parameters, and the information on the physical correlations between observ-
able parameters and model parameters can, all of them, be described using
probability densities. The general Inverse Problem can then be set as a prob-
lem of "combination" of all this information. Using the point of view devel-
oped here, the solution of inverse problems, and the analysis of error and
resolution, can be performed in a fully nonlinear way (but perhaps with a
prohibitively large amount of computing time). In all usual cases, the results
obtained with this method reduce to those obtained from more conventional
approaches. All the results of the subsequent chapters are justified by the
arguments developed here.



2 Section 1.1: Model space and data space

1.1: Model space and Data space

Let S be the physical system under study. For instance, S can be a
galaxy for an astrophysicist, the Earth for a geophysicist, or a quantum par-
ticle for a quantum physicist.

The scientific procedure for the study of a physical system can be
(rather arbitrarily) divided into the following three steps.

i) Parametrization of the system : discovery of a minimal set of model
parameters whose values completely characterize the system (from a given
point of view).

i) Forward modeling : discovery of the physical laws allowing, for given
values of the model parameters, of making predictions as to the results of
measurements on some observable parameters.

iii) Inverse modeling : use of the actual results of some measurements of
the observable parameters to infer the actual values of the model parameters.

Strong feed-backs exist between these steps, and a dramatic advance in
one of them is usually followed by advances in the other two.

While the first two steps are mainly inductive, the third step is mainly
deductive. This means that the postulates and rules of thinking that we
follow in the two first steps are difficult to make explicit. On the contrary,
the mathematical theory of logic (completed with the probability theory)
seems to apply quite well to the third step, to which this book is devoted.

1.1.1: The model space

The choice of the model parameters to be used to describe a system is
generally not unique.

Example 1: To describe the elastic properties of a solid, it is possible to
use the tensor clikl(x) of elastic stiffnesses relating stress, ol(x) , to strain,
el(x) , at each point x of the solid:

di(x) = ciik(x) ekl(x) .

Alternatively, it is possible to use the tensor sik(x) of elastic compliances
relating strain to stress:
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di(x) = si(x) oM(x),
where the tensor s is the inverse of ¢ :

cijkl Sklmn = 6im 8jn .

The use of stiffnesses or of compliances is completely equivalent, and there
is no "natural" choice. m

A particular choice of model parameters is a parametrization of the
system. Two different parametrizations are equivalent if they are related by a
bijection.

Independently of any particular parametrization, it is possible to intro-
duce an abstract space (set) of points, each representing a conceivable
"model" of the system. This space is named the model space and is denoted
by & .

For quantitative discussions on the system, a particular parametrization
has to be chosen. To define a parametrization means to define a set of
experimental procedures allowing, at least in principle, to measure different
characteristic of the system. Once a particular parametrization has been
chosen, to each point of the model space a set of numerical values is associ-
ated, which can be represented by a point in space M , isomorphic to a part
of R™ ( R denotes the real line, and n the number of parameters). The
model space ® is defined intrinsically, the space M depends on the par-
ticular parametrization chosen.

From a mathematical point of view, % is a (nonlinear) manifold, and
M is a chart of ® .

Example 2: When a nuclear explosion takes place at the Earth’s surface,
it produces a seismic wave which propagates through the Earth. It is then
possible to use the arrival times of the wave at some seismological observato-
ries to estimate the location of the explosion. A "model” is then a particular
location for the explosion, i.e., a geometrical point on the surface of the
Earth. The model space & can be represented as the surface of a unit
sphere (left of Figure 1.1). The model space is defined intrinsically, ie.,
without reference to any particular system of coordinates. Nevertheless, for
numerical computations, it is necessary to represent each point of the model
space by its coordinates in a given coordinate system. To define a coordinate
system over the model space is to give a chart M of the model space. Each
model then corresponds to a point (in a part) of R2 (right of Figure 1.1). In
this example, the word "chart" can be taken in its etymological sense. By
extension, mathematicians call a "chart" any "mapping" between a n-dimensi-
oned nonlinear manifold and a part of RP®, It is an abuse of language that a
map of the model space is often also named a "model space". The only in-
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convenience of such abuse of language is that it can lead to the impression
that a model space is necessarily a linear space, which is not true in general.
For this particular problem, the model space may be furnished with a con-
cept of distance between two arbitrary points (which can either be the eucli-
dean length of the straight segment joining the two points through the
sphere, or the length of the arc of great circle joining the points on the sur-
face of the sphere). This is an exception rather than the rule, and usual
model spaces cannot be furnished with a distance in such a natural way. m

R: The wodel space M : @ chart of the model space
LA N N S B S B S Bt e Sy S S S e o s o g=-tw
..-#:e
-4
—l L1t 1 1 i | S { J I B | I I S S -9
A=8 A=nw A=2n

Figure 1.1: The model space ® is generally a nonlinear manifold (left
of the figure). For numerical computations we introduce a chart of the man-
ifold (right of the figure) which, by language abuse, is also named "model
space” (see text for discussion).

The reader interested in the Theory of Differentiable Manifolds may
refer, for instance, to Lang (1962), Narasimhan (1968), or Boothby (1975).

We have seen that a chart M of the model space & is "isomorphic" to
R" . The difference between a chart (of dimension n ) and R™ is that
each point of R™ is a set of pure real numbers, i.e., of dimensionless quan-
tities. On the contrary, each point of a chart M is a set of n values with
given physical dimensions (pressure, temperature, electric charge, we).

Each point of & , or the corresponding point of M , is named a
model, and is represented by m .
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Given a model space ® , when no confusion is possible, and by lan-
guistic abuse, the particular "chart" under consideration will also be named
"model space”. This corresponds to traditional terminology in inverse problem
literature.

The number of model parameters needed for completely describing a
system may be either finite or infinite.

Example 3: If the elastic properties of the solid in example 1 effectively
vary from point to point, we need an infinite number of values to describe
the system completely. If the solid is assumed homogeneous (ie., if the
values of the elastic parameters are independent of x ), then 21 parameters
suffice for its complete description. m

Let m® represent a particular parameter (from a set which can either
be finite or infinite). The parameter m® may take its values in a discrete
or in a continuous set. For instance, if m® represents the mass of the Sun,
we can assume a priori that it can take any value from zero to infinity; if
m* represents the spin of a quantum particle, we can assume a priori that it
can only take discrete values. We will see later that the use of "delta func-
tions" allows us to consider parameters taking discrete values as a special case
of parameters taking continuous values. To simplify the discussions, the ter-
minology used in this book will correspond to the assumption that all the
parameters under consideration take their values in a continuous set. If this is
not the case in a particular problem, the reader will easily make the corres-
ponding corrections (see in particular problems 1.3 and 1.4).

The theory of infinite dimensional spaces needs a greater technical voca-
bulary than the theory of finite dimensional spaces. In what follows, and in
all the first part of this book, I assume that the model space is finite-dimen-
sional. The limitation to systems with finite number of parameters is severe
from a mathematical point of view, because the kingdom of functions (even
continuous) is infinitely much richer than the kingdom of finite-dimensioned
spaces. But, as far as we can accept in some problems that the functions
under consideration are bandlimited, it is always possible to consider a sam-
pled version of these functions, and in this case there is no difference
between the numerical results given by functional and by discrete approaches
to Inverse Problem Theory (although the numerical algorithms may differ
considerably, as it can be seen by comparing problem 1.2 with problem 7.1).

When a particular parametrization of the system has been chosen, each
model can be represented by a particular set of values for the model parame-
ters:

m = {m®) (a€ly) (L.1)
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where Iy, represents a discrete finite index set. In as far as a particular
parametrization of § is interpreted as a choice of coordinate lines over § R
the variables m® can be named the coordinate values of m (with respect
to the given coordinate lines).

By definition of our terminology, the following are Synonymous:

i) to parametrize the physical system § ,
i) to define a coordinate system over the model space & ,
iii) to define a chart, M, of § .

A chart of & is, by definition, isomorphic to R™ . In particular, a
chart is a linear (vector) space. Given a particular chart M , it is then pos-
sible to define the sum of two models, m;, and m, , by the sum of its
"components":

(m, + m,)* = m,* + m,* (xely) (1.2)

and the multiplication of a model by a real number by the multiplication of
all its "components":

(rm)* = r m® (x€ly) (reR). (1.3)

This justifies the name of "components" given to the coordinates m® . Nev-
ertheless, it should be emphasized that the previous definitions are not intrin-
sic, in the sense that the sum or the multiplication thus defined depends on
the particular parametrization chosen for S . It is generally not possible to
give an intrinsic definition of m, + m, or of r m : the model space & is
not a linear space in general.

Example 4: The homogeneous solid in example 1 can be described by
the 21 elastic stiffnesses cik! or, alternatively, by the 21 elastic compliances
sikl  Let m, and m, represent two different elastic solids. They can be
represented either by c¢,%k! and c, ¥, or by s and s,iM . The elastic
solid defined by ¢,k + ¢ ikl js different from the elastic solid defined by
5,9l + 5,1k : the sum of two models can not be defined intrinsically. m

In fact, the theory of inversion can be developed completely without
reference to any particular parametrization. We will see below that the only
mathematical objects to be defined in order to deal with the most general
formulation of inverse problems are measures over the model space (in the
sense of the mathematical theory of integration). A measure over & is a
mapping that, to any subset 4 of ¥ , associates a positive real number:
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A — P(4) € R*

named the measure of A . In general, P(R) = 1, and the measure is named
a probability over ® . Such measures can, in principle, be defined irrespec-
tively of any particular parametrization of & , ie., independently of any
particular chart. But once a particular chart M has been chosen, then it is
very easy to describe a probability using a probability density.

In practical applications, we are always faced with a particular parametr-
ization, and so long as it has been astutely chosen, we can forget all the
subtleties distinguishing the abstract model space from the corresponding
chart, name the last the model space, forget that the linear vector structure is
not intrinsic, and go through the computations.

In defining the parametrization of a physical system, it has been said
that the parameters have to be defined so as to be measurable "at least in
principle". The following example illustrates this notion.

Example 5: The radius of the Earth’s metallic core can be defined
"experimentally" as the radius of the spherical region of the Earth where the
mineral composition is predominantly metallic. Given a sample, we know
how to determine its mineralogical composition. To measure the radius of the
Earth’s core, it "suffices” to make a (quite) deep hole, and analyze the obta-
ined samples. The parameter "radius of the Earth’s core" is perfectly defined,
although only measurable "in principle". The use of physical laws allows us to
predict the behaviour of seismic waves arriving at the surface of the Earth’s
core. The diffracted-reflected waves are directly observable at the Earth’s
surface. Thus, inverse problem theory allows us to obtain information on the
radius of the core. m

1.1.2: The data space

To obtain information on model parameters, we have to perform some
observations during a physical experiment, i.e., we have to perform a meas-
urement of some observable parameters.

Example 6: As discussed in example 5, for a geophysicist interested in
understanding the Earth’s deep structure, observations may consist, for in-
stance, in recording a set of seismograms at the Earth’s surface. m

Example 7: For a particle physicist, observations may consist in a
mesurement of the flux of particles diffused by a given target at different
angles for a given incident particle flux. m
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The task of the experimenter is difficult, not only because he has to
perform measurements as accurately as possible, .but more essentially because
he has to imagine new experimental procedures allowing him to measure
observable parameters carrying a maximum of information on model param-
eters. For instance, it may be easy to determine the captain’s age (for
instance by stealing his passport), but there is little chance that this measure-
ment will carry much information on the number of masts on the ship.

As was the case with model parameters, given experimental equipment, a
certain freedom exists in choosing the observable parameters.

Example 8: Given a seismometer, we can choose as "output” a voltage
proportional to the displacement of the mass, or to its velocity, or to its
acceleration. m

We thus arrive at the abstract idea of a data Space, which can be def-
ined as the space of all conceivable instrumental responses. Each particular
realization is denoted by d. When a particular choice has been made of the
"observable parameters" (in the sense of example 8), a chart of the data space
has been defined, which will be denoted D , and which, by languistic
abuse, will also be named "data space". Any conceivable result of the meas-
urements can be written by the "components"

d=(d) (iely), (1.4)

where Ip represents a discrete (and finite) index set. D is a linear space
with the definitions

d, +d)i = dji+d,} (ielpy) (15)
(rd) = rdi (ielp) (reR). (16

Each vector d is then named a data vector, or data set.

1.1.3: The joint space Dx M

It is sometimes useful to introduce the product space X =D x M ., Its
elements are the couples x = (d, m ). As the elements of d are termed
observable parameters and the elements of m are termed model parameters,
the elements of x may be called physical parameters, or, for short, parame-
ters. The space X is then named the parameter space .

X can be intuitively interpreted as representing a physical system S
extended to contain also the measure instruments themselves. This space is
much more fundamental than D and M and, in fact, for many problems
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the separation of X into a data and a model space may be rather arbitrary.
The components of x can be viewed as coordinates in the parameter
space X . We can arbitrarily define another system of coordinates through a
bijection
= x'x) x = x(x%). (1.7)
Such systems of coordinates are named equivalent . In section 1.2.3 I intro-
duce the hypothesis that the system of coordinates is minimal.
The components of m are represented by the Greek indexes afb,... ;

the components of d by the lower-case Latin indexes 4i,j,... . When neces-
sary, the components of x are represented by upper-case Latin indexes:

x = { xA ) (Aely). (1.8)

1.14: Notations

Authors dealing with discrete inverse problems usually consider a
column-matrix notation for representing the elements of the model or the
data spaces:

ml
m m?
dl
2
d=]49

In this book, the word "vector" always means "element of a linear vector
space”, and it will never be assumed that the natural representation of a
vector is by using a column matrix.

Example 9: If the discrete model corresponds to a discretization of a
function of two variables, say f(x,y) , the elements of the model space are
naturally represented by

mil miz f(xl,yt) f(xt,y2)
m m22 .|| f(x2yl) f(x2y?)
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so that the index set Iy is NxN (i.e., a set of couples of integers). In that
case, a bidimensional array (i.e., a matrix) conveniently represents a model,
and ranging the components of m into a column matrix is of no intuitive
help (and is never needed in numerical computations). m

If the components of a vector have to be explicited, the following abst-
ract notation will be used:

m = {m®} (a€ly)
d = {di) (ielp),

which do not assume any particular arrangement.
Let, for instance, G represent a linear operator from M into D. We
write

d = Gm. (1.9a)

As G relates two discrete spaces, it can be shown that there exist constants
G'* (i€lp) (a€ly) such that the linear equation (1.9a) can be written

d = Z Gio me (iely). (1.9b)
o€l

In general, the components of a linear operator like G may be represented
as a multidimensional array (not necessarily a "matrix").

Example 10: For the model space of the previous example,
di = Giu1pu 4 Giz pi2 4 s
where, in its turn, the index i may be multidimensional. m

Of course, in as far as the number of components of m and d is
finite, we can reclass them into column matrices, and linear operators like
G can be represented by ordinary two-dimensional matrices. But the only
effect of this is generally to destroy all the symmetries of the problem, and
to suggest the use of matricial operations in problems where a slightly more
abstract algebra may simplify notations and computations (see, for instance,
problem 1.2). For a proper terminology, the array of numerical constants
representing a linear operator should be named the kernel of the operator,
and should not be identified with the operator itself, which is a more funda-
mental concept (for a given linear operator there are as many different ker-
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nels as bases that we may choose in the corresponding linear spaces).

Let ¢ (resp. ¥') be constants such that ¥ m® ¢* (resp. & di ¢ )
makes sense (in particular in regard to the homogeneity of physical dimen-
sions), and gives an (adimensional) real number. I define

mt ¢ = Zm" ¢ (1.10a)
a€ly,

dy = Zdi P (1.10b)
i€lp

In chapters 4 and 5, ¢ (resp. ¥ ) are identified as elements of the dual of
M (resp. D ).

Given the linear operator G of equations (1.9), mapping the model
space into the data space, the transpose of G is denoted G' , and is a
linear operator defined by the identity

mt (G'9y) = (Gm) 9, (1.11a)

valid for any m and ¢ . In chapters 4 and 5, Gt is identified as an
operator mapping the dual of the data space into the dual of the model
space. As G' maps two discrete spaces, there exist constants (Gt)® such
that

G ¥ = ) @) ¥,
iely
and it can then easily be shown from the general definition (1.11a) that

(GH® = (G)e. (1.11b)

In the particular case of matricial kernels, this last formula corresponds to
the usual definition of matrix transposition.

The inverse of a linear operator, if it exists, is introduced by the usual
definition. For instance, the operator S with components S%f (a€ly)
(Bely) is the inverse of Q , with components Q8 if

Z Se8 QB = Z QB S8 = gav | (1.12a)

pEL pE
where §*7 represents the Kronecker’s symbol ( 1 if o=7 , 0 otherwise).
We then write
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S = Q* Q = s, (1.12b)
With the notations introduced by equations (1.10), (1.11), and (1.12),
general linear equations look like ordinary matricial equations, but keep a
much more general sense.
1.2: States of Information
1.2.1: The mathematical concept of probability
Let X represent an arbitrary set. By definition, a measure over X is a
rule that to any subset A of X a real positive number P(A4) is associated,
named the measure of A and satisfying the two properties
1) If @ represents the empty set, then

P@) = 0. (1.13)

ii) If A, A,,.. represents a disjoint sequence of sets of X, , then

P ZAi = ZP(Ai). (1.14)
i i

P(X) is not necessarily finite. If it is, then P is termed a probability (or
probability measure) over X . In that case, P is usually normalized to unity:
PX)=1.
Example 11: Let X be the set {(HEAD, TAIL}. Setting
P(@) = P(neither HEAD nor TAIL) = 0,
P(HEAD) = r,
P(TAIL) = 1-r,
and

P(HEAD U TAIL) = P(HEAD or TAIL) = 1,

where r is a real number 0 <r <1, defines a probability over X . m
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Example 12: Let X be the surface of a sphere, 7, a particular point
on the surface, and H, the hemisphere centered at 7, To any subset A4
of points on the surface of the sphere, a number P(4) proportional to the
surface of the set of points lying on H, is associated. This defines a pro-
bability over X . This probability has been defined independently of any
choice of coordinates over the surface. m

Let P be a measure over a nonlinear manifold X . Assume that a par-
ticular coordinate system has been chosen over X . Let x = {x!,x2,.}
denote the coordinates of a point. If a function f(x) exists such that for any
AC X,

P(4) = J.dx f(x) , (1.15)
A

where, for short, the following notation has been used

de = del dez (over A),
A

then f(x) is termed the measure density function representing P (with
respect to the given coordinate system). If P is a probability (i.e., if PX)
is finite), then f(x) is termed a probability density function.

Example 13: Let X, m,,and H, be as defined in the previous exam-
ple. Let us consider a particular choice of coordinates over the surface of the
sphere, such as for instance spherical coordinates (6,4) . Letting f(4,4) be a
function defined by

f(6,¢) = sin @ on H,
£(6,9) 0 outside H ,

and as the surface element over the surface on a sphere is dS =sin § dé d¢
, the probability defined in the previous example can be written

P(4) = Jd& Jd¢ f%?i (over A).

The function f(6,4)/4n defines a probability density over the surface of the
sphere. Let (u,v) be a new choice of coordinates over the sphere. To the
same probability P there corresponds a new probability density g(u,v)
which is, in general, different from the old one. m
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Example 14: Let X be the positive part of the real line, X = Rt =
(0,400) , and let f(x) be the function 1/x. The integral (1.15) then defines
a measure over X , but not a probability (because P(R*) = oo ). The func-
tion f(x) is then a measure density but not a probability density. m

To develop our theory, we will effectively need to consider non-normal-
izable measures (i.e., measures which are not a probability). These measures
cannot describe the probability of a given subset A4 of the parameter space
under consideration: they can only describe the relative probability of two
subsets A4; and A, . We will see that this is sufficient for our needs. To
simplify the discussion, I will use the languistic abuse of naming "probability"
an arbitrary measure.

If a measure is normalizable (i.e., if it is a probability), it is immaterial
whether it has effectively been normalized or not. In this book, two proba-
bilities P, and P, which are proportional,

P(A)=rP,(4) (forany A ) (r given a positive real number), (1.16)

are identified. This gives much lighter notations, because the probability
densities under consideration do not need to be systematically normalized.
Note that the constant r in (1.16) has to be adimensional.

To allow more generality to the notations, I assume that the "functions"
representing probability densitites are, in fact, distributions, i.e., generalized
functions containing in particular Dirac’s "delta function".

It should be noticed that, as a probability is a real number, and as the
components x1,x2,... in general have physical dimensions, the physical
dimension of a probability density is a density of the considered space, i.e., it
has as physical dimensions the inverse of the physical dimensions of the
volume element of the considered space.

Example 15: Let v be a velocity and m a mass. The respective phy-
sical dimensions are L T-! and M. Let f(v,m) be a probability density
on (v,m). For the probability

' Va m,
P(vi<vsgv, and m;<mz<m,) = J va dm f(v,m)

v m

1 1

to be a real number, the physical dimensions of f have to be M-! L-! T.
| |

Let P be a probability over X , and f(x) be the probability density
representing P in a given coordinate system. Let
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x' = x"x) (1.17)

represent a change of coordinates over X, and let f*(x*) be the probability
density representing P in the new coordinates;

P(4) = de* £* ") .
A

By definition of f(x) and f*(x*), forany A C X

de f(x) = de* £*x*) ,
A A

using the elementary properties of the integral, the following important pro-
perty can be deduced

%) = fx) |25, (1.18)
ox

where lax/ax*l represents the absolute value of the Jacobian of the trans-
formation.

Let x and y be two vector parameter sets, and let f(x,y be a nor-
malized probability density. Two definitions are important: the marginal pro-
bability density for y ,

fy(y) = J dx f(x,y) , (1.19a)
X
and the conditional probability density for x given y =y, ,

f(x,y,)

fxy (Yo = (1.190)

dx f(x,y,)
X

From these definitions it follows that the joint probability density equals the
conditional probability density times the marginal probability density:

f(x,y) = fx|y(XlY) fy(y), (1.20a)

and the Bayes theorem:
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fxly (xly) fY (y)

fy(ylx) = (1.20b)

dy fx|y(xl y) fy(Y)
Y

The Bayes theorem is a mathematical tautology, which cannot be applied
to solve real world problems, unless physical postulates attach a particular in-
terpretation to the probability densities and associated marginal and condi-
tional probabilities.

1.2.2: The interpretation of a probability

It is possible to associate more than one intuitive meaning to any mathe-
matical theory. For instance, the axioms and theorems of a three-dimensional
vector space can be interpreted as describing the physical properties of the
sum of forces acting on a point material particle, as well as describing the
physiological sensations produced in our brain when our retina is excited by
a light composed by a mixing of the three fundamental colors (e.g.,
Feynmann, 1963). Hofstadter (1979) gives a lot of examples of different
valid intuitive meanings that can be associated with a given formal system.

There are two different usual intuitive interpretations of the axioms of
probability as introduced in the previous section.

The first interpretation is purely statistical: when some physical "random"
process takes place it leads to a given "realization". If a great number of real-
izations have been observed, these can be described in terms of "probabili-
ties", which follow the axioms of the previous section. The physical parame-
ter allowing of describing the different realizations is termed a random vari-
able. The mathematical theory of statistics is the natural tool for analyzing
the outputs of a random process.

Example 16: After one million throws of a biased coin, I have observed
6.2 105 HEADS and 3.8 105 TAILS. This gives the probability

P(@) = P(neither HEAD nor TAIL) = 0,
P(HEAD) = 0.62 ,

P(TAIL) = 0.38 ,

and

P(HEAD U TAIL) = P(HEAD or TAIL) = 1. m
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The second interpretation is in terms of subjective degree of knowledge
of the "true" value of a given physical parameter. By "subjective" is meant
that it represents the knowledge of a given individual, obtained using rigo-
rous scientific (objective) methods, but that this knowledge may vary from
individual to individual because each may possess different data sets.

Example 17: What is the radius of the Earth’s metallic core? Nobody
knows exactly. But with the increasing accuracy of seismic measurements,
the information we have on this parameter continuously improves.. The opin-
jon maintained in this book is that the more general (and scientifically
rigorous) answer it is possible to give at any moment to that question is
found by defining a rule giving the probability of the true value of the
radius of the Earth’s core being within r, and r, for any couple of values
r, and r, . That is to say, the most general answer consists in the definition
of a probability over the physical parameter representing the radius of the
core. m

This subjective interpretation of the postulates of the probability theory
is usually named Bayesian, in honor of Bayes (1763). It is not in contradic-
tion with the statistical interpretation. It simply applies to different situations.

One of the difficulties of the approach is that, given a state of informa-
tion on a set of physical parameters, it is not always easy to decide which
probability "models" it best. 1 hope that the examples in this book will help
to show that it is possible to use some common sense rules to give an ade-
quate solution to this problem.

I set explicitly the following postulate:

Let X be a discrete parameter space
with a finite number of parameters.
The most general way we have
for describing any state of information on X
is by defining a probability (in general, a measure) over X .

Let P denote the probability corresponding to a given state of infor-
mation on X , and f(x) the associaled probability density:

P(4) = de f(x) for any A C X.
A

The nrobhahilitv  P(-) ar the nrobabhilitv densitv  f(-} are said to represent
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For practical applications of the probability theory, it is also necessary to
give an intuitive content to the definition of marginal probability. Let f(y,z)
be the probability density representing a certain state of information on the
parameters (y,z) . From the definition in the preceding section and the pre-
vious discussion, we can see that all the information on the parameters y is
contained in the marginal probability density fy(y) = fdz f(y,z). The pro-
bability density f(y,z) does not contain more information on y ; it contains
only information about the "correlations" between the parameters y and z .
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1.2.3: The state of Perfect Knowledge

If we definitely know that the true value of x is x = x, , it is clear
that the corresponding probability density is

f(x) = 8x - x,), (1.21)

where &(.) represents Dirac’s delta function. The probability density (1.21)
gives null probability to x # x, , and probability 1 to x = x, . The use of
such a state of knowledge does not make sense in itself, because all our
knowledge of the real world is subjected to uncertainties, but it is often jus-
tified when a certain type of error is negligible compared to another type of
error (see for instance section 1.5.3).

1.24: The state of Total Ignorance (or the reference state of information)

Given a parameter set, it is useful to define a certain state of informa-
tion which represents a reference state of information: in some sense the state
of "lowest" information. The probability representing this particular state of
information is termed mon-informative, and is represented by M () . The
associated probability density is denoted pu(-) :

M(4) = J'dx w(x)
A

and is termed the non-informative probability density.

Example 18: Assume that our problem is the estimation of the spatial
location of some event. We can intuitively accept that the non-informative
probability gives equal probabilitites of containing the event to all regions of
the space with equal volume. Using, for instance, cartesian coordinates
(x,y,2) , the volume element of the space is

dv = dxdydz.
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The requirement
P(V) = J“' dx dy dz (x,y,z) proportional to V (1.22)
Y

shows that the non-informative probability density for a location is, in carte-
sian coordinates,

u(x,y,z) = const . (1.23)

It is of course possible to choose other systems of coordinates to represent a
spatial location. Using, for instance, spherical coordinates (r,0,4) , equation
(1.22) becomes

P(V) = J” dr do d¢ p*(r.0,6) proportional to 'V (1.24)
v

and, as the volume element of the space is, in spherical coordinates,
dV = r?sin ¢ dr df dé,

we deduce that the non-informative probability density for a location is, in
spherical coordinates,

u*(r,€,¢) = const r2 sin 4 (1.25)

(this last result can also be directly obtained from (1.23) using (1.18)). This
example shows that there is no intuitive reason for assuming that a non-in-
formative density function has to be uniform. It also shows that there may
exist a particular choice of parameters for which it is uniform. m

All situations are not so obvious, and explicit notions of invariance may
have to be invoked in order to define the non-informative probability den-
sity.

Example 19: Let v be the velocity of a non-relativistic particle:

dr

dt’
where 1 denotes the spatial position of the particle, and t a Newtonian
time. Let v denote the euclidean norm of v :

Using cartesian coordinates, we have
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Vv dx2+dy?+dz?

|dt]
Let g(v) denote the non-informative probabiiity density for v .

. Assume that a second observer uses another Galilean coordinate system
(x y z .t ) It is then related with the previous one by a change of origin
and of scale,

vV =

* *
X = Xg+ax, Yy = Yotay, z = zy+az,

*
t = t,+bt,

where a and b are some constants. Let u*(v*) be the non-informative
probability density for the second observer. The postulate of space-time
homogeneity implies that the two coordinate systems have to be equivalent.
In particular, ;1() and g () have to be the same function, i.e., for any w,

pw) = prw) . (1.26)
We have
* de*2+dy +dz"
v =cv,
|dt”|

where ¢ = |a/b| . Using (1.18),

*, % d * *
M) = WO |G = e me) .

Condition (1.26) then gives

wv) = culcv),
ie.,
uv) = %1—51 . ' (1.27)

It should be noticed that (1.27) defines a measure density which is not a pro-
bability density (it is not normalizable). m

Example 20: Assume that an observer prefers to use slowness n = 1/v
instead of velocity. Which is the function u (n) representing the non-infor-
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mative probability density for n ?

It is possible here to follow exactly the same argument as in the previous
example. More simply, using the properties of the change of variables
(equation 1.18), we directly obtain

dv

dn

It is interesting to note that in addition to the invariance of form of z with
respect to a change of space-time coordinates, we also have invariance of
form with respect to the choice of reciprocal parameters (the choice pu(v) =
const would not be consistent with the choice u (n) = const) . m

const

o (1.28)

prm) = uw)

There is a lot of controversy in the literature as to the possibility of
effectively defining non-informative probability densities. Jaynes (1968), for
instance, suggests that for a given definition of the physical parameters x it
is possible to find a unique density function pu(x) which has the strong pro-
perty of being form invariant under the transform groups which leave the
fundamental equations of physics invariant. He then suggests taking such a
density function as the non-informative one. Additional discussion can be
found in Box and Tiao (1973), Rietsch (1977), or Savage (1954, 1962).

In the rest of this book I assume that, for any parameter set, it is possi-
ble to exhibit some probability density (or measure density) which, by con-
sensus, will be termed the reference probability density, and which some (as
myself) will call the non-informative probability density .

The parameterizations for which the probability density is uniform
(u(x) = const ) play an important practical role. This justifies the following
definition: a parameter set x is termed cartesian if the corresponding non-
informative probability is represented by a uniform probability density.

Example 21: The cartesian (in the usual sense) coordinates of example
18. m

Example 22: The non-informative probability density for a velocity has
been obtained in example 19:

_ const
wv) = =7

Introducing the "log-velocity" v by

* S
vV = « Log[VO],

where v, is an arbitrary fixed velocity, and o an arbitrary constant, gives
the non-informative probability density
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dv

dv*
thus showing that the log-velocity is a cartesian parameter, while the velocity
is not. m

const

\4
const v _ = const |
(64 a

v

prVY) = v

Example 23: The slowness n = 1/v of example 20 is not a cartesian
parameter. But the log-slowness

* o n
n = aLog[nO]

is. m
Examples 19 and 20 suggest that the probability density
fx) = 1/x

plays an important role in practical applications. As taking the logarithm of
the parameter

* X
X a Log[x0]

transforms the probability density into a uniform one,
" *) = const,

the function 1/x will be termed the log-uniform probability density . It is
shown in box 1.3 to be a particular case of the log-normal probability den-
sity. As discussed by Jeffreys (1939, 1957), parameters with a log-uniform
non-informative probability density are characterized by being positive by
definition (a temperature T , a density of matter p , a wave-celerity v ,...).
Their reciprocal parameters ( 8 = 1/kT , lightness of matter £ = 1/p |,
slowness n = 1/v ,..) can naturally be introduced, and also have a log-uni-
form non-informative probability density.

It should be mentioned that, although no coherent inverse theory can be
set without the introduction of the non-informative probability, generally it
does not play an important role, and, except in highly degenerated problems,
numerical inverse results do not critically depend on the particular form of
u(x) .

There are two ways of defining a physical parameter. It can be defined
operationally, or it can be defined mathematically as a function of other par-
ameters already defined. In the latter case, the equation relating the parame-
ters is not a physical law. I postulate that if a parameter set contains only in-
dependently defined (i.e., operationally defined) parameters, the non-infor-
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mative joint probability density u(x) is given by

p = ] m@)  (Aery (1.29)
A

where p,(xA) is the non-informative probability density for the parameter

xA . Such a parameter set is termed minimal. Unless otherwise stated, I

assume that this is always the case (this avoids, for instance, having, say, a

velocity, and the corresponding slowness defined by n = 1/v in a parame-
ters set).

vthe nonnahzed probablhty den*
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bﬁxty cf choxce

1.2.5: Shannon’s measure of Information Content

Given two normalized probability density functions f (x) and f,(x),
the relative information content of f , With respect to f, is defined by

f,(x)
f,(x)

When the logarithm base is 2, the unit of information is termed a bit; if the
base is €=2.71828..., the unit is the nep; if the base is 10, the unit is the
digit.

The relative information content of a probability density f(x) with res-
pect to the (normalized) non-informative probability density u(x) ,

(f;f,) = de f(x) Log (1.30a)

H(x)

is simply called the information content of f(x) .
Equation (1.30b) generalizes Shannon s (1948) original definition for dis-
crete probabilities

1
to density functions. It should be noticed that the expression fdx f(x) Log
f(x) cannot be used as a definition because it is not consistent (because,
besides the fact that the logarithm of a dimensional quantity is not defined, a
bijective change of variables x' = x*(x) would alter the information con-
tent, which is not the case with the right definition (1.30b) (see problem

I(f:p) = de f(x) Log f&X). (1.30b)
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1.13).
It can be shown (problem 1.14) that the information content is always
positive

I(f;p) > 0,
and that it is null only if f(x) = u(x) : the non-informative probability den-
sity function u(x) represents the state of null information.
1.2.6: The Combination of States of Information

The classical theory of logic gives the rules human beings use to handle
information. As an example, let r denote the radius of the Earth’s metallic
core, and let A, and A, be the propositions
A, : " 3300 km <r <3500 km "
A, : " 3400 km < r < 3600 km " .

These two propositions can be combined to obtain new propositions. For in-
stance, the disjunction, (A, or A,) , and the conjunction, (A, and A,) , are

(A or A)) @ " 3300 km < r < 3600 km "
(A, and A,) : " 3400 km < r < 3500 km " .

Let P(A) be the "value of truth" of the proposition A , i.e., P(A) =1
if A is "true", and P(A) =0 if A is "false". The combination of logical

propositions can be defined by their "table of truth". For instance, the propo-
sitions (A, or A,) and (A, and A,) are characterized in Table 1.1 .

P(A)) P(A,) P(A or A,) P(A, and A,)

_——O O
—_—O = O
i s s (O
—_ O OO

Table 1.1: Values of truth of the logical propositions and and or .




30 Section 1.2: States of information

More formally,

P(A) = 0

PA,or A))=0 & { and (1.31)
P(A,) =0
P(A) =0

P(A,and A))=0 & { or (1.32)
P(A) = 0.

The value of truth of a proposition can also be referred to its "probability": it
is equal to 1 for a (certainly) true proposition, and equal to 0 for a
(certainly) false proposition.

In section 1.2.2 a state of information on a parameter set X has been
defined as a probability over X. Let P, and P, be two probabilities over
X representing two states of information. For the development of our
theory, we need to define the conjunction of two states of information; this
will be a generalization of the conjunction of logical propositions. The pro-
bability representing the new state of information will be denoted (P, and
P,).

’ The equivalent of (1.32) for states of information is as follows: for any
AC X,

P(4) = 0
(P,and P,)(A)=0 ¢ { or
P,(4) = 0,
or, equivalently,
P(4)=0
or = (P, and P,) (4) = 0 (1.33a3)
P,(A4) =0
P,(4)#0
and = (P, and P,) (4) # O. (1.33b)
P,(4) # 0 '

These conditions are not strong enough to define the conjunction (P, and
P,) uniquely. It seems reasonable to impose that the conjunction of any state
of information P with the state of null information, M , does not modify
the information:

(P and M) (A) = P(A) forany AcCc X (1.34).

Equations (1.33a) and (1.34) now define a probability uniquely. For greater
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compactness, I write the definition of the conjunction (P, and P,) as fol-
lows:

for any P, and P,: (P, and P,) = (P, and P,) (1.35a)
forany P, ,P, ,andany A C X : P (4) =0 = (P, and P, (4) =0 (1.35b)
for any P: Pand M) =P , (1.35¢)
where M represents the state of null information. In problem 1.17 it is

shown that if f (x), f,(x) ,and u(x) are the probability densities represent-
ing P, ,P,,and M respectively:

P,(4) = |dx f(x),
JA

P,(4) = |dx f,(x),
JA

M(4) = |dx px),
JA

and o(x) is the probability density representing (P, and P,) ,

(P, and P,)(A) = de o(x) ,
4

then we have

f,(x) f,(x)

X = =

(1.36)

The conjunction of states of information was first defined by Tarantola and
Valette (1982a).

Example 24: Let x and y be cartesian coordinates on a cathodic
screen. A random device projects electrons on the screen with a known pro-
bability density f (x,y) . We are interested in the coordinates (x,y) at
which a particular electron will hit the screen, and we build an experimental
device for measuring them. The measuring instrument is not perfect, and in
performing the experiment we can only get the information that the true
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coordinates of the impact point had the probability density f ,(x,y) . We wish
to combine this experimental information with the previous knowledge of the
random device, and obtain a better estimate of the impact point. This exam-
ple is developed in problem 1.12. m

Let P, be a probability measure on the space X = ¥Yx Z , with pro-
bability density f,(y,z), and let P, be the probability measure with proba-
bility density f,(y,z) , giving a probability of 1 to the event that z = Zy:

fz(y’z) = #Y(Y) S(Z_zo) B

where py(y) denotes the null information probability density on vy . Using
(1.36), the conjunction of these two states of information gives the probabil-
ity density (1.36)

Ay.z) = f,.0,2) £,(0,2) _ 14(y.7) 6(z-2,)
’ wy,z) By (2)
where py(z) is the null information probability density for z (equation

(1.29) has been used).
The a posteriori marginal probability density for z is

b

0z(z) = de o(y,z) = 8(z-z,) ,
Y

in accordance with the information that the true value of z is Z, . The a
posteriori marginal probability density for y is

f(v,z,)

oy(y) = Lfiz Ay2) = 2

or, if it can be normalized,

_ Lz (137)

Uy(Y) =
J dy f,(v,z,)
Y

This expression corresponds to the usual definition of conditional probability
density for 'y , given f(y,z) and z = z, , which is usually denoted
f,(ylz,) . We see that this concept is here contained in the more general con-
cept of combination of states of information (see also box 1.4).

In section 1.5.1, the conjunction of states of information is used to com-
bine information obtained from measurements with information obtained
from a physical theory, and is shown to be the basis of the Inverse Problem
Theory.
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1.3: Information obtained from Physical Theories (Solving the Forward
Problem)

Strictly speaking, to solve the forward problem means to predict the
error-free values of data, d , that would correspond to a given model, m . I
denote this theoretical prediction by

d. = g(m), (1.38)

which is a short notation for the set of equations

di, = gi(m)  (elp).

Example 25: Some physical quantity, d , depends on time, t , through
the equation

d = mlt+m?.

If the parameters m! and m? are known, for any value t! we can esti-
mate the corresponding value d' by

d (m) = gi(m) = gi(m:m?) = m!t +m?.m

Example 26: The model parameters may represent a discretization of the
Potential V(r) describing the spherically symmetric electric field created by
an atomic nucleus. The observable parameters d! may represent the flux of
electrons diffused at different directions for a given incident flux. To solve
the forward problem corresponds to the resolution of the Schrédinger equa-
tion. m

The predicted values cannot, in general, be identical to the true
"observed™ values, for two reasons: experimental uncertainties and modeliza-
tion errors. It is important to note that these two very different sources of
error generally produce errors which are of the same order of magnitude,
because, due to the continuous progress of scientific research, as soon as new
experimental methods are capable of decreasing the experimental uncertainty,
new theories and new models arise which allow of explaining the observa-
tions more accurately. For this reason, it is generally not possible to set in-
verse problems properly without a careful analysis of modelization errors.

The way of describing experimental uncertainties will be studied in sec-
tion 1.4. Let us see here how to describe uncertainties due to modelization
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errors. Following our postulate that the more general way of describing any
state of information is to define a probability density function, we have to
accept here that the most general way of describing uncertainties due to
rough modelization is by defining, for given values of the model parameters
m , a probability density over d , ie., a conditional probability density
which will be denoted by ©(d|m) .

Example 27: For an exact theory
O(dm) = §(d-g(m)), (1.39)
where g(m) represents the vector function introduced in equation (1.38). m

Example 28: Theory with independent error bars. An example can be

odm = | ] —L—{exp|- )y Lld=gm]| (1.40)
. 2 ¢'(m) . o'(m)
IEID IEID

where it 15 assumed that a double exponential function conveniently models
the error distribution, and where the "error bar" of the i-th predicted data
value is oi(m) and is independent of the error bar of the j-th predicted
data (null covariances), but depending on the current value of m . m

Example 29: Gaussian errors. Letting Cr(m) be a covariance operator

(see box 1.1) describing the estimated modeling errors for a model m, it is
possible to take -

|1
o(dim) = (MNP detCx(m)) 2 exp [ 3(d-g(m)t Cp " (m) <d-g<m))], (1.41)

where ND represents the dimension of the data space (number of data
parameters). =
Example 30: Errors due to linearization. Sometimes, the resolution of the

forward problem (i.e., the computation of d.; = g(m) ) is too difficult or
too expensive, and a linearization around a reference model is used:

g(m) =~ g(m ) + G (m-m_) , (1.42)

where
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i Jg!
Gref - [gr(gl;] :
Mpef
In this case, modelization errors are usually strongly correlated, and neglect-
ing them may severely alter the solution of the problem. It is often difficult
to give a realistic estimation of the linearization errors. m

Example 31: Errors independent of the model value m . A useful
approximation is sometimes that the true value d differs from the "com-
puted" value g(m) by an "error" eg

d = gm) + e, ' (1.43)

where the error ep is assumed to have known statistics described by the
probability density function fr(eg) . This gives

o(dm) = fp(ep) = fp(d-g(m)) . m (1.44)

In section 1.2.4, the density function py(m) describing the state of
null information on model parameters was introduced. It is clear that the
function defined by

6(d,m) = ©(dm) pu(m) (1.45)

does not contain any information on m (the marginal probability density
for m is the null information probability density), and it still describes the
physical correlations between d and m that the physical theory is able to
predict. So, for greater generality, I will assume that the description of the
information concerning the resolution of the forward problem is not given by
a conditional density function ©(djm) but by a joint density function
©(d,m) over the space Dx M . Equation (1.45) will only represent a partic-
ular (very current) case.

In fact, there exists a class of problems in which the correlations
between d and m are not predicted by a formal theory, but result from
an accumulation of observations. In this case, the joint density function
©(d,m) is the natural description of the information.

Example 32: The data parameters di may represent the current state of
a volcano (intensity of seismicity, rate of accumulation of strain, ...). The
model parameters m® may represent, for instance, the time interval to the
next volcanic eruption, the magnitude of this eruption, etc. Our present
knowledge of volcanoes does not allow of relating these parameters realisti-
cally using physical laws, so that, at present, the only scientific description is
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statistical. Provided that in the past we were able to observe a significative
number of eruptions of this volcano, we can construct a histogram in the
space  DxM which describes all our information correlating the parameters
(see Tarantola et al., 1985, for an example). This histogram can directly be identi-
fied with ©(d,m). m

Briefly synthesizing the conclusions of this section: the expected physical
correlations between model and observable parameters can be described using
a joint density function ©(d,m) . When these correlations are predicted by a
(necessarily inexact) physical theory, ©(d,m) is given by ©(d,m) = ©(d/m)
pm(m) , where ©(dlm) represents the probability density of d for any
given value m . This usually corresponds to put some "error bars" around a
"predicted value" g(m) (see figure 1.3).

~d = g(m)

\

\
M\

a  »

Figure 1.3: a) If uncertainties in the forward modelization can be neg-
lected, a functional relationship d = g(m) can be introduced which gives,
for each model m , the predicted (or "calculated") data values, d. b) If for-
ward-modeling uncertainties cannot be neglected, they can be described
using a conditional probability density, ©(dim) , giving, for each model m ,
a probability density for d. Roughly speaking, this corresponds to putting
"error bars" on the theoretical relation d = g(m).
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1.4: Information obtained from measurements, and a priori information
14.1: Results of the measurements

The measurement experiment will give a certain amount of information
on the true values of the observable parameters. Let pp(d) be the proba-
bility density function describing this information.

Example 33: Observations are the output of an instrument with known
statistics. To simplify the discussion, I will refer to "the instrument" as if all
the measurements could result from a single reading on a large apparatus
although, more realistically, we generally have some readings from several
apparatuses. Assume that at each measurement the instrument delivers a
given value of d , denoted d,, . Ideally, the supplier of the apparatus
should provide a statistical analysis of the errors of the instrument (if he does
not, we should not pay for it!). The most useful and general way of giving
the results of the statistical analysis is to define the probability density for
the value of the output, d,,, , when the actual input is d . Let u(d,,ld)
be this conditional probability density. If f(d.,,d) denotes the joint proba-
bility density for d and d, and if we don’t use any information on the
input, we have

oub

f(dyy.d) = Ud,,ld) pp(d) .

If the actual result of a measurement is d,, = d.,s , then we can assimilate
pp(d) to the conditional probability density for d given d,, = d . :

f(dyps,d)
pp(d) = fppp_ (dldg=des) = o ;

J dd £(d,.d)
D

ie.,

pp(d) v(deld) pp(d)

(1.46)

J dd v(dg,ld) pp(d)
D

Example 34.: Perfect instrument. In that case,

ud, ld) = 8(d-d,,) , (1.47)
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thus giving
pp(d) = &d-d,) . | (1.48)

The assumption of a perfect instrument may be made when measuring errors
are negligible compared to modelization errors (see section 1.5.3). m

Example 35: Gaussian uncertainties. Taking
Udgpeld) = (2mNDdet C(dy, ) 2exp [% (d-dgpe)t Cldgy)™ (d-dobs)J,

(1.49a)
where ND represents the number of data, corresponds to the assumption
that estimated experimental errors can be described by the covariance opera-
tor C , which may depend on the observed values dg s - Using (1.46) this
gives
PD(d)

up(d) ~ (@m™Pdet C(d°b“))_1/zeXp [_ %(d'dobs)t C(dobs)_l(d'dobs)]' w (1.49b)

Example 36: Errors of the measuring instrument are independent of the
input. Assume that the output d . is related to the input d through the
simple relation
dyps = d + ¢, (1.50)

where €p is an unknown error with known statistics described by the pro-
bability density function fplep) . In that case,

Udgpeld) = fplep) = fp(dy,-d) . m (1.51)

Example 37: Outliers in a data set. Some data sets contain outliers which
are difficult to eliminate, in particular when the data space is highly dimen-
sioned, because it is difficult to visualize such data sets. Problem (1.9) shows
that a single outlier in a data set can lead to unacceptable inverse results if
the Gaussian assumption is used. This problem suggests using "long-tailed"
density functions to represent uncertainties on this kind of data sets. Exam-
ples of long-tailed density functions are the symmetric exponential (Laplace)
function
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o<, o,
1 1
P —H 2t o —I,Tzol SRS
i€l 1 i
or the Cauchy function
1 1
w@ = || |4 —|.
1€ID 1+ ““obs
ot

which has the nice particularity of having infinite standard deviations. m

Example 38: Consider a measurement made to obtain the arrival time of
a given seismic wave recorded by a seismograph. Sometimes, the seismogram
is simple enough to give a simple result (Figure 1.4a). But sometimes, due to
strong noise (with unknown statistics), the measurement is not trivial. Figure
1.4b shows a particular example where it is difficult to obtain a numerical
value, say t,. , for the arrival time. The use of a probability density func-
tion allows of describing information on the arrival time with a sufficient
degree of generality (Figure 1.4c). With such kinds of data, it is clear that
the subjectivity of the scientist plays a major role. It is indeed the case,
whichtever inverse method is used, that results obtained by different scientists
(for instance, for the location of a hypocenter) from such data sets are dif-
ferent. Objectivity can only be attained if the data redundancy is great
enough that differences in data interpretation among different observers do
not significantly alter the models obtained. m

Example 39: Assume that the only instrument we have for measuring a
given observable is a buzzer that responds when the true value d is in the
range d;¢ < d < d,,, . We make the measurement, and the buzzer does rnot
respond. The corresponding probability density is then

o 0 for djyy < d<dy, (1.52)
D = |
pp(d) otherwise ,

where pp(d) is the non-informative probability density for observable par-
ameters. m
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Figure 1.4: a) Seismogram corresponding to an earthquake that occurred
in the south of Honshu (Japan) on April 24, 1984, recorded in Paris. The
time of first arrival of the seismic wave is clearly visible. b) Seismogram cor-
responding to an earthquake that occurred east of New Guinea on June 27,
1974, recorded in the south of France. Due to the presence of "ambient
noise", it is difficult to pick the first arrival time of the waves. In particular,
one may hesitate between times T, and T, .If an expert gives, say, a 50%
probability of the first arrival time being in the vicinity of T, and a 50%
probability of its being in the vicinity of T, , it is possible to represent this
information by the probability density shown in c). The width of each "peak”
represents the uncertainty of the reading of each of the possible arrivals,
while the separation of the peaks, represents the overall uncertainty.
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14.2: A priori information on model parameters

By a priori information (or prior information) I mean information which
is obtained independently of the results of measurements. The probability
density function representing this a priori information will be denoted by

pm(m) .
Example 40: We have no a priori information. In that case,
ppy(m) = py(m) , (1.53)

where pps(m) is the noninformative probability density for model parame-
ters. m

Example 41: For a given parameter m® we have only the information

that it is strictly bounded by the two values m;’l‘1

¢ and m® . We can take
sup

pam) =[] palm®

o€l
where
o a a a
Po(m®) for m e < m* < mg
Po(m®) =
0 otherwise ,

and where p,(m*) represents the non-informative probability density for
m® . m

Example 42: The parameters m?® represent a discretization of an unk-
nown continuous function ¥(t) . Assume, for instance, that the a priori in-
formation we have on the true value of ¥(t) 1is that it belongs to the class
of functions represented by the members shown in Figure 1.5. This means
that we know that the unknown function is smooth, with a given smoothness
length, and that, for each value of t, it takes a value Wy .(t) £ ot) . In
order for the discretization m* = ¥(t,) to be acceptable, we have first to
assume that the discretization interval is significantly smaller than the smo-
othness length of the function. The family of functions in Figure 1.5 seems
to be reasonably well represented by a gaussian process with given mean
value  Tpge.n(t) , and given covariance function C(t,t") , both of them
grossly estimated from the Figure. Taking
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mgﬁor = \IIMean(ta)
CMC!ﬂ = C(ta,tﬂ) s

the density function representing the a priori information in the model space
is

pp(m) = (QMNM detCyp) 2 exp [- %(m—mprior)t Cy (m—mprior)]. (1.54)

This density function gives a high probability density to models m which
are close to mg,; in the sense of the covariance operator Cyv » e,
models in which the difference m-m .. is small at each point (with
respect to standard deviations in Cy ) and smooth (with respect to
correlations in Cy, ). Covariance operators are defined in box 1.1. m

Example 43: Let us consider a particular atomic nucleus, and let T
denote its half-life. By definition of half-life, T is necessarily positive. A
Gaussian probability density cannot be used to represent any a priori infor-
mation on T , because a Gaussian function gives a non-vanishing probabil-
ity for T being negative. Figure 1.6 shows a histogram of the half-lives of
the first 580 atomic nuclei quoted in the 1984 CRC Handbook of Chemistry
and Physics (I got tired before arriving at the end of the list!). The abscissa
of the Figure is

* _T__
T = Logm[1 second]' (1.55a)

The logarithmic scale has been chosen for the time axis because, as the
half-lives span many orders of magnitude, it is difficult to show the histo-
gram in a linear time axis. With this logarithmic scale, the histogram may
conveniently be approximated by a Gaussian function:

1 exp| -1 T’
@m/z o* 2@ )

with TO* ~3 and o =~3. For greater generality, let me write (1.55a)
as

(1™ = (1.562)

*
™ - Log[}] T =1, exp[ %] (1.55b)
0.

where, in our example, T, = 1 second , # = Log 10 . Using (1.18), we can
then obtain the probability density for the time variable T :
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< ¥mean(t) - o(t)

Figure 1.5: Each family of functions (a) and (b) represents some realiza-
tions of two different random functions (from Pugachev, 1965). In both cases
the mean value, Wy..(t) , of the random function is the same. At a given
value t , the variance o2(t) = C(t,t) is also the same. But the covariance
C(t,t") between the value at t and the value at t is different in the two
examples. The "correlation length", AT , of the family (a) is shorter than the
correlation length of the family (b). These two random families can be (quite
simplistically) modeled by a Gaussian process (equation (1.54)) with mean
UMean(t) and with the covariance function

NN £ 1 (et
C(t,t") o [ 5 ] exp[ 5 ATz |
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Figure 1.6: Histogram of disintegration periods (half-lives) of the first
580 atomic nuclei in the CRC Handbook of Chemistry and Physws (1984).
The horizontal axis represents the logarithm of the half life: T = Logm( T/
1 second ) . It is very difficult to show the histogram in a linear time axis,
because observed disintegration periods span 45 orders of magnitude in time.
Note that the use of a logarithmic time axis allows the histogram to be
approximated by a Gaussian probability density. This implies a lognormal
probability density in a linear time axis.

2
1 1 1 T

f(T) @1—/—2—5 T XP|-5¢2 [LOg To] , (1.56b)
with

*

T
T, = ﬁLog[—"] T, = 7, exp[—’g—~]
To

and
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The density function (1.56b) is well known and is termed the log-
normal probability density (because the logarithm of the variable has a
normal [Gaussian] probability density). The log-normal density function is
studied in box 1.3.

This example suggests that the use of a log-normal probability density is
well adapted to modelling a priori information of the type T ~ T, + AT
for a positive parameter.

Nevertheless, as shown in box 1.3, if the "dispersion" s in (1.56b) is
very small, the log-normal function tends to the normal function

2
f(T)-—»—l—exp[—lg——Ti] (0=5T,<<1) (1.57)
CmY/2 g 2 o2 0 ’ ’

and the subtleties between normal and log-normal probabilities can be neg-
lected. This corresponds to the case where the a probability density gives
negligible probabilities to the negative values of the parameter.

The opposite limit ( o very large) is also interesting. As seen in box 1.3,
we then have

(M - ——1 (s>, (1.58)
2 7r)1/2 s T

which is the log-uniform probability density introduced in section 1.2.4. In

his 1968 paper, Jaynes uses invariance arguments to obtain the non-informa-

tive probability density for the half-life of an atomic nucleus, and he obtains

(1.58). It is remarkable that the experimental histogram suggests the same

conclusion. =

Example 44: Figure 1.7a shows the histogram of densities of different
known materials in the Earth’s crust (independently of their relative
abundance). In 1.7b, the same histogram is shown on a logarithmic scale. If
one should stumble over a stone, one may wonder (whilst falling) what the
density of the stone may be. If you bear in mind Figure 1.7b, you can take
this log-normal function as representing your prior state of information as to
its density. If you do not have this Figure in mind, the log-uniform density
function will represent your ignorance well. (If, in going to measure the
actual density, you stumble over the stone again, better go to another exam-
ple...). m

The examples in this section show how it is possible to use probability
densities to describe prior information. I have never found a state of infor-
mation (in the intuitive sense) which cannot be very precisely stated using a
probability density. On the other hand, it may seem that probability densities
have too many degreees of freedom to allow a definite choice that represents
a given state of information.
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Histogram of bulk densities of 571 rocks
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+— Figure 1.7: Top: histogram of bulk densities of the 571 different rock
types quoted by Johnson & Olhoeft in the CRC Handbook of Physical Pro-
perties of Rocks, Yol. ITI, 1984. Bottom: the same histogram in a logarithmic
horizontal scale p = Log,,(o/g cm~3) . The top histogram is very asymme-
tric, due to the existence of very heavy minerals (p ~ 20 g cm™3) . In a loga-
rithmic scale, it is much more symmetric (bottom). A Gaussian pro})ability
density is a reasonably good approximation of the histogram in the p  vari-
able, which means that the corresponding probability density in the p vari-
able is log-normal.

Yoy . . oyt |
& 4 _:::'_I. ' . w + | .'.,.-:';j_'-"‘.",".'.: :
Yoyt \ ‘~;7:..: oyr .:‘"“:' o
<">""x w (x;"“x GO0y <;> <x;+«,

1 Figure 1.8: The random points (x;,y;) of these diagrams have been
generated using 2-dimensional probability densities f,(x,y) (left) and
f,(x,y) (right). The two probability densities have identical mean values and
standard deviations. Only the covariance ny is different. On the left, the
covariance is small, on the right it is large. The probability density f,(x,y)
is more "informative" than f,(x,y) , because it demarcates a smaller region in
the space XxY . This example suggests that if off-diagonal elements of a
covariance operator are difficult to estimate, setting them to zero corresponds
to neglecting information.
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In fact, only a few characteristics of a density function are usually rele-
vant, such as for instance, the position of the "center", the degree of asym-
metry, the size of the "error bounds", the "correlations" between different
parameters, and the behaviour of the density function "far from the center".

If hesitation exists in choosing the a priori error bars, it is of course best
to be overconservative and to choose them very large. A conservative choice
for correlations is to neglect them (see Figure 1.8 for an example). The beha-
viour of the density functions far from the center is only crucial if outliers
may exist: the choice of functions tending too rapidly to zero (box-car
functions or even Gaussian functions) may lead to inconsistencies; the solu-
tion to the problem (as defined in the next section) may not exist, or may be
senseless.

Usually the a priori states of information have the form of "soft bounds";
the normal or log-normal density functions generally apply well to that case.
If the normal function is thought to vanish too rapidly when the parameter’s
value tends to infinity, longer tailed functions may be used, such as for in-
stance, the symmetric-exponential function (see box 1.2).

2,04,08
mode, medis
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1.4.3: Joint prior information in the DxM space

By definition, the a priori information on model parameters is indepen-
dent of observations. The information we have in both model parameters and
observable parameters can then be described in the DxM space by the
joint density function

pd,m) = pp(d) py(m) . (1.59)

It may happen that part of the "a priori" information has been obtained
from a first, rough analysis of the data set. Rigorously then, there exist
correlations between d and m in p(d,m) , and equation (1.59) no longer
holds. For a maximum of generality we thus have to assume the existence of
a general probability density p(d,m) , not necessarily satisfying (1.59), and
representing all the information we have in data and model parameters inde-
pendently of the use of any theoretical information (which is described by
the probability density ©(d,m) introduced in section 1.3).
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1.5: Defining the solution of the Inverse Problem
1.5.1: Combination of experimental, a priori, and theoretical information

We have seen in the previous section that the prior probability density
p(d,m) , defined in the space Dx M , represents both information obtained
on the observable parameters (data) d , and a priori information on model
parameters m . We have also seen that the theoretical probability density
©(d,m) represents the information on the physical correlations between d
and m , as obtained from a physical law, for instance.

These two states of information combine to produce the a« posteriori
state of information. 1 postulate here that the way used in the previous sec-
tions to introduce the a priori and the theoretical states of information is
such that the a posteriori state of information is given by the conjunction of
these two states of information.

From (1.36), the probability density o{(d,m) representing the a posteri-
ori information is then

o(d,m) = B(%%(%El , (1.60)

where u(d,m) represents the state of null information.

Like all postulates, this one is justified by the correctness of its conse-
quences. All the rest of this book is based on (1.60). It will be seen that the
conclusions obtained from this equation, although more general than those
obtained from more traditional approaches, reduce to them in all particular
cases. Equation (1.60) first appeared in Tarantola and Valette (1982a).

Once the a posteriori information in the DxM space has been defined,
the a posteriori information in the model space is given by the marginal den-
sity function

opy(m) = J dd o(d,m) , ‘ (1.61)
D

while the a posteriori information in the data space is given by

op(d) = J dm o(d,m) . (1.62)
M

Figure 1.10 illustrates geometrically the determination of oy (m) and
op(d) from p(d,m) and &(d,m) .
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1.5.2: Resolution of Inverse Problems

Equation (1.60) solves a very general problem. Inverse Problems corres-
pond to the particular case where the spaces D and M have fundamen-
tally different physical meaning, and where we are interested in "translating"
information from the data space D into the model space M . Let us make
the assumptions usual in this sort of problems.

First, the theoretical information takes the form:

6(d,m) = &(dm) py(m), (1.63)

ie., is a conditional probability density in d for given m (see section 1.3).
Second, the prior information p(d,m) takes the form:

pdm) = pp(d) pylm), (1.64)

which means that information in the data space has been obtained (from
measurements) independently of the prior information in the model space
(see section 1.4). This gives, for the posterior information in the model space,

pp(d) O(dim)

1 (@) s (1.65)

opy(m) = J;)dd o(d,m) = p(m) J'Ddd

where it has been assumed that p(d,m) = pp(d) py(m) (see section 1.2.4).

Equation (1.65) gives the solution of the general inverse problem. From
op(m) is is possible to obtain any sort of information we wish on model
parameters: mean values, median values, maximum likelihood values, error
bars,... Section 1.6 gives a discussion.

The "existence" of the solution simply means that oy, (m) , as defined by
(1.65), is not identically null. If this were the case, it would indicate the in-
compatibility of the experimental results, the a priori hypothesis on model
parameters, and the theoretical information, thus showing that some "error
bars" have beeen underestimated. I have not been able to define, in the gen-
eral case, a "test" that would measure the degree of compatibility of the a
posteriori information with respect to the a priori one (like the x2 test in-
troduced in chapter 4 for least squares problems).

The "uniqueness" of the solution is evident when by solution we mean
the probability density oy (m) itself, and is simply a consequence of the
uniqueness of the conjunction of states of information. Of course, oy (m)
may be very pathological (non-normalizable, multimodal,...) but that would
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+— Figure 1.10: a) The probability densities pp(d) and py(m) respec-
tively represent the information on observable parameters (data) and the
prior information on model parameters. b) As the prior information on
model parameters is, by definition, independent of the information on
observable parameters (measurements), the joint probability density in the
space D x M representing both informations is p(d,m) = pp(d) ppq(m) . ¢)
©(d,m) represents the information on the physical correlations between d

and m , as predicted by a physical theory (usually,
6(d,m) = 6(djm) um(m) ). d) Given the two states of information repre-
sented by podm) and ©(d,m) , their conjuction is o(d,m) =

%2 , and represents the "combination" of the two states of infor-

mation. ¢) From o(d,m) it is possible to obtain the marginal probability
densities oy (m) = [dd o(d,m) and op(d) = [dm o(d,m) . By comparison of
the posterior probability density oy (m) with the prior one, py(m) , we see
that some information has been gained on the model parameters, thanks to
the data pp(d) and to the theoretical information ©(d,m) .

simply mean that such is the information we possess on model parameters.
The information itself is uniquely defined.

Using (1.63) and (1.64), the posterior probability density in the data
space is

op(d) = J dm o(d,m) = J dm ©(d|m) pp(m) . (1.66)
M M

While the probability density (1.65) allows us to estimate the posterior values
of the model parameters, the probability density (1.66) allows of estimating
the posterior values of data parameters ("recalculated data").

1.5.3: Some special cases

a) Results of the measurements are the output of an instrument with
known statistics: Example 33 has shown that if a measuring instrument del-
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ivers the value d, , then

o) = el i@

jmmwmmm
D

where 1(d,,|d) describes the statistics of the instrument, and represents the
probability density of the output being d, when the input is d . Equa-
tion (1.65) then gives

om(m) = const. py(m) J dd v(d,ld) 6(dm) ,
D
or, in normalized form,
pp(m) J dd v(d,d) 6(dm)
D

op(m) = . (1.67)
J dm pys(m) J dd v(d,ld) 6(djm)
M D

This equation is identical to equation (6) of box 1.4 obtained using a strict
Bayesian approach. m

b) Errors of the measure instrument are independent of the input, and
errors in the theory are independent of the model value. This case corresponds
to examples 31 and 36. The output of the measure instrument is related to
the input though

dObS = d+€D,

where ep is un unknown error with known statistics described by the pro-
bability density function fp(ep) . Then

Udgld) = fp(dg,-d) .

If the true value d differs from the computed value g(m) by an error
GT,

d = gm) + ep ,

independent of m , with known statistics described by the probability den-
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sity function fy(er) , then
#(dm) = frp(d-g(m)) .
Equation (1.67) then gives

f -
ong(m) = (d,ps-8(m)) ppg(m) , (1.683)

f dm f(d,-g(m)) py(m)
M

where f(e) is the convolution of fp(e) and fr(e) ,
fle) = fple) * f(e) , (1.68b)

and represents the probability density of the sum of observational and theo-
retical errors:

€ = CD + €T .

Equations (1.68) were used by Duijndam (1987) to show, in this particular
example, the equivalence between the strict Bayesian approach and the
approach introduced by Tarantola and Valette (1982a) (and developed in this
book). m

¢) Negligible modelisation errors: If modelisation errors are negligible
compared to observational errors, we can take

6(dm) = &d-g(m)),

where d = g(m) denotes the (exact) resolution of the forward problem.
Equation (1.65) then gives

_ pp(d)
op(m) = py(m) [Np(d)]d=g(m) .. (1.69)

d) Negligible observational errors: Letting d,, denote the observed
data values, the hypothesis of negligible observational errors (with respect to
modelization errors) is written

pp(d) = &d-d,) . (1.70)

Equation (1.65) then gives
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G(dobsl m)

pp(days)
or, more simply, if we can normalize to unity,

opm(m) = py(m) (1.71a)

og(m) = — @) loplm) (1.71b)

J dm py(m) ©(d, [m)
M

e) Gaussian modelisation and observational errors: This corresponds res-
pectively to (equation (1.41) of example 29)
1

O(dim) = (2P detCy) Zexp [ 3(d-gm)® ;7 (d—g(m))], (1.72)
and (equation (1.49b) of example 35)

pp(d) - )

N][))(d) = (2m)ND detCy) 2 exp [— %(d—dobs )t Cy4 1 (d—dobs)]. (1.73)

As demonstrated in problem 1.20, equation (1.65) then gives

om(m) = py(m) exp [—% (g(m)-d,)* Cp ™ (g(m)—dobs)] , (1.74)
where
Cp = C4+Cyp. (1.75)

Result (1.74)-(1.75) is important because it shows that, in the Gaussian
assumption, observational errors and modelization errors simply combine by
addition of the respective covariance operators, even when the forward prob-
lem is nonlinear. m
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1.6: Using the solution of the Inverse Problem
1.6.1: Describing the a posteriori information in the model space

What does it mean to "solve" an inverse problem? This depends on the
sort of practical application we have in view.

Very often we are interested in the model parameters per se. The most
general way of studying the information obtained on the parameter values is
by a direct study of the probability density o,,(m) . As a probability density
may be quite complicated (multimodal, infinite variances,...) there is no gen-
eral procedure for obtaining simple pieces of information. The most compre-
hensive understanding is obtained by directly discussing the probability that
the true value of the model parameters lies in a given range (i.e., it belongs
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to a given subset):

P(med) = % Jdm oy (m) | (1.76)
A

where N is the norm of oy :

N = J dm oy (m) 1.77)
M

(if oy is not normalizable, only relative probabilities can be computed).

Choosing different subsets A4 C M it is possible to get quite a good
idea of the actual information we possess on the true values of the model
parameters. If oy,(m) does not have a very complicated shape, it is possible
to describe it adequately by its central estimator and estimators of dispersion
(box 1.1 recalls the general definitions in norm ¢_ for 1 <p < o0). Among
the central estimators, the easiest to obtain are generally the maximum likeli-
hood value my,;

my, : om(myg) MAX ) (1.78)

and the mean value (or mathematical expectation) ( m )
(m) = % L;m m oy (m) . (1.79)

Among the estimators of dispersion, the easiest to obtain is generally the
posterior covariance operator Cw

Cw = = L{dm(m-(m) ) (m=(m) )t op(m)

3

dm m mt op(m) - (m) (m)?t, (1.80)
JM ’

but it has to be emphasized that the covariance operator gives understandable
information only in the case when the probability density op(m) can be
fitted reasonably well by a Gaussian function.

Sometimes the inverse problem is solved as an intermediate one in a
more general decision problem in which the decision maker has to combine
information obtained from the inverse problem with economic considerations
such as, for instance, in operational research. As an example, consider the oil
company which, in the light of the results obtained after a 1 million dollar

L
N
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seismic exploration experiment has to decide on the eventual drilling of a 5
million dollar exploratory well. Unfortunately, although the present state of
computer technology allows a reasonably general resolution of the inverse
problem in seismic exploration, it does not yet allow a general resolution of
the coupled inverse problem / decision problem in realistically complex cases.
This field will certainly undergo a rapid growth in the coming years. Readers
interested in Bayesian decision theory can refer to Box and Tiao (1973),
Morgan (1968), Schmitt (1969), or Winkler (1972).

1.6.2: Analysis of error and resolution

When the solution of the inverse problem is given as a central estimator
(such as mean, median, or maximum  likelihood), it is necessary to discuss
error and resolution.

By discussion of errors is usually meant the obtainment of significant
"error bars". What the meaning of an error bar may be is not always evident.
For instance, while the probability of the parameter being at more than 3.5
standard deviations from the mean is null for a box-car function, it is
approximately 10% for a symmetric-exponential function. For multimodal
density functions, the standard deviation can be completely meaningless.

In the traditional "analysis of resolution", two different concepts are in-
volved. First, a parameter is well resolved by the data set if its posterior
error bar is much smaller than the prior one. More generally, if its posterior
marginal probability density is significantly different from the prior one. If,
for instance, the prior and posterior probability densities are identical, the
parameter is completely unresolved.

The second concept involved in the analysis of resolution arises when the
parameters m* represent a discretization of a function ¥(t) of a continu-
ous variable t (representing for instance a location in time or space). Assume
that the posterior covariance operator adequately represents the dispersion
around the mean. Usual covariance operators (prior and posterior) are not
diagonal, but are "band diagonal" (covariances between neighbouring parame-
ters are not null). This means that neighbouring parameters have errors
which are correlated. The greater the correlation length of errors, the worse
is the (temporal, spatial,...) resolution attained with the data set. In Chapter 9
the different (although equivalent) point of view of Backus and Gilbert
(1968) is discussed.

Stability is defined as the property of a central estimator of being insen-
sitive to small random errors in the data values. If the a priori information in
the model space has been properly introduced, stability is generally war-
ranted.

Robustness is the property of insensitivity with respect to a small number
of big errors (outliers) in the data set. For instance, the hypothesis that errors
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are described by a symmetric exponential is robust; the hypothesis that errors
are distributed following a Gaussian function is not robust (see Chapter 6).

Another important concept is that of the importance of a particular
datum for a particular model parameter. If, for instance, the conditional pro-
bability density of the parameter m® with respect to di , o(m?|di) , is, in
fact, independent of di, the datum di has a null importance for m® . A
possible definition of the importance of the datum di for the model param-
eter m® is the change of information content of the posterior marginal pro-
bability density for m® when suppressing the datum di from the data
set. See, for instance, Chapter 4, or Minster et al. (1974), for a discussion of
the importance of data in least-squares problems. The analysis of data
importance may be helpful for optimizing experimental configurations.

It may happen that some of the hypotheses made are inconsistent. For
instance, in least-squares problems, the posterior data residuals may be much
greater than experimental or modelization uncertainties (Chapter 4), and a
x* test can easily detect such an inconsistency. In the general case, inconsis-
tency is detected if the product p(d,m) &(d,m) is very small everywhere in
the space Dx M , but I have not yet been able to obtain a quantitative test.
Possibly, Shannon’s concept of information content (section 1.2.4) should be
applied for the general study of resolution, data importance, or consistency,
but no general result yet exists.

Let me now review some of the numerical techniques that may be used
to solve the inverse problem.

1.6.3: Analytic solutions

In some cases, it is possible to obtain a simple analytical expression for
the posterior probability density. For instance, if probability densities used to
describe observational uncertainties, forward modelization uncertainties, and
prior uncertainties on model parameters are Gaussian, and if the forward
equation d_, = g(m) is linear in m , then it can be shown that the poste-
rior probability density op,(m) is also Gaussian. It can then be completely
described by its central value and its covariance operator, for which it is
possible to obtain explicit expressions (see section 1.7).

Sometimes, the forward equation d_,; = g(m) is not linear, but it can
be linearized around some reference model m, :

dcal = g(m) ~ g(mo) + Go (m_mo) s
where the linear operator G, represents the derivative of g at m = m,.

Then, the analytic advantages of linear problems are preserved (see also
section 1.7 for an example).
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For nonlinear forward problems, there is generally no explicit expression
of the solution.

1.6.4: Systematic exploration of the model space

If the number of model parameters is very small ( < 4 ), and if the
computation of the numerical value of oy(m) for an arbitrary m is inex-
pensive (i.e., not consuming too much computer-time), we can define a grid
over the model space, compute oy;(m) everywhere in the grid, and directly
use these results to discuss the information obtained on model parameters.
This is certainly the most general way of solving the inverse problem. Prob-
lem 1.1 gives an illustration of the method.

1.6.5: Monte Carlo methods

If the number of parameters is not small, and if the computation of
op(m) at any point m is not expensive, the systematic exploration of the
model space can advantageously be replaced by a random (Monte Carlo)
exploration. Monte Carlo methods are discussed in Chapter 3. For instance,
the method of simulated annealing allows of obtaining the maximum likeli-
hood point, even when the probability density op(m) is multimodal. Also,
the computation of the mathematical expectation and of the posterior covari-
ance operator can be made by evaluating the sums (1.79) and (1.80) by a
Monte Carlo method of numerical integration.

Monte Carlo methods have the advantage of not using any linear
approximation.

1.6.6: Computation of the maximum likelihood point

Usual problems do not have a small number of parameters and the com-
putation of op(m) at any point m is expensive. The only practical
approach is often to try to define an astute strategy which, in a small
number of moves, will give the point myy maximizing oy(m) , ie., the
maximum likelihood point.

If opy(m) is a differentiable function of m , the maximum likelihood
point can be obtained using gradient methods. The gradient of oy (m) has
components Jdoy,/dm®. As discussed in Chapters 4 and 5, "gradient" is not
synonymous with "direction of steepest ascent™ to define the latter it is nec-
essary to define a distance over the model space (or, more precisely, over the
chosen chart of the model space). Except for very special cases (e.g. example
2), there is no "natural" definition of distance. The simplest choice (not
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necessarily very good) is the £, distance
1/2

a _ )2
D(mpmz) = Z (EL_M ,

(0%

a€ly

where o¢® is any characteristic length for m® , such as for instance, the
corresponding estimator of dispersion in the prior probability density,
pum(m) . Although any definition of distance is acceptable, astute choices may
speed the convergence of a gradient method. For instance, in example 2, the
parameters (m!,m?) = (1,§) were geographical coordinates; the best defini-
tion of distance in the map ()\,6) between two points m, = (A.,6,) and
m, = (},,6,) is the length of the corresponding great circle in the sphere:

D(m,,m,) = Arc cos( sin f, sinb, + cos 6, cos 8, cos (A,-A))) . (1.81)

To take this definition of distance to compute the direction of steepest des-
cent simply correspond to the computation of the gradient "in spherical coor-
dinates". Figure 1.12 illustrates the dependence of the direction of steepest
descent on the particular choice of distance. For more details on gradient
methods, see Chapters 4 and 5.

As op(m) is, in general, an arbitrarily complicated function of m s
there is no warranty that the maximum likelihood point is unique, or that a
given point which is locally maximum, is the absolute maximum. Only a full
exploration of the space would give the proof, but this is generally too
expensive to make. Only a skilful blend of mathematical discussion and phy-
sical arguments usually gives some insight into the uniqueness of the maxi-
mum likelihood point.

=+ 72
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1.7: Special cases
17.1: The Gaussian Hypothesis (least-squares criterion). Case d = g(m).

As discussed in section 1.5, the general solution of inverse problems is

pp(d) &(dim) :
O'M(m) = m(m) ‘[Ddd —W N (165 agam)

where pp(d) represents the available information on the true values of
observable parameters (data), up(d) is the non-informative probability den-
sity on observable parameters, ©(d{m) is the conditional probability density
representing the forward modelization, p\s(m) represents the a priori infor-
mation on model parameters, and oy.(m) represents the a posteriori infor-
mation.

If the observations consist of the observed output, d_.. , of a measuring
instrument with known statistics, and if 1(d,,gq) represents the conditional
probability density for the observed value to be d_,, when the true value is
d , then, as discussed in example 33,

Pp (d) _ V(dobsld)

(1.46 again)

pp(d)
J dd m(d . ld) pp(d)
D

If the statistic of the instrument is Gaussian, then (equation (1.49a))
- 1 -
Udgld) = (2ONPdet C(d,y,) ™ 2exp [-5_ (d-dgpe)t Cq ™ (d—dobs)],

where C,; is the covariance operator describing "experimental uncertainties".
If the forward modelization can be written

d = g(m) , (1.82)

cal

g represents a nonlinear operator from the model space into the data space,
and if estimated modelization errors are assumed Gaussian, then

«— Figure 1.12: A function o(},f) defined over the sphere has to be
minimized. A naive use of gradient methods would correspond to the choice
of an euclidean distance over the chart. A right use of gradient methods imp-
lies the definition of a distance over the chart (equation (1.81)) which corres-
ponds to the (geodetic) distance over the sphere.
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#dm) = (2mND det Cp) /% exp [- %(d—g(m))t cpt (d—g(m))], (1.41 again)

where Cp is the covariance operator describing "forward modelization
uncertainties".

With these assumptions, the sum over the data space in (1.65) can be
performed analytically (problem 1.20), and we obtain

opg(m) = ppg(m) exp [ ! (gm)-dy, ) Cp 7" ( glm)-d,y, )] . (175 again)

where the covariance operator Cp combines experimental and theoretical
uncertainties:

Cp = C4+Cp. (1.83)

Thanks to the simplicity of (1.83), when using Gaussian models for uncerta-
inties, we can forget that there are two different sources of uncertainties in
the data space. All happens as if the forward modelization were exact, and
Cp represented only experimental uncertainties (or, conversely, as if obser-
vations were exact, and Cp, represented only forward modelization errors).

In this section we examine the case where the probability density repre-
senting the a priori information on model parameters is also Gaussian:

Pa(m) = (MMM det Cpg) ™ exp [—5 (-0t Gy (m-mprio»]. (1.84)

m;, is the "a priori model", and C,; is the covariance operator describ-
ing estimated uncertainties in m_,_ .
We then have, up to a real (adimensional) normalizing constant,

op(m) = const (1.85)

exp [—% [(g(m)~d0bs)t CD_1 (g(m)'dobs) + (m_mprior)t CM_:l (m_mprior)]]'

Let me discuss linear and nonlinear problems separately.

a) The forward problem is linear. Instead of writing d = g(m) , we then
write

d = Gm, (1.86)

where G represents a linear operator acting from the model space into the
data space.
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This gives
op(m) = const. exp( - S(m) ), (1.87)
where S(m) is the quadratic function

S(m) = (1.88)
%[(G m - dg)t CD'1 (Gm-d,,)+ (m—mprior)t CM_1 (m—mpn-or)].

Defining
-1 -1 -1 -1 -1
(m) = [Gt Cp G+ Cy ] [Gt Cp  dgy, + Cy mpﬁor] , | (1.89)
and
-1
Cy = [Gt Cp ' G+ CM'l] , (1.90)
we obtain

28m) = (m-{(m) ) Cyu (m-(m) )

-1 -1 1
- < m ) i CM ( m ) + dobst CD dobs + Inpriort CM mprior .

All the right-hand terms but the first are constant (independent of m ), and
can be absorbed in the constant factor of (1.87). This gives

op(m) = const. exp[-%(m—(m) ) CMf'1 (m-{m) )],

or in normalized form,

ag(m) = (2m™M det Cyp) /2

exp[—%(m—(m) )t CM'—1 (m-{m) )]. (191)

Equation (1.91) shows the important result that, when the forward prob-
lem is linear, the a posteriori probability density in the model space is Gaus-
sian. The center of this Gaussian is given by (1.89), while its covariance
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operator is given by (1.90).
We successively have

( m ) = CM' [Gt CD-1 dobs + CM-I mprior]

= Cy G Cpldy, +Cyy Cy ' m

prior

= Cy G' Cp ™l dy, + Cyy [Gt Cp ' G+Cy -Gty G ] m

prior

= Cy G* Cp™? dy, + Cyp [CMF1 -Gt Cp ' G ]

Inprior

= Gy G Cp ™l dy, + [1 -Cyw G Cp ' G ] m

prior
= m; . + Cy G Cy ', -Gm

prior) »

ie.,

(1.92)

-1
(m) =m .+ [Gt Cp ' G+ CM‘l] Gt Cp '(dps-G m

prior) .

In problem 1.19 it is shown that expressions (1.90) and (1.92) can also be
written:

(m) =mp,, + Cy G* (G Cy Gt + Cp)™! (dgy - G ;) (1.93)
and
Cw = Cy-Cu G (GCy Gt +Cp)' Gy . (1.94)

As (m ) clearly maximizes opm(m) , it minimizes the quadratic
expression

S(m) = (1.95)

1 - -1
5[((; m - dobs)t Cp ! (G m - d,e) + (m- Inprior)t Cv  (m - mprior)]’

thus justifying the usual terminology of a least-squares estimator.
From equations (1.92) and (1.93) it is clear that (m ) - m, ... dep-
ends linearly on dy,, - G mp,. . It can be shown (see for instance Rao
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(1973)) that among all such linear estimators, the least squares estimator has
the property of "minimum variance", whatever the a priori statistics in the
data and model spaces may be (Gaussian or not). This result is often used as
a justification of the least-squares criterion. This is a mistake, because the
minimization of the variances is a bad criterion when dealing with non-
Gaussian functions. We have thus to emphasize here that, even if data errors
have Cp as covariance operator, if the a priori model has Cy; as covari-
ance operator, we should not accept the minimization of S(m) defined in
equation (1.95) as a good criterion unless these error distributions can reason-
ably be modeled by Gaussian functions. Problem 1.9 shows an example
where this is not the case.

Numerical aspects of the use of the previous equations are given in
Chapter 4.

So far we have only been interested in the posterior probability density
for model parameters. For data parameters this density is:

op(d) = J dm ofdm) = 29 J dm ©(dim) py(m). (1.66 again)

Using the assumptions in this paragraph, it can be shown (see section 1.7.2
for a demontration) that op(d) is also Gaussian:

op(d) = Q@)NP det Cp)t/2

exp[-§<d-<d>>t CD"1<d-<d>)]. (1.96)

For instance, for negligible modeling errors ( C; = 0 ), we obtain the fol-
lowing simple resuits (see section 1.7.2):

(d) = G{(m) , (1.97a)

and

" Cp = G Cy Gt (1.97b)

b) The forward problem is nonlinear In this case, equation (1.85) cannot
be further simplified:

op(m) = const. (1.85 again)

exp [—é[(g(m)_dobs)t CD“1 (g(m)_dobs) + (In_rnprior)t CM-1 (m—mprior)]]'
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«— Figure 1.13: In sketches (a) to (d), the top is a representation of the
probability density p(d,m) and of the theoretical relationship d = g(m)
(resolution of the forward problem), with increasing nonlinearity from (a) to
(d). The bottom is a representation of the corresponding a posteriori proba-
bility density oy (m) .

a) The forward equation d = G m is linear. The posterior probability
density oy (m) is Gaussian:

oyg(m) = (CMN det Cyp) 2 exp [—%(m—( m) ) Cy ! (m-(m) )] ,
with

(m) = Mpyror + [Gt CD_l G+ CM_l]_l G* CD-l dops - G mprior)

Cy = [Gt Cp ' G+ CM'l]'l .

b) The forward equation d = g(m) can be linearized around m;,:

g(m) =~ g(mprior) + Go (m - mprior) »
where G, represents the derivative operator with elements

Goia = [ _a_gi«]
a
om My ror

The posterior probability density op,(m) is approximately Gaussian. Its
maximum likelihood point is given approximately by

-1
-1 -1 -1
My, = My ior + [Got CD Go + CM ] (}0t CD (dobs - g(Inprior)) >
and the a posteriori covariance operator is approximately given by
-1 -1 1
CM' o~ [Got CD GO + CM ] .

¢) The forward equation d = g(m) can be linearized around the true
maximum likelihood point, my :

g(m) =~ gmyg)+ G (m - my ),

where G, represents the derivative operator with elements

Gl = [—35‘—] .
oM g,
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The point my;, has to be obtained by the non-quadratic minimization of

S(m) = 3 [(em)-d o)t Cp ™ (Bm-dipe) + (momy )t € (mom )

This can be achieved using an iterative algorithm (see Chapter 4);

m ., = m, +6mn.

Denote by m_, the point where we decide to stop the iterations (mygp) =~
m.,) . The posterior covariance operator can then be estimated by

Cyy = [Goot Cp ' Gy + cM‘l]‘1 .

d) The forward equation d = g(m) cannot be linearized. The a posteri-
ori probability density is far from Gaussian and special methods should be
used (see text).

It is clear that if g(m) is not a linear function of m , opy(m) is not
Gaussian. The more nonlinear g(m) is, the more remote is opm(m) from a
Gaussian function.

Figure 1.13 schematically represents different degrees of nonlinearity. In
1.13a, the problem is linear. In 1.13b it can be linearized around the a priori
model, m_. . . In 1.13c the linearization around m_ ... s no longer
acceptable, but the problem is still quasi-linear. In figure 1.13d the problem
is strongly nonlinear. Let us examine these cases separately.

The weakest case of nonlinearity arises when the function g(m) can be

linearized around m,; .

g(m) =~ g(mpﬁor) + G, (m - mpﬁor) , (1.98)

where

Ggo = [ oe ] . (1.99)
ama mprior :

The symbol =~ in equation (1.98) means precisely that second-order terms
can be neglected compared to observational and modelization errors (ie.,
compared with standard deviations and correlations in Cp ). This is the
sense of figure 1.13b.

Replacing (1.98) in (1.85), we see that the a posteriori probability density
is then approximately Gaussian, the center being given by

-1
(m) ~m;, + [Got Cp ' G+ CM'l] Gyt Cp ' (dgpe-8(Mpy0,)) (1.100)
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= mprior + CM GOt (GO CM Got + CD)_:l (dobs - g(mprior)) ’ (1'101)
and the a posteriori covariance operator being given by

-1
Cy = [Got Cp ' G, + CM‘I] (1.102)
= Cym - Cy G,f (G, Cy Gof + Cp)1 G, Cy . (1.103)

We see thus that solving linearizable problems is not more difficult than
solving strictly linear problems.

In the case shown in figure 1.13c the linearization (1.98) is no longer
acceptable, but the function g(m) is still quasi-linear inside the region of
the Dx M space of significant posterior probability density. The right stra-
tegy for these problems is to obtain (using some iterative algorithm) the
maximum likelihood of oy (m) , say my,, , and to use a linearization of
g(m) around my,, for estimating the a posteriori covariance operator.

Let us see how this can work. The point maximizing oy(m) clearly
minimizes
S(m) =
%[(g(m)—dobs)t Cp ™" (8(m)-d,,) + (m-m_; )¢ Cy, ™ (m-mpﬁor)] ., (1.104)
(the factor 1/2 is left for subsequent simplifications). As (1.104) is quadratic
in data and model residuals, it justifies the name of least-squares estimator
for my, . The obtainment of the minimum of S(m) corresponds to a clas-
sical problem of nonlinear optimization. Using, for instance, a quasi-Newton

method, an iterative algorithm is obtained which corresponds to the three
equivalent equations (see Chapter 4 for more details) :

~1
m,,, = m,- [Gnt CD-1 Gn + CM_l]
[Gnt Cp ' (g(my)-d,,) + Cy " (mn-mpﬁor)] (1.105)

-1
- -1
= mprior - [Gnt CD ! Gn + CM ]

G,t Cp ™ ((g(m,)-d,,,) - G, (m_-m (1.106)

prior))
= mprior - CM Gnt (CD + Gn CM (}nt)_1

((g(mn)—dobs) - Gn (mn-mpﬁor))' (1.107)
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In these equations,

= | %s
G, [8m ]mn . (1.108)

or, explicitly,

G o = [ o8 ] .
om® Jm,

If the problem is quasi-linear (see (figure 1.13¢) such a method will not
present convergence troubles. For more details of the numerical aspects, the
reader is referred to Chapter 4.

Once the maximum likelihood point my, = m_, has been conveniently
approached, the a posteriori covariance operator can be estimated by

-1
Cy = [Goot Cp, ' G, + CM_I] (1.109)
= Cm - Oy Got (G Cy Goot + Cp) ™ Gy, Cyy - (1.110)

The main computational difference between this "nonlinear" solution and
the linearized solution is that here, g(m) , the predicted data for the current
model, has to be computed at each iteration without using any linear approx-
imation. In usual problems it is more difficult to compute g(m) than g(m,)
+ G, (m-m;) : nonlinear problems are in general more expensive to solve
than linearizable problems.

Of course, even if a problem is linearizable, it can be solved nonlinearly,
but the gain in accuracy usually does not justify the computational effort.

Last, we have to discuss the strongly nonlinear problems represented by
Figure 1.13d. The a posteriori probability density is then clearly non-Gaus-
sian, and no general discussion of the solution can be made without a rather
exhaustive exploration of the model space. If the number of model parame-
ters is small, then we can use the general methods described in section 1.6.4.
As, in that case, no advantage is taken of the Gaussian hypothesis, we do
better to drop it and use a more realistic error modelization. If the number
of parameters is large, we can always use equations (1.108)-(1.110) to obtain
a local maximum likelihood point, to fix all its components except a few,
and to explore the subspace thus defined.

Sometimes, the number of secondary maxima of omq(m) (ie., of
secondary minima of S(m) ) is not too large. Starting the iterative algorithms
(1.105)-(1.107) at different points m, , we can check the existence of secon-
dary minima in the region of interest. At the least, this strategy will allow of
making a semi-quantitative discussion of the a posteriori state of information
in the model space.
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1.7.2: The Gaussian Hypothesis (least-squares criterion). Case f(d.m) = 0 .

In the previous section I have assumed that the equations solving the
forward problem were written under the form d = g(m) . In fact, the dis-
tinctions between data vector and model vector do not necessarily correspond
to observable parameters and model parameters, and it is the equation d =
g(m) , expressing the theoretical correlations between all the parameters, that
allows of defining the data and model vectors as those appearing in the left
and right-hand sides of the equation d = g(m) , respectively.

Sometimes, it may be easy to consider the more general equation

f(dm) = O, (1.111)

and this section gives the corresponding formulas. It is not more difficult to
examine the most general problem that can be solved, within the Gaussian
hypothesis, using the approach developed here.

Let x = (d,m) be a generic vector of the joint space Dx M defined
in section 1.1.3, containing observable and model parameters. The a priori
information on x is assumed Gaussian,

X 1 -1
ﬁﬁ(_x% = const. exp[~§ (X-Xprior)t Cxt ' (XX pir) ] (1.112)
with center x_ ., and covariance operator Cyx . Instead of writting the
theoretical information on x as

fx) = 0, (1.113)

we allow theoretical uncertainties which, if they are assumed Gaussian, can
be described using the probability density

B(x) = const. exp[ —% f(x)t CT'1 f(x) ] . (1.114)
The combination of p(x) with ©(x) leads to (see section 1.5)
_ p(x) ©(x)
X = > 1.115
0 = o (1.115)
ie.,

o(x)

const. exp [é [f(x)t Cp ' (x) + (XX 00)f Cx " (X-X,0,) ]] :

(1.116)
As for the explicit case, let me discuss linear and nonlinear problems
separately,
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a) The theoretical equation is linear. Instead of writing f(x) = 0 , we
then write

Fx:o, (1.117)

where F represents a linear operator acting from the total space of parame-
ters into a space of "residuals".

This gives
o(x) = const exp( - x) ), (1.118)
where S(x) is the quadratic function
Sx) = 4 [(F x)t Cp™ (F x) + (x-X,50)F Cx (x-xpﬂor)] : (1.119)
Defining

-1 -1 1 1

( X ) = [Ft CT F + CX ] Cx- xprior N (1.120)

and
-1

Cy = [Ft Cr'F+ cx'l] , (1.121)

we obtain

S(x) = (x-(x) ) Ce™d (x-(x))- (x)tC" (x)

t 1
+ xprior CX xpx‘ior .

All the right-hand terms but the first are constant (independent of x ), and
can be absorbed in the constant facto of (1.118). This gives

o(x) = const. exp[-%(x—(x) )t CX"1 (x-{x) )],

or, in normalized form,

o(x) = (2mN det CX')_I/2 exp [— é(x—( x ) )t CX'_1 (x-{ x) )]. (1.122)

Equation (1.122) shows the important result that, when the theoretical
equation is linear, the a posteriori probability density in the model space is
Gaussian. The center of this Gaussian is given by (1.120), while its covari-
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ance operator is given by (1.121).
Successively we have

-1
( X ) = CX’ CX mprior

prior

Cy [Ft Cr ' F+Cx '-F C;'F ] x

-1 -1
Cx’ [Cx’ - Ft CT F ] Xpﬁor

il

-1
[I - Cx’ Ft CT F ] xprior

-1
= Xprior ~ CX' Ft CT F Xprior

ie.

-1
(X) = Xpgior - (Ft Cr ' F+ cx'l] Ft Cp ' Fx (1.123)

prior *

In problem 1.19 it is shown that expressions (1.120) and (1.123) can also
be written:

( X > = Xprior - Cx Ft (F Cx I:t + CT)_l F Xprior N (1.124)
and

As (x ) clearly maximizes o(x), it minimizes the quadratic expres-
sion

Sx) = % [(F x)* CT—I (F x) + (x- xprior)t CX_1 (x - xprior) ] s (1.126)

thus justifying the usual terminology of least-squares estimator.

Let us now direct our interest to the special case where we can divide
the parameter set X into two subsets D and M such that the theoretical
equation F x = 0 simplifies to :

Fx =Gm-d =0, (1.127)
ie.,
d = Gm, (1.128)

where G is a linear operator from M into D . Formally,

Fx = [-I G][$}=0,
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ie.,
F = [ . | G ] . (1.129)

Using the notations

d d rior d
x={mjl xpﬁor=[m*;rior] (x) =[<<m>> } (1.130a)

and

CDD Cump Cop’ CMD'
Cy = Cy = s (1.130b)
X [ Com Cvm X Com Cuw

and using (1.124) and (1.125) we easily obtain

( m ) = mprior - (CW Gt - CMD) (1131)
(Cp +Cpp + G Cypy G - Cpy G* - G CMD)_l (G m;, - dy,) s
(CT + CDD +G CMM Gt - CDM G'-G CMD)—1 (G Myier - dobs) ’
(Cr + Cpp + G Cyyy Gt - Cpy Gt - G Cyp) ™! (G Copyt - Cpnp) »

Cpp’ = Cpp - (Cpm G* - Cpp) (1.1342)
(Cp + Cpp + G Cyyy Gt - Cpy Gt - G Cyyp) ™' (G Cppp - Cpp) S

CDM’ = CDM - (CDM Gt - CDD) (11353)
(Ct + Cpp + G Cyp Gt - Cpyp Gt - G Cypp) ™" (G Cppy - Cpmp)

and

Cmp’ = Cmp - (Cym G - Cyp) (Cp + Cpp + G Cypy Gt - Cpy Gt - G

Cup)™ (G Cyp - Cpp) = Cpt - °

Using some algebra, many equivalent expressions may be obtained.
Among them, we will need the following:
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(Cp + Cpp + G Cypy Gt - Cpy Gt - G Cyp) ™}
(Cp + (G Cypy - Cpm) GY) (1.134b)
and

CDM’ = G CN[N[ - (CT + G (CMM Gt - CMD))

(G Cyps - Con) - (1.135b)

In the particular case where errors in the theoretical relationship d = G
m can be neglected,

and equations (1.131)-(1.135) reduce to the simple expressions

( m ) = mprior - (CI\AM Gt - CMD) (1.136)

(Cpp + G Cypy G* - Cpy G* - G CMD)_I (G mp, - dgye)

(d)y =G (m) , (1.137)
Gt = Cumt - Cumt G - Cup) (1.138)
(Cpp + G Cym Gt - Cpm G* - G Cyp) ™" (G Capt - Com) >
Cpp' = G Cypy Gt (1.139)
Com' = G Cyy » (1.140)

and
Cyp’ = Cuw Gt . (1.141)

It should be noticed that, in the particular case where a priori informa-
tion on m is uncorrelated with the a priori information on d,

CDM = CMDt =0,

and all the above equations reduce to those shown in the previous section.
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b) The theoretical equation is nonlinear. The point max1m12mg o(x) (the
maximum likelihood point) will minimize the exponent in (1. 116), i.e.,

Sx) = 1 [f(x)t Cp ™ £(0) + (X=Xt Cx ' (X=X i00) ] : (1.142)
which intuitively means that the maximum likelihood point will approxi-
mately satisfy the theoretical equations ( f(x) ~ 0 ) and will be close to the
a priori point Xorior > the appropriate trade-off being imposed by the real-
tive values of Cr and Cx .

Using a quasi-Newton method (see Chapter 4 for more details) to obtain
the maximum likelihood point leads to the algorithm

KXoty = X - [Fnt CT-1 1:‘n + CX_I]-I
[Fnt Cp ' f(x,) + Cx (xn—xprior)] (1.143)

-1 -1]-1 -1
xprior - [Fnt CT Fn + CX ] Fnt CT

(f(x,) - F, (xn—xprior)) (1.144)
= prlor CX (CT + Fn CX Fnt)—l
(f(x,) - F, (xn—xprior)) . (1.145)

In these equations,

_ (e
F, = [ x ]x s (1.146)

n
or, explicitly,
Fia = | 22
aXA Xn

Once the maximum likelihood point XMmr, = X, has been conveniently

approached, the a posteriori covarlance operator can be estimated by

Cx’ ~ [Foot CT FOO + CX- ]_1 (1.147)
= Cyx -Cx F ' (Fy, Cx Fo .t + Cp) ' F, Cy . (1.148)

The solution of the formulas (1.143)-(1.145) for the case f(x) = f(d,m)
=g(m) - d = 0 is left as an exercise for the reader.
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17.3: Generalized Gaussian (least-absolute-values criterion, minimax
criterion)

In this section we explore the implications of assuming that experimental
uncertainties on observations, or uncertainties in the a priori model, can be
described using the Generalized Gaussian functions introduced in box 1.2.

Let dlbs represent the observed data values. We assume that errors are

uncorrelated, that they can be estimated by the values UiD , and that the

density function describing uncertainties can be modeled by the Generalized
Gaussian of order p

@ di-d
Pp 1 °
ip (@) = const. ﬂ exp b ip (1.149)
IEID UD]
Similarly, let mgrior represent the a priori model values, and 0(1:4 the

estimated errors. We represent the a priori density function in the model
space by

p

o3

me-m~ .
prior

pp(m) = const. ﬂ exp -El) (1.150)

a Ely [0;1 ]p

Simple results are obtained only when modelization errors are neglected.
Thus, let us assume here that the forward modelization can be written

d = g(m),
and that observational errors are predominant with respect to errors in the

modelization. From equation (1.72) we obtain the a posteriori density func-
tion in the model space:
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(1.151)

’ p
op(m) = exp - 1 Z e ——
p .

The maximum likelihood my,; maximizes oy, (m) , i.e., minimizes

N

p
’gl(m) dl a_m:rior
Z | ! N Z L=, (1.152)
« P

which clearly corresponds to the minimization of an £ norm . We see thus
how E norm minimization problems arise in Inverse Problem Theory.

Two important particular cases are usually considered, namely, the ¢
norm and the £,, norm problems (in addition, of course, to the £, norm alre-
ady conS1dered) For p=1 we have to minimize the quantity

S(m) = Z lg‘( ),dlbs Z J—porl (1.153)

i€ly a€ly
which corresponds to a minimum-absolute-values criterion. See Chapter 5 for
more details.
For p—oo it can be shown (see Chapter 5) that the minimization of
S(m) is equivalent to the minimization of the maximum of

|gi('”)—di | |m°‘—m°‘. ‘
obs . prior
i Gelp) - (o€lyy) . (1.154)
%D Y

This is the reason why the case  p—oo is known as the minimax criterion.

Techniques for solving intermediate cases (1 < p < oo) are also described
in Chapter 5.

Sometimes the following question arises: Which is the best criterion to
use for the resolution of inverse problems, the least-absolute-values criterion,
the least-squares criterion, or the minimax criterion? We have seen in thlS
section that each of these criteria can be considered as implied by a particu-
lar assumption about the probability densities under consideration. It is thus
clear that, depending on the particular form of these probability densities,
any one of the criteria can be better than the other two. As an illustration



Chapter 1: The general discrete inverse problem 85

see problems 1.5, 1.9, and 1.11.

Problems for chapter 1:

Problem 1.1: Estimation of the epicentral coordinates of a seismic event.:
A nuclear explosion took place at time T=0 in an unknown location at the
surface of the Earth. The seismic waves produced by the explosion have
been recorded at a network of six seismic stations whose coordinates in a
rectangular system are

(x,y1) = (3 km , 15 km)

(x2,y2) = (3 km, 16 km)

(x3,y3) = (4 km , 15 km)

(x4,y¥) = (4 km , 16 km) 1)
(x5,y5) = (5 km , 15 km)

(x6,y8) = (5 km , 16 km) .

The observed arrival times of the seismic waves at these stations are

di, = 3125 + ¢

d?,, = 326s + ¢

dd, = 298s * o

di,, = 312s + o )
ds,, = 284s = ¢

dé, = 298s % o,

where

c = 010s, 3)

and where # o is a short notation indicating that experimental uncertainties
are independent and can be modeled using a Gaussian probability density
with a standard deviation equal to o .

Estimate the epicentral coordinates (X,Y) of the explosion, assuming a
velocity of

v = 5km/s 4)

for the seismic waves. Use the approximation of a flat Earth’s surface, and
consider that the coordinates in (1) are cartesian.
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Discuss the generalization of the problem to the case where the time of
the explosion, the locations of the seismic observatories, or the velocity of
the seismic waves is not perfectly known, and to the case of a realistic Earth.

Solution: The model parameters are the coordinates of the epicenter of
the explosion:

m = (X)Y), ‘ (5)
and the data parameters are the arrival times at the seismic network:
d = (d,d2,d3,d4,d5d¢) , (6)

while the coordinates of the seismic stations and the velocity of seismic
waves are assumed perfectly known (i.e., known with errors which are negli-
gible with respect to errors in the observed arrival times).

The probability density representing the state of null information on the
epicentral coordinates is

pm(X,Y) = const , (7)

because, as we use cartesian coordinates, (7) assigns equal probabilities to
identical volumes (see example 18). Let py(X,Y) be the probability density
representing the a priori information on the epicentral location. As the state-
ment of the problem does not give any a priori information,

pm(X,Y) = py(X,Y) = const. (3)

As data uncertainties are Gaussian and independent, the probability den-
sity representing the information we have on the true values of the arrival

times is
. H 2
& [dy,)
3 Z |- ©)
i=1

pp(di,d2,d3,d+,d5,dé) = const exp| -
As di are Newtonian times, the null information probability density in the
data space is (see section 1.2.4)

pp(di,d?,d3,d4,d5,ds) = const . (10)

For a given (X,Y) , the arrival times of the seismic wave at the seismic
stations can be computed using the (exact) equation
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d = gXY) = 1 [&-X?+-Y) G=1,...6) , (11)

which solves the forward problem. As the theoretical relationship between
data and model parameters is assumed to be error free, the probability den-
sity representing this theoretical information is the conditional probability
density

where §(d) 1is the delta function in the data space, and where g(X,Y)
denotes the (vector) function (11).

The posterior information resulting from the combination of pp(d) ,
pm(X,Y) , and 6(di(X,Y)) is (equations (1.60), (1.63), and (1.64)):

pp(d)
d.Xy) = &d.X.Y) (d.X.Y) _

§ ) wd,X,Y) pip(d) |
The marginal a posteriori information for the model parameters is

pm(X,Y) 6(d|(X,Y) . (13)

o (X,Y) = J dd od,X,Y), (14)
D

which, using (12) and (13), gives
[ pp(d)

MXY) = XY | 22 ] . (15)
[ #p d=g(X,Y)

Using equations (8) to (11) gives
' 6 2

om(X,Y) = const exp —2{7 Z [d‘cal - d;bs] , (16)
{ i=1

where

d = ‘1, 1%+ o) (17)

The probability density o0,(X,Y) describes all the a posteriori infor-
mation we have on the epicentral coordinates. As we only have two parame-
ters, the simplest (and more general) way of studying this information is to
plot the values of o(X,Y) directly in the region of the plane where it
takes significant values. Figure 1.14 shows the corresponding result.

We see that the zone of non-vanishing probability density is crescent-
shaped. This can be interpreted as follows. The arrival times of the seismic
wave at the seismic network (top left of the figure) is of the order of 3 s,
and as we know that the explosion took place at time T = 0., and the velo-
city of the seismic wave is 5 km/s , this gives the reliable information that
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the explosion took place at a distance of approximately 15 km from the
seismic network. But as the observational errors ( #0.1 s ) in the arrival
times are of the order of the travel times of the seismic wave between the
stations, the azimuth of the epicenter is not well resolved. As the distance is
well determined but not the azimuth, it is natural to obtain a probability
density with a crescent shape.

From the values shown in Figure 1.14 it is possible to obtain any estimator
of the epicentral coordinates we wish, such as, for instance, the median
values, the mean values, the maximum likelihood values, and so on. But the
general solution of the inverse problem is the probability density itself.
Notice in particular that a computation of the covariance between X and
Y will miss the circular aspect of the correlation.

If the time of the explosion was not known, or the coordinates of the
seismic stations were not perfectly known, or if the velocity of the seismic
waves was only imperfectly known, the model vector would contain all these
parameters:

m = ( X,Y9T’x1’y1""’x6’y6’v) . (18>

After properly introducing the a priori information on T (if any), on
(xi,y}) , and on v , the posterior probability density o (X,Y,T,
x1yl,....x8,y8,v) should be defined as before, from where the marginal pro-
bability density on the epicentral coordinates (X,Y) could be obtained
through

oo [e o] oo o0
ax'Y(X,Y) = J dT J dxh.[ dy¢ J'dv o (X, Y, T,xL,y1,... x8,y8,v), (19)

-0 -0 -00 0

while the posterior probability density on the time T of the explosion is

o0 o o] o o] (o ] o0
op(T) = J dX J dy J' dx? J dys® Jdv o (XY, T, x1,y1,...,x6,y6,v).

-0 -00 -0 -0 0 (20)

As computations rapidly become expensive, it may be necessary to make
some simplifying assumptions. The most drastic one is to neglect uncertain-
ties on (xi,y!) and v, and to increase the estimated error in the observed
arrival times artificially, to compensate approximately for the simplification.
A realistic Earth is tridimensional and heterogeneous. It is generally
simpler to use spherical coordinates (R,0,8) . Then the null information
probability density is no longer uniform (see example 18). Also, for a realis-
tic Earth, errors made in computing the travel times of seismic waves are not
negligible compared to errors in the observation of arrival times at the
seismic stations. Equation (12) should then be replaced, for instance, by the
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Figure 1.14; Probability density Jor the truz epicentral coordinates of the
seismic event, obtained using as data the arrival times - wave at
six seismic stations (paints in the top of the figure), The c ale is linear,
between zero and the maximum value of the pri ity de . The cres-
cent-shape of the -egiom of significant probablity « 3
described wsing 3 few numbers (mathemarical expectation, vanances

e Ty

ances,...) a5 in usual solutions to inverse problems.
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Fipwre 1.35 ( from preblem 1.10); Marginal probability density for the
rarameters m! and m? . Uncertaiaties are so strongly correlated that it is
difficult to distinguish the ellipsoid of errors from a segment. Altkough the
standard deviations for each of the parameters are brge. we have much in-
formation on these parameters, because their true wvalues must 1 on the
"lina". The resohttion of the plotting device (300 pixel x 300 pixel) s not fine
enough for a pocd representation, so that the colors obtained for the ellipsoid
are aliased. The next figure shows a zoom of the central ragion

3] K" &

__ﬁl.u-f- FET { frem peohless (100); Same as the [u-rm'ri:i'u,lé E'i;u'l'p:'iﬁﬂi
finer detail.
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equation
o(dl r305¢,T) = eXp [_ %(d—g(rsosqss'r))t CT_I (d°g(r16’¢3T))]’ (21)

where Cg is an ad-hoc covariance matrix approximately describing the
errors made in estimating arrival times theoretically. For more details, the
reader may refer to Tarantola and Valette (1982a).

Problem 1.2: First (elementary) approach to tomography. Figure 1.15
shows an object composed of 9 homogeneous portions. The values indicated
correspond to the linear attenuation coefficients (relative to some reference
medium, for instance, water) for X-rays (in given units). An X-ray experi-
ment using the geometry shown in Figure 1.16 allows of measuring the
transmittance pi along each ray, which is given by

pi = exp| - J st m( x(s¥) ) |, )
Rij

where m(x) represents the linear attenuation coefficient at point x , RY
represents the ray between source i and receiver j, and dsi is the ele-
ment of length along the ray RY. Assume that instead of measuring pY
we measure

di = - Log g = J dsi m( x(s9) ), @
Ri

which is termed the integrated attenuation.

If the medium is a priori assumed to be composed of the 9 homogeneous
portions of Figure 1, any model of the medium may be represented using the
notation

mll le m13
ma21 mZZ m23

m =1 031 mi2 ms

) 3)

where the first index represents the column and the second index represents
the row. Any possible set of numerical values in (3) is a model vector. For
instance, the true model is (Figure 1)

mil miz mi3 50 60 50

m?! m22 m?3 - 60 58 60 )
m3t m32 m33 50 60 50 |°

A data vector is represented by
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Figure 1.15: A bidimensional medium is composed of 3 x 3 homo-
geneous blocks. Indicated are the "true values' of the linear attenuation coef-
ficient for X-rays (with respect to the surrounding medium).

d - [ di1 diz di3 di4 §is dm] (5‘)
T | d21 g2z g23 d2¢ d25 d28 |

where the first index denotes the source number, and the second index den-
otes the receiver number. Equation (2) then simplifies to the discrete equa-
tion

3 3
di = ZZ GlieB maBs for i=1,2 j=1,2,3456 , 6)
a=1p=1 :
where GUe# represents the length of the ray ij inside the block af . An
actual measurement of the integrated attenuation gives the values

di1 diz d13 du4 qis {ie
d21 d2z (23 d2¢ {25 (26

341.9+0.1 353.1x0.1 356.2+0.1 356.2+0.1 353.130.1 341.9+0.1

where +0.1 indicates the standard deviation of the estimated (Gaussian)
€rror.

[341.9:0.1 353.120.1 356.2+0.1 356.2+0.1 353.140.1 341.910.1] ™
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Figure 1.16: In order to infer the true (unknown) values of the linear
attenuation coefficient, an X-ray transmission tomographic experiment is
performed. Each block measures L = 2 units of length, and the figure is to
scale (the angular separation between rays is 4 degrees). S! and S? repre-
sent the two source locations, and R1,..,R® the six receivers used. Let
m(x) represent the linear attenuation coefficient at point x of the medium
under study, RU the ray between source 1 and receiver j , s the position
along ray RY and dUY the integrated attenuation along ray RU : di =
Jds m(x(s¥)) (along RH) . The measured values of the integrated attenua-
tion along each ray are, in order for each receiver, 341.9+0.1, 353.1£0.1,
356.2+0.1 356.2+0.1 , 353.120.1, and 341.9+9+0.1 for source 1 , and
341.9+0.1, 353.1+0.1, 356.2+0.1 356.2+0.1 , 353.1+0.1, and 341.9+9+0.1 for
source 2 (these values correspond in fact to the actual values as they can be
computed from the true linear attenuation values of Figure I, plus a Gaus-
sian noise with standard deviation 0.1, and are rounded to the first decimal).
These values are assumed to be corrected for the effect of the propagation
outside the 3 x 3 model, so that the linear attenuation coefficient outside
the model can be taken as null. The inverse problem consists in using these
"observed" values of integrated attenuation to infer the actual model values.
Remark that the upper-left block is explored with very short ray lengths,
and owing to the relatively high noise in the data, the actual value of this
block will probably be poorly resolved.
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Assume that you have the a priori information that the model values of
the linear attenuation coefficients equal 55 £ 15 (Figure 1.17). Give a better
estimation of them using the data (7) and the least squares theory. Discuss.

55. 55. 55.
#15. | #15 | 15,
55. 55. 55.
+15. | #15, | #15.
55. 55. 55.
15, | 15 | 15,

Figure 1.17: We have the a priori information that the true linear atten-
uation coeffients are 5515 . It is assumed that a Gaussian probability den-
sity well represents this a priori information (in particular, 15 represent
"soft limits", which can be outpassed with a probability corresponding to the

Gaussian density function).

Solution: We wish here to obtain the model m minimizing
(m) = , ()
%[(Gm-d‘m)t CD'1 (Gm-d_, ) + (m—mpﬁor)t Cyt (m-mpn.or) ] ,
where
d - 3419 353.1 356.2 356.2 353.1 3419 ©)
obs 3419 353.1 356.2 356.2 353.1 3419
(Cp)ikl = Q.12 gik gil | (10)
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55 55 55

| 55 55 55
Mpor = | 55 55 55 |° an
(C)*Be = 152 g7 §P6 (12)

and where the elements of the kernel of the linear operator G can be obta-
ined from Figure 1.16 using a simple geometrical computation:

Guu  Guiz  Gus [ 03338 1.6971 0.0000

Guz Gz Gu2r | _ | 20309 0.0000 0.0000 (132)
| Gust Guez Guss | T | 20309 00000 0.0000 |°

[ G guz Gguzis | [ 00000 20110 0.0000 |

G2t Gz Gis | _ | 00000 20110 0.0000 (13b)
| Gusi Gum Guss 0.4883 15227 0.0000 |°

[ Gusu guz gusis | [ 00000 2.0012 0.0000 ]

Gu2r Gz Guas | | 00000 2.0012 0.0000 130)
G331 Gus2 (1333 | 00000 20012 0.0000 |°

[ Gu1 Gz gias | [ 00000 20012 0.0000 |

G Gua2 Guas | _ | 00000 2.0012 0.0000 (13)
| Gust G Gus | 00000 20012 0.0000 |’

[ G gz giss | [ 00000 2.0110 0.0000 |

Giszt G2z Gszs || 00000 2.0110 0.0000 (130)
| G Gus Guss | T | 00000 15227 0.4883 |°

[ Guenn Gz Giess | [ 00000 1.6971 0.3338 |

Giezr Giez G2 | | 00000 0.0000 2.0309 136
| G G2 Guess | T | 00000 0.0000 20309 |°

[ Guu gaz Ges | [ 00000 0.0000 0.0000 |

Ger Gerzz Geazs | | 16971 0.0000 0.0000 (138)
Gas1 Gasz Guss | - | 03338 20309 20309 |° g
[ Gz G2 Gezs | [ 00000 0.0000 0.0000 |

G2 Gz Gess | | 20110 20110 15227 (13h)
G231 G232 (52233 0.0000 0.0000 0.4883 |°

[ Gmsu Gz gzis | [ 00000 0.0000 0.0000 ]

Gzl Gesz Geaas | | 20012 2.0012 2.0012 13
Gt Gms G2% | T | 00000 0.0000 0.0000 |’
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[ Gean Geaz Gzas | [ 00000 0.0000 00000 ]

G221 Ge2 Gz | | 20012 20012 2.0012 (13)
| G Guz Gz | T | 00000 00000 0.0000 |° J
[ Gesu Ggesiz gezsis | [ 00000 0.0000 04883 ]

G2 Gesz Gesas || 20110 20110 1.5227 (13
| Gt Ges Gess | 7| 00000 0.0000 0.0000 |
and
[ Gzenn Gre1z 2613 [ 03338 2.0309 2.0309

G2t Grezz G223 | | 16971 0.0000 0.0000 a3
| Geesi Gre2 Gess | 0.0000 0.0000 0.0000 | °

The minimum of expressi()n (8) can, for instance, be obtained using
equation (1.92) of the text

-1 -
m = My or + [Gt CD-I G+ CM-I ] G* CD ! (dobs -G mprior ). (14)
This gives

559 593 503

_ 59.3 584 60.2
™ =1 503 602 503 |- (13)
The covariance operator describing a posteriori uncertainties in the

model parameters is (equation 1.90 of the text)

-1
Cy = [Gt Cp ' G+Cyt ] . (16)

Instead of representing variances and covariances of Cyr » it is more useful
to represent standard deviations and correlations (see box 1.1). This gives the
standard deviations

147 1.7 07
_ 1.7 1.0 07
™M = 07 07 06 |’ a7
and the coefficients of correlatiqn
RIl11 Ril1z Rius 1.0000 -0.9977 0.9536
Rzt Rz Ruzs | | 09977 09958 0.9874 (182)
| Rust Rus Russ | | 09536 09874 0.9901 |°
[ Ruu R R | [ 09977 1.0000 -0.9710 ]
Ri221 Riz22 Ruzzs | _ 09997 -0.9972 -0.9897 (18b)
R1231 Ri22 RS | | -0.9708 -09902 -0.9896 |°
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- - -

Ris11 Ris1z RIsIs 09536 -09710  1.0000
Riszi R1s22 Riszs | | 09708 09657 0.9624 (180)
| Rwst R Risss | T | 09948 09632 09515 |°
[ Rzn Ramz Rams | [ 09977 09997 -0.9708
R2121 R2izz R22 | | 10000 -0.9972 -0.9902 (134)
| Rum Rasz Rass | T | 09710 -09897 -0.989 |°
[ Rezun Rezz Rmeas | [ 09958 -09972  0.9657 |
Rzz21 R2222 R2223 | | -0.9972 10000 0.9776 (136)
R2231 Re2sz R2233 | © | 09657 09776 09963 |°
[ R2su Resz Rezss | [ 09874 -09897  0.9624 |
R2021 R2s2z R2318 | _ | -09902 09776  1.0000 (180)
R2331 R2332 R2338 09632 09977 09622 |°
[ Rswn Rauz Rsus | [ 09536 -09708 0.9948 |
Ru21 Retzz Raz | _ | 09710 09657 0.9632 (188)
| Rer Row: Rass | T | 10000 09624 09515 |° g
[ Rs211 Rs2z Rsass | [ 09874 -09902 09632 |
Roz21 Roz2 Rezzs | | -09897 09776 09977 (18h)
| Roz1 Rozz Rmss | T | 09624 10000 09622 |
and
R3311 R3s1z R3SIS [ 09901 -09896 0.9515
Rzt Raszz R2 | _ | 09896 09963 0.9622 (18)
| Resm Rossz RS 09515 09622 1.0000 |-

The solution (15) with the errors (17) is represented in Figure 1.18 (to be
compared with Figure 1.15 and Figure 1.17). The a priori information was
that the values in each block were 55 + 15 . We see that the a posteriori
errors are much smaller except in block (1 1) , where the solution, 559 %
14.7 , practically coincides with the a priori solution. As can be seen in
Figure 1.16, this block contains very short lengths of rays, so that it has
practically not been explored by our data; the value of the attenuation coef-
ficient is practically not resolved by the data set used. If a least squares in-
version was performed with the data (7) but without using a priori informa-
tion, that block would certainly take very arbitrary values, thus polluting the
values of the attenuation coefficient in all the other blocks. More dramati-
cally, numerical instabilities could arise (because the the operator Gt Cpt
G could become numerically not positive definite due to computer rounding
errors) and the used computer code would clash with a "zero divide" diagnos-
tic
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559 | 59.3 | 58.3
114.7| 1.7 | 8.7

59.3 | 584 | 68.2
117 | 1.8 | 187

50.3 | 68.2 | 58.3
8.7 | +8.7 | 186

Figure 1.18: The a posteriori solution obtained by inversion of the avail-
able data. Remark that the value of the upper-left block has not been
resolved (a posteriori value and estimated error almost identical to the a
priori values). The values of all other blocks have been estimated with a rel-
ative error of less than 3%.

Except for the unresolved block mil , the values obtained are close to
the true values, and within the estimated error bar. Of course, as the data
used were noise-corrupted, the obtained values cannot be identical to the
true values. Using more rays would give a more precise solution.

The data values recalculated from the solution (15) are

d _ 341.92 353.10 356.20 356.20 353.10 341.90
obs 341.89 353.10 356.20 356.20 353.10 34192 |°

which are almost identical to the observed values 9).

The coefficients of correlation as shown in (18) are all very close to
unity. This is due to the fact that there is no independent information (all
rays traverse at least three blocks), and there is not much data redundancy.

Remark number 1: Assume that a new experiment produces one new
datum, corresponding to a new ray (equal to or different from the previous
rays). In order to incorporate this new information, we can either take the a
priori model (11)-(12) and perform an inversion using 13 data, or, more
simply, we can take the a posteriori solution (15)-(17)-(18) as a priori solu-

(19)
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tion for an inverse problem with a single datum (the new one). As demon-
strated in Chapter 4, this gives exactly the same solution (thus showing the
coherence of the "a priori information” approach).

Remark number 2: Usual computer codes consider that vectors (ie.,
elements of a linear space) are necessarily represented using column matrices,
and that the kernels of linear operators are then represented using two-
dimensional matrices. It may then be simpler for numerical computations to
replace the previous notations by the matricial notations

3419
353.1
356.2
356.2
353.1
3419
3419
353.1
356.2
356.2
353.1
3419], (20)

d

obs =
(Cp)i = 0.12 61, (1)
-
55
55
55
55
55
55
55
55

mpﬁor = ».55- s

(22)
(Cp)*F = 152 628 (23)

and
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[70.3338 1.6971 0.0000 2.0309 0.0000 0.0000 2.0309 0.0000 0.0000™]

0.0000 2.0110 0.0000 0.0000 2.0110 0.0000 0.4883 1.5227 0.0000
0.0000 2.0012 0.0000 0.0000 2.0012 0.0000 0.0000 2.0012 0.0000
0.0000 2.0012 0.0000 0.0000 2.0012 0.0000 0.0000 2.0012 0.0000
0.0000 2.0110 0.0000 0.0000 2.0110 0.0000 0.0000 1.5227 0.4883
0.0000 1.6971 0.3338 0.0000 0.0000 2.0309 0.0000 0.0000 2.0309
0.0000 0.0000 0.0000 1.6971 0.0000 0.0000 0.3338 2.0309 2.0309
0.0000 0.0000 0.0000 2.0110 2.0110 1.5227 0.0000 0.0000 0.4883
0.0000 0.0000 0.0000 2.0012 2.0012 2.0012 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 2.0012 2.0012 2.0012 0.0000 0.0000 0.0000
0.0000 0.0000 0.4883 2.0110 2.0110 1.5227 0.0000 0.0000 0.0000
G =]_0.3338 2.0309 2.0309 1.6971 0.0000 0.0000 0.0000 0.0000 0.0000_]. (24)

Equations (8) and (14) are then usual matricial equations.

Problem 1.3: Formulas for inverse problems when the (discrete) parame-
ters can take only discrete values. The theory developed in this chapter
applies to the case where each of the discrete parameters di,dz,... and
m!,m2,.. can take continuous values. In some problems, the data parameters
and/or the model parameters can only take some discrete values. Obtain the
corresponding formulas for the resolution of inverse problems.

Solution: Let x = {xA} = (x1,x%,...) denote a discrete (and finite) par-
ameter set. In the text it has been assumed that each of the parameters xA
(A=1,2,...) takes its values on some continuous set. The vector x then takes
its values on some "volume" V . We have seen that the most general way of
describing a state of information on the true values of the parameters is by
defining a probability density p(x) (x€V) over the parameter space.

If each of the parameters xA (A=1,2,..) take its values on some dis-
crete set , xA € (xA ,xA,,..) , then the vector x can only take some discrete
values x, , X, ,.., and a state of information is then described by a proba-

bility p(x,) (u=1,2,..): the probability of each of the discrete values b &
X

’ The formulas corresponding to an inverse problem where the (discrete)
parameters can only take discrete values should be obtained from a theory
more general than the one developed in the text, or from an ad-hoc discrete
theory. Instead, although less rigorous, it is simpler to formally consider a
probability as a special case of a probability density:
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D) = ) B(x,) xR, M
" ;
where, if p(x) is a probability density and &(x) is Dirac’s delta "function",
then p(x,) clearly corresponds to the probability of the point x, .
I consider here that the model vector m can only take discrete values
m,,m,,.. , and for any value m, , the data vector d can only take dis-

crete values d,.d,,.. As discussed in the text, the a posteriori probability
density in the space DxM is (equations 1.60, 1.63, and 1.64)

_ od,m) 6(d,m) _ Pp(d) py(m) py(m)
od.m) = p(d,m) pp(d) py(m)

6(d|m) , )

ie.,

PD(d) Pm(m)

oadm) = = )

(d|m) . 3)

In equation (3), pp(d) is the probability density representing the knowledge
obtained on the true values of d through our experiments (measurements),
pp(m) is the probability density representing our a priori information on the
model parameters, 6#(dlm) is the conditional probability density for d ,
given m , representing our knowledge on the theoretical correlations existing
between m and d, and where pup(d) is the non-informative probability
density in the data space.
If d and m can only take discrete values, then

@ = ) p(d,) 6d-d,), (4a)
A\

i@ = ) jipd,) 8d-d,), (4b)
\'4

adm) = ) py(m,) smem,) (40)
w

and

ddm,) = > 4(d,m,) &d-d,), (4d)
A"
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where pp(d,) is the probability that we assing of d, being the true value
of d which has been realized in our measurement (ambiguous results of the

measurements), jip(d,) is the non-informative probability on d (usually

uniform), py(m,,) is the a priori probability of the true value of m being
m, , and 6(d,|m,) is the conditional probability of the true value of d
being d, , if the true value of m was m,, . Introducing the a posteriori

probability o(d,,m,) by

o(d,m) = Z Z 6(d,,m,) &d-d,) §(m-m,) , (4e)
A\ W

we obtain, at each point (d,m,),

Pp(d,) hy(m,) 4(d,m,)
' ﬁD(dv)

o(d,,m,) = ®)

where the symbol 6§(0) has been formally manipulated as an ordinary
(finite) constant.
The (marginal) a posteriori probability in the model space is then

bu(m) = ) 5(d,m,), ©
4 |
ie.,
o) = pymy) » P G m ™
”’D( v

or, if the probability is normalized,

in(d,) 8(d
hag(m,) Z Pp(d,) 8(d,m,)
v

pp(d,)
opy(m,) = (8)
p 9
S my 5 B m,
W v ND(dy)

The (marginal) a posteriori probability in the data space is
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5p(d) = ) ad,m,), ©)
w
ie.,
. pp(dy) . -
op(d,) = ppm(my) 6(d,Imy) , (10)
o) = @) ; . :
or, if the probability is normalized,
2% % pu(m,) i, Im,)
- ]
S N m,) b m,)
v ip(d,) W

In the particular case where the measurement is perfect and gives an unam-
biguous result, d =d, ;

1 for v = v,
pp(d,) = 5w°b = (12)

8
0 for v # v, .

Equation (8) then becomes

&M(mw) _ 0(d°bs|mw) ;’M(mw) , (13)

Z a(dobshnw) ﬁM(mw)
w

while equation (11) degenerates into

5D(dv) = f)D(dv) . (14)

Formula (13) encounters a large domain of application. Let us recall the
sense of each of the terms. py(m,) , for w=1,2,., is the a priori
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(subjective) probability we assign of each of the m, being the true model

vector, é(dvlmw) , for v=1,2,..., is the probability we assign of each of the

d, being the true data vector if the true model vector is m, , and Gy(m,)
is the a posteriori (subjective) probability we assign to each of the m, ,
after a measurement of the true value of the data vector which has given the

unambiguous result that the true value is d"obs .

For the sake of completeness, let me give the formulas corresponding to
(8), (11), and (13) in the case where only one of the data vector or the model
vector is discrete.

If only the model vector m takes discrete values, equation (8) becomes

N pd) 6(djm,,)
Pp(my,) JDdd i@
opy(m,) = s (15)
N pp(d) 6(dm,,)
Z PM(mw) J;)dd p’D(dv)

w

equation (11) becomes

d
%% pr(m,,) dm,,)
op(d) = v : (16)
d
JDdd % Pri(m,,) fdjm,,)
w

and equation (13) becomes

&M(mW) - g(dobslmw) i’M(mw) ) (17)

) #dggim,) py(m,)
w

If only the data vector d takes discrete values, equation (8) becomes
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d,) 6(d
org(m) an( v) 6(dyjm)

v pp(d,)
om(m) = , (18)
pp(d,) 6(d,{m) 6(d,Im)
dm py(m)
J M Z fip(d,)
equation (11) becomes
Pr(@,) j dm py,(m) 8(d,|m)
pp(d,) M
6D(dv) = s (19)
Z Po(dy) J dm py,(m) 6(d,|m)
pp(d,) M

and equation (13) becomes

() = Coelm) pglm) 0

J dm 9(d,p,lm) ppg(m)
M

Problem 14.: Approximately one in each 100,000 individuals of a given
population is affected by a very dangerous disease, which is only apparent in
the final stages. A medical test has been designed to indicate if a given indi-
vidual is affected by the disease. If that person is affected, the response of
the test is always positive, but if not, it gives a positive (erroneous) response
in one per cent of the cases. I have been submitted to the test and have
obtained a positive response. Am I affected by the disease?

Solution: Let m, and m, be defined as follows

m; = Iam affected by the disease , (1a)
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m, I am not affected by the disease , (1b)
and let d, and d, be defined as follows

d,
d,

The test gives a positive response , (2a)
The test gives a negative response . (2b)

As approximately one of every 100,000 individuals is affected by the
disease, the a priori information I have on the value of m is described
by the probability

0.000 01 , (32)
0.999 99 . (3b)

Z)M(ml)
Pm(my)

Let @(dvlmw) be the probability of the result of the test being d, if
the value of m is m, . As, if an individual is affected, the response of
the test is always positive,

8(d,jm,) = 1. , (42)

8(d,jm,) = 0. , (4b)

and as if the individual is not affected, the test gives a positive .
(erroneous) response in one percent of the cases,

8(d,jm,) = 001, (52)

8(d,lm,) = 099 . (5b)

The application of the test in my case has unambiguously given the
value

dobs = d1 ’ (6)

so that the information I have on the true value of d is represented by
the probability

ppd) = 1., (7a)
Pp(d,) (7b)

I
e
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The a posteriori information on the true value value of m can then
be computed using equation (8) of the previous problem:

i 8(d
pg(m) Z pp(d,) 6(d,|m,)
\'2

bp(d,)
om(my,) = , ) ®)
pn(d.) 8(d
D utmyy 2o IIm)
W v IJ'D(dv)

which, using (7), becomes

é (dobslmw) i)M(mw)

om(m,) = . ©)
Z a(dobsI mw) pM(mw)
W
This gives
] 6(d,Jm,) pp(m,)
UM(ml) = 1 1 M 1
0(dllm1) i’M(ml) + 0(d1|m2) pM(mz)
- 1. - 0.000 01 ~ 0.000 999 0
1. - 0.000 01 + 0.01 - 0.999 99
~ 1073, (10a)
and
o(d p
&M(mz) - ( 1|m2) pM(mz)

8(d,lm,) ppg(m,) + 8(d,lm,) prs(m,)

- 0.01 - 0.999 99 =~ 0.999 001 0

1. - 0.000 01 + 0.01 - 0.999 99

~ 1-1073, (10b)

ie., in spite of the fact that the response of the test (which makes only
one per cent of errors) has been positive, I only have one chance per
thousand of being affected by the disease. The intuitive interpretation is
as follows: although the test makes very few errors, the percentage of
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diseased individuals in the population is so low that the test may make
many errors before it is used with a diseased individual. As the a priori
probability of my having the disease was of one in 100,000 , and the a
posteriori probability is 100 times greater, the test effectively generates
information, although I do not yet have to worry very much about it,
because a probability of one per thousand is still very low. However,
further health checks are justified.

Assume now that the response to the test had not been unambiguous
(Hi, Pr. Tarantola, here is Dr. Jekyll. My assistant just gave me the res-
ponse of the test, and she says that the result was positive. Nevertheless, 1
have to inform you that my assistant is not a very reliable woman: each
time she has a result, she throws a dice, and if she obtains a six, she lies
to me about the result...).

As the probability 'pp(d,) is the (a priori) probability that the true
value of d is d, , instead of (7) I should now take

pod,) = 5/6, (112)
Py = 1/6, (11b)

and representing the null information by the probability

ﬂD(dl) = ﬂD(dz) = 0.5 ’ (12)
the a posteriori probability for m can be obtained from equation (8), .
which gives

op(m,) ~ 481075, (13)

The a posteriori probability for the true result of the test can be com-
puted using equation (11) of the previous problem:

- _
Ppldy) N7 (my) B(d,imy)
KEp (dv)

op(d,) = A , (14)

) N ) i m,)
v Bp(dy) W

which gives

op(d) ~ 481072 . (15)
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Result (13) shows that the a posteriori probability of being affected by the
disease is only five times greater than the a priori one, despite the fact that
the assistant says the response was positive. Result (15) explains this result by
the fact that the a posteriori probability of the assistant of telling the untruth
is very high.

Should the assistant tell the truth only if she throws a six, then

1/6 , (16a)
5/6 , (16b)

i)D(dl)
pp(d,)

which gives

op(m,) =~ 2.0 1076, (17)

If she always lies, then

i’D(dl) = 0. ’ (188,)
pp(d,) = 1., (18b)
and

om(m,) = 0. . (19)

Problem 1.5: Some physical quantity d is related with the physical
quantity x through the equation

d = m'+m?x, 1)

where m! and m2 are unknown parameters. Equation (1) represents a
straight line on the plane (d,x) . In order to estimatt m! and m? , the
parameter d has been experimentally measured for some selected values of
x , and the following results have been obtained (Figure 1.19):

x! = 03.500 di,, =20 %05

X2 = 05.000 d2,, =20 %05

X3 = 07.000 d3,, =30 £05 @)
x4 = 07.500 diy, =30 £05

x5 = 10.000 ds,, =40 205,
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where * 0.5 denotes rounding errors (to the nearest integer). Estimate m!
and m? . (Note: this problem is nonclasical in the sense that experimental
errors are not Gaussian, and the usual least squares regression is not adapted).

Figure 1.19: Some experimental points. Error "bars" represent rounding
errors to the nearest integer. Solve the general problem of estimating a reg-
ression line.

Solution: Let an arbitrary set (dl, d2, d3, d4, d5) be called a data vector
and be denoted by d , let an arbitrary set (m?, m2) be called a parameter
vector and be denoted by m. Let

d = g(m) , 3)

denote the (linear) relationship

dl = m!+ m?xt
d? = m!+ m? x2
d® = m!+ m? x3 4
d¢ = m!+ m? x¢

d5 = m!+ m?x5.
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Let

pm(m) = py(mi,m?) (6))

be the probability density representing the a priori information (if any) on
model parameters. Let

po(d) = pp(d*,d?,d3,d4,ds) ©6)

be the probability density describing the "experimental' uncertainties (see
text). As rounding errors are mutually independent,

rp(d) = pp(di,d2,ds,d4ds) = plp(dl) p?p(d2) p3p(d3) pip(d?) p5p(dS), (7)

where pi)(di) denotes the probability density describing the "experimental”

uncertainty for the observed data di . As the errors are only rounding
errors, they can be conveniently modeled using box-car probability density
functions:

const if d, -05 < d < d. +05
obs obs

pL(d) = ®)
0 otherwise .

This gives

(15 < d! < 25
and

15 < d2 < 25
and

((const if {425 < d3 < 35
and

25 < dt < 35
and

[ 35 < d5 < 45
pp(d) = | ©)
L 0 otherwise.

The general solution of an inverse problem is obtained when-the poste-
rior probability density in the model space has been defined. It is given by
equation (1.65) of the text
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_ PD(d)
opy(m) = py(m) JDdd in(@) o(dm) , (10)

or more particularly, as the relationship between d and m is exact, by
equation (1.69) of the text

m
pp(g(m)) ’ (n
pp (g(m))
where pp(d) represents the non-informative probability density on data

parameters. Equations (9) and (11) solve the problem.
For instance, if we take as non-informative prior in the data space:

om(m) = py(m)

pp(d) = pp(di,d2,d3,d4,d5) = const, (12)
and if we accept a priori all pairs (ml,m2?) as equally probable:
pmq(m) = py(mim?) = const, (13)

then we obtain

(15 < m'+m2x! < 2.5

and

15 < mi+m?2x2 < 25

and

[ const if 425 < ml'+m2x3 < 3.5

and

25 < ml'+m?xt < 3.5

and

(35 < ml+m?2x5 < 45

oy(m) = op(mim2) = 4 (14)
L 0 otherwise.

This result is represented graphically in figure 1.20. The dark region has a
positive (constant) probability density. All pairs (m!,m2) inside this region
have equal probability density, and all pairs (m!,m2?) outside it are impossi-
ble, so that this region represents the "domain of admissible solutions". Which
is the best "regression line"? There is no such a thing: all lines inside the
domain are equally good. Figure 1.21 shows two particular solutions (giving
extremal values for m! and m?2).

Figure 1.22 shows the computer code effectively used for obtaining the
general solution shown in Figure 1.20. For problems with few model param-
eters (2 in this example), the full exploration of the model space is, in gen-
eral, the easiest strategy (it takes approximately 2 minutes to go from the
statement of the problem to the result in figure 1.20.
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Figure 1.20: The general solution of the problem is given by the proba-
bility density op(m!,m2) for the parameters of the regression line. It is
constant inside the dark region and null outside. The dark region represents
the domain of admissible solutions. There is not any "best line": all pairs
(m!,m?) inside the region are equally likely.

Problem 1.6 (Usual least-squares regression): Find the best regression
line for the experimental points in figure 1.23, assuming Gaussian uncertain-
ties.

Solution: Figure 1.23 suggests that errors in the t' are negligible, while
errors in the y! are uncorrelated. Let us introduce

yi 1
y2 2 1
_ a - -
m = [ b] d o G o1 )

(y1,y2,...,t1,t2,... are indexes, not powers). The equations
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Figure 1.21: Two particular solutions (A and B in figure 1.20), corres-
ponding to extremal values of m! and m?2 . Notice that they touch the
extremities of the error bars (circles).

v = ati+b (i=1,2,...,n) Q)
can be written
d =Gm. 3)

The matrix G is assumed perfectly known. We have some information
on the true values of d_, and we wish to estimate the true value of m .

As it is assumed that errors in the y' are uncorrelated Gaussian, the
information we have on the true value of d can be represented using a
Gaussian probability density with mathematical expectation

s
\ 5

dops = o | @)

and covariance matrix
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110 FOR M1 = -1 TO 2 STEF .005

120 FOR M2 = 0 TO .5 STEFP .002

130 D1 = M1 + 3.5 % M2

140 IF ( D1 < 1.5 ) OR ( D1 > 2.5 ) THEN GOTO 300
150 D2 = M1 + 5 x M2

160 IF ( D2 < 1.5 ) OR ( D2 > 2.5 ) THEN GOTO 300
170 D3 = M1 + 7 %x M2

180 IF ( D3 < 2.5 ) OR ( D3 > 3.5 ) THEN GOTO 300
190 D4 = M1+ 7.5 % M2

200 IF ( D4 < 2.5 ) OR ( D4 > X.5 ) THEN GOTO 300
210 DS = M1 + 10 x M2

220 IF ( DS < 3.5 ) OR ( D5 =
250 DRAW POINT (M1,M2)

I00 NEXT M2

310 NEXT M1

F Y
4]

THEN GOTO 300

Figure 1.22: Computer code in BASIC-like notation effectively used for
obtaining the result in figure 1.20. The limits for m! and m2 in lines
110-120 have been chosen after trial and error. The steps 0.005 and 0.002 in
lines 110-120 have been chosen small enough not to be visible on the graphic
device used to generate figure 1.20. The command DRAW POINT (X,Y) in
line 250 simply plots a point on the graphic device at coordinates (X,Y).

(o)’ 0 0
0 (0'2)2 0 ,
Cp = 0 0' @) .. ) (5)
We now need to introduce the a priori information (if any) on the par-

ameters m . The simplest results are obtained when using a Gaussian proba-
bility density in the model space with mathematical expectation

a
_ 0
mprior - b ’ (6)
0
and covariance matrix
o p O, 0
Cy = a a’b| (7

po, oy 0%
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Figure 1.23: The physical parameter y (ordinate) is related with the
physical parameter t (abscissa) through the equation y=at+ b, where
the parameters a and b are unknown. The experimental points in the
figure have to be used to estimate the best values for a and b, in the least
squares sense.

As the information on both data and model parameters is Gaussian, we
are in the hypothesis of section (1.7.1). The a posteriori information on the
model parameters is then also Gaussian, with mathematical expectation given
by

-1
post = mprior + [Gt CD_:l G+ CM_I] Gt CD_1 (dobs -G mprior) (8)

m
= m,,, +Cy G* (G CM Gt + Cp)™' (dp, - G M), ©)
and covariance matrix given by
Cy = [Gt Cp ' G+ cM‘l]-1 (10)
= Cy-Cy G (G Cy G+ Cp) P G Cy . (11)

The a posteriori (i.e., recalculated) data values are then (equation 1.97a)
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Aot = G mp; (12)

and the a posteriori data errors are given by (equation 1.97b)

Cp = G Cy G*. 3)
As we have only two model parameters, expressions (8) and (10) should

be preferred to (9) and (11). An easy computation gives the a posteriori
values of a and b:

a = aj+ %}3%29 (14)
b = b+ BO=CP (15)
and the posteriori standard deviations and correlation:
oy = — b (162)
v B - C?/A
oy = — (16b)
v A-C2B
po= — (16¢)
v AB/C2

where

1 1
A = Z — 4 R (173)

— @) (- o

i 2

By @, 1 (170)
: (0" (1-p®) o,
C = Z g _ p , (17¢)
. (Ui)2 (1-p%) 0, oy,
1

i . .

P = Z (,,ti)z [vg - (2, ti + by , (17d)

1
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Q=Z [y - (3 t + b)] . (17¢)
(al)z (1] [}
Usually, a priori errors on model parameters are uncorrelated. Then
p = 0. (18)
This gives
A=y A, L (192)
(‘7‘) Oy
Z @, (19b)
')’ o,
and
ti
= - (19¢)
(¢')*

If there is no a priori information on model parameters,

g, — 00 (20)
and

Instead of taking the limits (20)-(21) in the last equations, it is simpler to use

Cy' =0 (22)
in equations (8) and (10). This gives
-1
m, = [Gt Ccy G] G' Cp ' dy, (23)
and
-1
Cy = [Gt Cp G] : (24)

Equations (14) and (15) then become
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Figure 1.24: See text.
_ AP-CQ
a AB - C2 25
and
_ BQ-CP
b AB-Cr° 26)
while the constants A , B, C,P,and Q simplify to
s 2
L B - Z ©) c-y 4
(c)) — (d') (0‘
1

ti i

p= ) o @)
: (d") (0‘)
If all data uncertainties are 1dent1cal,

o = o, (28)
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P=£Ztiy0i Q=EIZZin. (29)

Problem 1.7: The two variables y and t are related through the para-
bolic relationship

y = att+bt+c. (1)

The points (y!, t!) shown in Figure 1.24 have been obtained experimentally.
Error bars denote Gaussian errors. Estimate the parameters a , b, and ¢,
and analyze uncertainties.

Answer the same question if the assumed relationship between y and t
is

y = aeP 4c, )

Problem 1.8 (Two-axes least-squares regression): Find the best regres-
sion line for the experimental points in figure 1.25, assuming Gaussian
uncertainties.

Solution: There are some equivalent ways of properly setting this prob-
lem. The approach followed here has the advantage of giving a symmetrical
treatment to both axes.

As the statement of the problem refers to a regression /ine, a linear rela-
tionship has to be assumed between the variables y and t:

ay+f8t =1, 1)

We have measured some pairs (xi,y') and wish to estimate the true values
of « and 8. ' .

I introduce a parameter vector m which contains the y' , the t , a,
and f:
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Figure 1.25: The physical parameter y (ordinate) is related to the phy-
sical parameter t (abscissa) through the equation y = at+ b, where
the parameters a and b are unknown. The experimental points in the
figure have to be used to estimate the best values for a and b, in the least

squares sense. This problem is nonclassical in the sense that uncertainties are
present in both coordinates.

yl
y2
{1
tZ
y
_ t - a
i s | @
and, for each conceivable value of m , I define a vector
dl
2
d = |d

3)
by
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d = gim) = ayl +8t (i=1,2,..) . 4)

Defining the "observed value" of d by

obs = I (5)

and the "a priori" value of m by

vi,
¥Z,

ti,
t2,

m oo ©)
prior I ﬂo J 4
where y, and t, are the experimental values, and o, and B, the a
priori values of a and B, the inverse problem can now be set as the prob-
lem of obtaining a vector m such that g(m) is close (or identical) to d.
» and such that m is close to m,;, . We see thus that this "relabeling" of
the variables allows an immediate use of the standard equations. Neverthe-
less, this problem is less simple than the previous problem of one-axis reg-
ression, because here we have twice the number’ of points + 2 "unknowns"
instead of 2 , and the forward equation d = g(m) is nonlinear (because it
contains the mutual product of parameters).

More precisely, I assume that the a priori information on m can be
described using a Gaussian probability density with mathematical expectation

me o and covariance matrix
Cy 0 0 0
0 C, (2) 0
0 0 ¢ 0
=10 0 0 ol M

where independence of errors has been assumed only to simplify the nota-
tions. The a priori information on d is also assumed to be Gaussian, with
mathematical expectation dj, and covariance matrix Cp, . Later, we may
take Cp = 0, so that the observed values (5) may be fitted exactly by the
a posteriori solution. Instead, we may keep Cp finite to allow for errors in
the hypothesis of a strictly linear relationship between y and t.
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Now we are exactly in the hypothesis of section 1.7.1. The a posteriori
probability density for m is (equation 1.85):

op(m) = const. 8)
exp [— % [(g(lll)-dobg)t CD_1 (g(m)-d,e) + (m-m ;) CM_1 (m—mprior)]] ,
which, owing to the nonlinearity of g(m) , is not Gaussian. The maximum

likelihood value of m can be obtained using, for instance, the iterative
algorithm suggested in equation (1.107):

mﬁ+1 = ©)
Mo = Cm Gt (G, Cy Gyt + Cp) " [(8(m,)-dy,) - Gy (my-m)] -
We have
=% og og og
Gn [[ay]mn [6t]mn [aa m ap m_ ’ (10)
which gives
G, =[] B I Yn t. 1, an
a, Cy
ﬁnzct
Cuy G,' = %a, vt 12)
og t,t

=0 Yttt 0 C 8.7 C Oy, (13)
and
gm,)-dg,, - G, (m,-m_; )
= (qp-a,) ¥y, + (By=B) t, - dope + 0 Yo+ Bnty - 14)
Denoting
6d_ = (G, Cy G,*+Cp)™ [ (g(m,)-d,,,) - G, (m,-m ;)] (15)

the iterative algorithm (9) can be written
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Experimental points for linear regression
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Figure 1.26: Two variables y (ordinate) and t (abscissa) are related
by the relationship y =at+b, where a and b are unknown parameters.
In order to estimate a and b , an experiment has been performed which
has furnished the 11 experimental points shown in the figure. The exact
meaning of the "error bars" is not indicated.

Ynt1 = Yo -2, C, S&n s (16a)
bty = to - B G S&n , (16b)
Oy = O - am2 y,t San , (16¢)
and

Buss = Bo- 05" t;t sén . (16d)

The algorithm usually converges in a few iterations (=3). The values a,
and B, are the estimated values of the parameters defining the regression
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a = +0.6

a=-04
b=5 b =20

Figure 1.27: The probability density for the parameters (a,b) obtained
using the Gaussian hypothesis for experimental uncertainties, and without
using the blunder.

line, and the values (t‘;o,yf)o) (i=1,2,...) are the a posteriori values of the

experimental points. If Cp = 0, the a posteriori points belong to the stra-
ight line.

Problem 1.9: Two variables y and t are related through a linear rela-
tionship

y=at+b. (1)

In order to estimate the parameters a and b , the 11 experimental points
(yi,) shown in Figure 1.26 have been obtained.

It is clear that if the linear relationship (1) applies, then the point indi-
cated with an arrow must be an outlier. Suppress that point and solve the
problem of estimating a and b , under the hypothesis of Gaussian errors.
Does the solution change very much if the outlier is included?
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Gaussian hypothesis
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Figure 1.28: The maximum likelihood line for the probability density in
figure 1.27.

Assume now that errors can be modeled using an exponential probability
density, and solve the problem again. Discuss the relative robustness of the
Gaussian and exponential hypotheses with respect to the existence of outliers
on a data set.

Solution: Let
m = (a,b) )
denote a model vector, and
d = (d1,d2,..) 3)

a data vector. The (exact) theoretical relationship between d and m is
linear:

d = at+b, (4a)

or, for short,
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a = +0.6

a=-04
b=35 b =20

Figure 1.29: Same as Figure 1.27, but the 11 experimental points have
been used. The blunder has "translated" the probability density. This shows
that the Gaussian hypothesis is not very robust with respect to the existence
of a small number of blunders in a data set.

d = Gm, (4b)
where G is a linear operator.

Assume that the null information probability density on model parame-
ters is
upm(a,b) = const , (5)
and that we do not have a priori information on model parameters:
p(ab) = pp(a,b) = const. . 6)

Assume that the null information probability density on data parameters
is

pp(did2,..) = const . (7)
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Gaussian hypothesis
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Figure 1.30: The maximum likelihood line for the probability density in
figure 1.29.

If pp(di,d2,..) is the probability density representing the information on the
true values of (dl,d2,..) as obtained through the measurements, then the
Gaussian hypothesis gives (for independent uncertainties)

N
ZE_“_]_ | ®

pD(dladz"") = exp| - o2

DN e

i
where d_, is the vector of observed values
dops = (10.,10.,11.,12.,13., 14., 14., 15., 15., 16., 2. ), ©)
and where, if we interpret the error bars in Figure 1 as standard deviations,
o = 2. (10)

Let &d,m) be the probability density representing the information we
have on the theoretical relationship between d and m . As (4) is an exact
relationship
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a=+0.6

a=-04
b=35 b =20

Figure 1.31: The exponential hypothesis for data uncertainties has been
used instead of the Gaussian hypothesis. Here the blunder has not been used.
The solution looks similar to the solution corresponding to the Gaussian hyp-
othesis in Figure 1.27.

dm) = Hdim) ppy(m) = &d-G m) py(m) . (11)

The posterior information on the parameters (d,m) is given by
(equation 1.60)

odm) = £dm édm) _ o(@) Au(m)

’ p(d,m) pp(d)
and the posterior information on model parameters alone is given by the
marginal probability density

#d|m) , (12)

opg(m) = Jdd o(d,m) . (13)
D

Using (4), (6), (7), (8), and (11) easily gives
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Exponential hypothesis
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Figure 1.32: The maximum likelihood line for the probability density in
Figure 1.31.

2
! [dlbs - d_(a.b) ]
ou(ab) = exp| -1 > -~ , (14)
i
where
dical(a,b) =ati+b. (15)

As this problem only has two model parameters, the simplest way to
analyze the a posteriori information we have on model parameters is to
directly compute the values oy(a,b) in a given grid, and to plot the results.
Figure 1.27 shows the corresponding result, if the outlier is suppressed from
the data set (only 10 points have been used). This probability density is
Gaussian, and the line corresponding to its center is shown in Figure 1.28. If
the outlier is not suppressed, so that the 11 points are used, the probability
density op(a,b) obtained is shown in figure 1.29. The probability density
has been essentially "translated” by the outlier. The line corresponding to the
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a=4+0.6

a=-04
b=35 b =20

Figure 1.33: The probability density using all 11 experimental points in
the exponential hypothesis. By comparison with Figure 1.31, we see that the
introduction of the blunder does not completely distort the solution. This
shows that the exponential hypothesis is more robust than the Gaussian hyp-
othesis with respect to the existence of a few blunders in a data set.

center of the probability density is shown in figure 1.30. Figures 1.29 and
1.30 show that the Gaussian assumption gives results which are not robust
with respect to the existence of outliers in a data set. This may be annoying,
because in multidimensional problems it is not always easy to detect outliers.

If instead of assuming uncorrelated Gaussian, we assume uncorrelated
exponential uncertainties, equation (8) is replaced by

di_df)bs
pp(didz,..) = exp| - ZT . (16)

i

The a posteriori probability density is then
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Exponential hypothesis
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Figure 1.34: The maximum likelihood line for the probability density in
Figure 1.33.

e - dLyfa0)|
opy(a,b) = exp| - Z — - Ll amn
i

This probability density is shown in Figure 1.31 for all points but the
outlier, and in Figure 1.33 for all 11 points. The corresponding maximum
likelihood lines are shown in Figures 1.32 and 1.34. We see that the introduc-
tion of the outlier "deforms" the posterior probability density, but it does not
“translate” it. The exponential hypothesis for data uncertainties is more robust
than the Gaussian hypothesis.

It should be noticed that the question of which probability density may
truly represent the experimental uncertainties for the data in Figure 1.26 has
not been adressed. Obviously, it is not Gaussian, because the probability of a
outlier like the one present in the figure is extremely low. But the probabil-
ity of such an outlier is also very low in the exponential hypothesis. A care-
ful examination of the experimental conditions can, in principle, suggest a
realistic choice of probability density for representing uncertainties, but this
is not always easy. The conclusion of this numerical example is that if a pro-
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bability density adequately representing experimental uncertainties is unk-
nown, but we suspect a small number of large errors, we should not take the
Gaussian probability density, but a more long-tailed one.

Problem 1.10: Condition number and a posteriori errors. The (Cramer’s)
solution of the system

10 7 8 7 m! 320
7 5 6 5 m2 23.0
8 6 10 9 m3 - 33.0 1)
7 5 9 10 m#* 31.0

is

m! 1.0

m? 1.0

m3 _ 1.0

m* B 1.0 | ° )

while the solution of the system

10 7 8 7 mi 32.1

7 5 6 5 m?2 229

8 6 10 9 m3 - 33.1 3)
7 5 9 10 m* 30.9 ’

where the right hand member has been slightly modified, is completely dif-
ferent

m? 92
m?2 -12.6
m3 _ 45
m* B -1.1 ) “)

This result may be surprising, because the determinant of the matrix of the
system is not "small" (it equals one), and the inverse matrix looks as ordinary
as the original one:
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This nice example is due to R.S. Wilson, and is quoted by Ciarlet (1982).
Clearly, the matrix in the example has some special property, which it is
important to identify. In classical numerical analysis it is usual to introduce
the concept of "condition number” of a matrix. It is defined by

cond(A) = [|A]] [[A]] , 6)
where || A || denotes a given matricial norm. For instance, the ¢,
matricial norms can be defined by
all, = sop DAl o)
Vil

Av

HAll, = s LAY by
2 .

|| AVl

| A [le = sup BIEZI (7¢)

and verify (e.g. Ciarlet, 1982):

FAll, = max ) |av], )
i
hall, = lmax NAT A) (8b)

1Al = max > | aib] 50)
|

where X (B) denotes the eigenvalues of the matrix B, and where A* den-
otes the adjoint of A (in chapter 4 the difference between adjoint and
transpose will be explained; for the while, let us simply admit that we only
consider euclidean scalar products, and adjoint and transpose coincide).

The interpretation of the condition number is obtained as follows. Let
A and d respectively represent a given regular matrix and a given vector,
and let m represent the solution of

Am=d , ©)
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ie.,

m = Ald . (10)
Let now m + §m represent the solution of the "perturbed system"
A(m+ém) = d+6d . (11)

From d=A m and ém = A~18d it can be deduced that

all < Hall [|ml]| (122)
[ 6m || < [ A=2]] [[sd ]| , (12b)
ie.,

Sm - &d

o S Al lha]l 257 (13)

which, using the definition of condition number, can be written

6[1: < cond( A) Hﬁl . (14)

This shows that for given "relative data error" || &d || / || d || , the "rel-
ative solution error" || ém || / || m ||  may be large if the condition
number is large. As it can be shown that

1 € cond( A)< oo , (15)
a linear system for which cond( A )~ 1 is called well conditioned; a
linear system for which cond( A ) >> 1 is called ill conditioned.

The following properties which are sometimes useful can be demon-
strated (Ciarlet, 1982):

cond( A) = cond( A1) (16)

max X ( A* A )
cond,( A) = = (17)
min A(A* A)

N
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* max [\( M )|

A A = M2 ==> condz(A) = ml— (18)

Coming back to the numerical example, the eigenvalues of A are

A, =~ 0.010
A, ~ 0.843
A, >~ 3.858 (19)
A, ~ 30.289
and using, for instance, (18) gives
A
cond,(A) = 3* = 310% , (20)

1

which shows that the system is ill conditioned, and the relative error of the
solution may amount to ~ 3 103 times the relative data error (as is almost
the case in the example).

In fact, the introduction of the concept of condition number is only
useful when a simplistic approach is used for the resolution of "linear Sys-
tems". More generally, the reader is asked to solve the following problem:

The observable values d = (d!, dz, ds, d+ ) are known to depend
on the model values m=(m!,m2, m3, mt) through the (exact)
equation

d 10 7 8 7 mi

dz2 7 5 6 5 m?2

ds _ 8 6 10 9 m3

ds - 7 5 9 10 m3 ’ @1
or, for short,
d =Gm . 22)
A measurement of the observable values gives

d 320 '+ 0.1

dz 23.0 £ 0.1

ds - 33.0 £ 0.1

da« | 31,0 + 0.1 23)

Use the least squares theory to solve the inverse problem and discuss error
and resolution
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Solution: The best solution (in the least squares sense) for a linear prob-
lem is (equations 1.90 and 1.92):

-1
(m) =my, + [Gt Cp ' G+ CM‘I] Gt Cp ™' [y, - G My ], (24)
-1
Cy = [Gt ' G +cM'1] . (25)
If there is no a priori information, Cy; — ool , and
-1
< m ) = [Gt (:D-1 G] G* CD_l dobs (26)
r -1
Cyw = |Gtcp™ G] : 27)
In our numerical example,
32.0
23.0
_ 33.0
dobs - i 31.0 (28)
0.01 0 0 0
0 0.01 0 0
- 42T = - 0 0 001 O
Cp 21 0011 0 0 0 0.0l 29)
10 7 8 7
7 5 6 5
_ 8 6 10 9
G = 7 5 9 10 (30)

As, in this particular example, G is squared and regular, we successively
have

-1

(m) = [ccy?c] 6cy ag
. = G™! CD (Gt)_l Gt CD_1 dobs = G711 dobs > (31)
1.e.,

(m1) 1.0

( m2) 1.0

- 3

mr - | g |- i

The posterior covariance operator is given by
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-1
Cvw = [Gt CD'1 G] = G1Ch (GYHY 1 = o2 G2 (Gt)1 | (33)
and, as G is symmetric,
CM’ = 02 G1G! . (34)

ie.,

2442 -4043 1015  -602

-4043 6694 -1681 997

_ 1015  -1681 423  -251

Cw = 001 -602 997  -25] 149

From C,g it is easy to obtain the standard deviations of model parameters

35)

UIM = 4.94
UZM = 8.18
Py = 2.06 (36)
04M = 1.22 .

and the correlation matrix (see box 1.1)

1 -0.99997  +0.99867 -0.99800
-0.99997 1 -0.99898  +0.99830
R = +0.99867  -0.99898 1 -0.99979 G7)
-0.99800 +0.99830 -0.99979 1

The overall information on the solution can thus be expressed by this corre-
lation matrix and the short notation

(mt) 100 + 494
(m?) 1.00 + 8.18
_ | (msy | _ | 100 % 206
(m) { m*) 1.00 £ 122 (38)

The interpretation of these results is as follows.

The least-squares approach is only fully justified if errors (in this
example, data errors) are modeled using Gaussian probability densities. For a
linear problem, as discussed in section 1.7, the a posteriori errors are then
also Gaussian. Taking, for instance, twice the standard deviation, the proba-
bility of the true value of the parameter m!, . verifying the inequality

-8.88 < m!,,,. < +10.88 (39a)

is about 95% , independently of the respective values of ™%y, , M3, ,
and m*,. . Similarly, the probability of the true values of each of the
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parameters m?%,,. , m3,,. ,and m4%_ . verifying the inequalities

1536 < m?%,, < +17.36
2312 < md,,, < +5.12 (39b)
-144 < mb,, < +344

is also about 95% .

This gives information on the true value of each parameter, considered
independently, but the correlation matrix gives additional information on
error correlation. For instance, the correlation of m! with m2 is -0.99997
. This means that if the estimated value for m!, ( m! ) , is in error (with
respect to the true unknown value) it is almost certain that the the estimated
value for m2 , { m2) , will also be in error (because the absolute value of
the correlation is close to 1), and the the sign of the error will be opposite to
the error in ( m! ) (because the correlation is negative). For instance, if
the true value of m! was mi_ . = (m!) + 2 oYy, itis almost certain
that the true value of m2 will be m2,_ .= (m?) -2 o0%,.

The easiest way to understand this is to consider the a posteriori proba-
bility density in the parameter space (equation 1.91):

og(m) = (0 det Cyp )
exp[—%(m—(m))" CM"‘(m-<m>)]. (40)

To simplify the discussion, let us first analyze the two parameters m! and
m?2 ., Their marginal probability density is

o,mim?) = (21 det C,, )"/ 1)

t -1
exp _1imi-1.0 2442 -40.43 mi-1.0
21 m2-1.0 -40.43 66.94 m2-1.0

(it is well known [e.g. Dubes, 1968] that marginal probability densities cor-
responding to a mutidimensional Gaussian are simply obtained by "picking"
the corresponding covariances in the joint covariance operator). Figures 1.35
and 1.36 illustrate this probability density. The correlation between m?! and
m? is so strong in this numerical example, that the 95% confidence ellipsoid
is undistinguishable from a segment. This means that, although the data set
used in this example is not able to give an accurate location for the true
values of m! or m? independently, it imposes that these true values must
lie on the segment of the figure. As the volume of the allowed region is
almost null, this gives, in fact, a ot of information.
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See color plate of page 89

Figure 1.35: Marginal probability density for the parameters m! and
m? . Uncertainties are so strongly correlated that it is difficult to distinguish
the ellipsoid of errors from a segment. Although the standard deviations for
each of the parameters are large, we have much information on these param-
eters, because their true values must lie on the "line". The resolution of the
plotting device (300 pixel x 300 pixel) is not fine enough for a good repre-
sentation, so that the colors obtained for the ellipsoid are aliased. The next
figure shows a zoom of the central region.

See color plate of page 89

Figure 1.36: Same as the previous figure, with finer detail.

Similarly, the four-dimensional probability density oyp(m)  defines a
95% confidence "ellipsoid" on the parameter space which corresponds to the
extra-long "cigar" joining the point (-8.88 , +17.36 , -3.12 , +3.44 ) to the
point ( +10.88 , -15.36 , +5.12 , -1.44 ) . The reader will easily verify that
the two “solutions” of the linear system obtained using Cramer’s method for
two slightly different data vectors correspond to two points on the cigar.

It should be noticed that if a further experiment gives accurate informa-
tion on the true value of one of the parameters, the values of the other three
parameters can readily be deduced, with very small uncertainties.

This example has shown that:

1) a careful analysis of the a posteriori covariance operator always has to
be made when solving least-squares inverse problems,
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ii) the information given by the "condition number" is very rough com-
pared with the information given by the covariance operator (it only gives
information about the ratio between the largest and shortest diameters of the
ellipsoid of errors in the model space).

Problem 1.11: We wish to measure a single quantity x,.. . To do this
we have a digital instrument which delivers 5-digit decimal results. We have
performed a great number (101) of measurements, and because the instru-
ment has some intrinsic uncertainty, we obtain a different value at each
measurement;

Xooo = 21.738 Xgo, = 21.273 X, = 21.300 x003 =21.540 x4, = 21.878
x005 = 21.052 Xq95 = 21.066 xgq, = 21.894 X0 = 21.922 x40, = 21.536
Xo10 = 21.575 x4,, = 21.990 x,,, = 21.013 x013 = 21488 x,,, = 21.421
xo15 = 21296 Xg16 = 21951 X, = 21717 x4, = 21675 x4,4 = 21.136
Xoz0 = 21.029 x.,, = 21.515 x,,, = 21.104 x,,, = 21872 x,,, = 21.789
Xogs = 21191 X, = 21.882 x,,, = 21.578 Xg,0 = 21.658 X,,q = 21.069
Xogo = 21.030 xg3, = 21.217 X, = 21,651 Xy, = 21285 x,,;, = 21.659
Xogs = 21.965 Xqg5 = 21.816 X5, = 21.535 X4 = 21715 X5, = 21.104
Xog0 = 21.044 x.,, = 21.977 Xxg,, = 21.711 x,,, = 21.758 x,,, = 21.751
Xogs = 21.489 x5 = 21.087 X, = 21.814 xg,0 = 21.104  x,,o = 21.971
Xos0 = 21.625 xg, = 21.581 x., = 21.076 x053 =21.648 x,., = 21.983
Xoss = 21.888 xgp0 = 21121 X(p = 21.239 X0 = 21474 x,,, = 21.788
Xogo = 21414 xoq; = 21.930 X, = 21.353 X6, = 21.001  x,,, = 21.863
x065 = 21.087 Xqg6 = 21.931 X = 21776 X(ge = 21065 X, = 21.664
Xo7o = 21421 Xg7, = 21127 X, = 21.746 x;, = 21.110 x4, = 21.102
x075 = 21947 Xgp6 = 21.128 X, = 21.610 x50 = 21.465 X,,0 = 21.822
Xogo = 21.617 Xgo; = 21.675 Xgg, = 21.898 X, = 21.573 x4, = 21.397
Xogs = 21.309 Xggq = 21.485 Xgg, = 21.018 X = 21132 x40 = 21.462
Xogo = 21.146 X9, = 21.391 xg,, = 21.222 X9, = 21.034 x,,, = 21.977
Xgos = 21.079 Xoq = 21.713 x4, = 21.028 x098 =21.598 Xx,4o = 21.105
X;00 = 21.333 .

The uncertainty e of the instrument has an unknown probability density
function f(¢) which is known to be symmetric and centered at e =0 .
Under these conditions, the median m, , the mean m, , and the mid-range
m,, are unbiased central estimators. They are given by

21.422
21.482
21492 .
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Which of these is to be preferred for estimating x,.. 2.

Solution: One response to the question is that it has no response. The
median m,; minimizes the mean deviation of the residuals, the mean m,
minimizes the standard deviation, and the mid-range m,, minimizes the
maximum deviation. So the "best" central estimator will depend on which cri-
terion we use to measure "goodness".

That is not the good response, because with the experimental results in the
previous table we can do better than computing a central estimator: we can
estimate the probability density function f(e) itself. Figure 1.37 shows a
histogram of the results. It has the striking feature of taking strictly null
values outside a given range where the values are rather uniform. As fle) is
known to be symmetric, we can try to fit a Generalized Gaussian to that his-
togram (see box 1.2). The value p = oo (box-car function) seems not too
bad a candidate (in any case is clearly better than p = 1 or p=2)1Itis
clear that to estimate the center of a generalized Gaussian of order p, we
should use the central estimator in norm £, . The value m,, = 21.492 then
is to be preferred for estimating x,,,, .
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Figure 1.37: Histogram of the 101 values obtained when measuring
Xirue - The statistics of the errors are unknown, but the probability density is
known to be unbiased -(centered on x,.,). Which is the best estimator of
Xirue ?
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Actually, the 101 numbers used as data have been generated using the
pseudo-random computer code

x; = 21. + RND,
where RND is a routine generating numbers with a theoretically uniform
probability density over (0,1) . That m,, is a better estimator than m,; or
m, in some absolute sense can be seen by a simple numerical test. The pre-
vious experiment can be repeated a great number of tlmes (=~100), and we
can make histograms of the values thus obtained for m, ,and mg in
each experiment. They are shown in Figure 1.38. We clearly see that m,, 1is
less scattered around the true value Xxy,. than m;, or m, independently
of the criterion used to measure the scatter.

Problem 1.12: Let x and y be cartesian coordinates on a cathodic
screen. A random device projects electrons on the screen with a known pro-
bability density:

const. r (2-r) if 0<r<?2
o(x,y) = (1)

0 if r>2,

where r = vx2+y2 |

We are interested in the coordinates (x,y) at which a particular electron
will hit the screen, and we build an experimental device to measure them:.
The measuring instrument is not perfect, and when we perform the experi-
ment we can only get the information that the true coordinates of the impact
point had the probability density

-1
1 | X=X, o po? X-X,
X, = const. exp| -z 2
p(X,Y) S [Y"Yo] |:pgz 02} [Y'Yo} )

with (x4,y,) = (0,0), 0=2,and p=0.99. Combine this experimental in-
formation with the previous knowledge of the random device, and obtain a
better estimate of the impact pomt

Solve the problem again, using everywhere polar coordmates instead of
cartesian coordinates.

Solution: As x and y are cartesian coordinates, the null information
probability density for the impact point is
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+ Figure 1.38: The histogram in Figure 1.37 suggests that the statistics
of errors correspond to a box-car probability density. In that case the best
estimator of x;.. i the mid-range of the 101 values. These values were, in
fact, generated using a computer code simulating a box-car probability den-
sity. This figure shows the histograms obtained for the median (top), mean
(middle), and mid-range (bottom) when repeating the whole experiment
(generation of the 101 random points) a large number of times. Undoubtedly,
the mid-range is (in this example) the best estimator, whatever criterion of
goodness we may use,

u(x,y) = const. 3)

The information represented by ©(x,y) and p(x,y) are independent in the
sense discussed in section 1.2.6 . Combination of these data then corresponds
to the conjunction

- Ax.Y) O(xy)
o(x,y) R @)

which is plotted in Figure 1.39.
The polar coordinates verify

r = (xz+y2)1/2 tg =<, ®)

<M

so that the Jacobian of the transformation is

a ot
_ ox dy|_ 1
d) = | |= 1 ©)
ox dy

Let f(x,y) be a probability density in cartesian coordinates. To any surface
S of the plane it assigns the probability

PS) = JJ dx dy f(x,y) . (7)
S
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Let f (r.$) be a probability density in polar coordinates. If we wish f (r,9)
to assign to S the same probability as f(x,y) ,

P(S) = dr d¢ f(r,¢) , 8)
S

then necessarily
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+ Figure 1.39: A random device has been built which projects electrons
on a cathodic screen with the probability density shown in the top-left.
Coordinates are cartesian. Independently of this probability, a measurement
of the impact point of a particular electron gives the information represented
by the probability density shown in the top right. The null information pro-
bability density (which is uniform, and has been represented in arbitrary
color) is shown in the bottom left. It is then possible to combine all these
states of information to obtain the posterior probability density, shown in
ther bottom right,

f(r,9) = f(x(t.d) , y(r,9) ) |I(x.9)| . ©)

This is the usual formula for the change of variables in a probability density.
In our case

f(rd) = rf(rsing,rcos¢). (10)
This gives

const. rz (1-r) if 0<rg?2

o(xy) = @
0 if r>2,

- _ _r2(1 -2 psing cosd )

p(r,¢) = const. r exp[ 5 0% (1-p2) ] s (12)

and

fi(r,¢) = const r. (13)

The combination of ©6(r,¢) with p(r,§) is given by the conjunction

5(r,) = M&Q), (14)
B(r,9)

and is shown in Figure 1.40.
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It should be noticed that the probability density representing the null in-
formation probability is not uniform in polar coordinates: the probability
density (13) assigns equal probabilities to equal "volumes", as it must.

The solution obtained for this problem using cartesian coordinates
(Figure 1.39) , and the solution obtained using polar coordinates (figure 1.40)

are coherent: Figure 1.39 can be deduced from Figure 1.40 using (9) , and
viceversa.
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+« Figure 140: 1t is also possible to solve the problem using polar coor-
dinates throughout. The top-left represents the probability density of an
impact on the screen, as imposed by the experimantal device. The probability
density is constant for given r . The top-right shows the result of the meas-
urement. In the bottom-left, the noninformative probability density in polar
coordinates is shown. It assigns equal probability to equal surfaces of the
screen. The combination of these states of information gives the posterior
probability density shown in the bottom-right. This probability is completely
equivalent to the probability density in the bottom-right of the previous
figure, as they can be deduced one from another through the usual formula

of change of variables between cartesian and polar coordinates &(f,¢) = r

a(x,y) .

Using more elementary approaches, this problem may present some
pathologies. In particular, the result cannot be expressed using a single esti-
mator of the impact point, because the probability density is bimodal. The
mean value and median value are meaningless, and only the two maximum
likelihood points make clear sense. But we should be aware that the maxi-
mum likelihood points obtained using cartesian coordinates and using polar
coordinates are not identical.

It should be mentioned that the usual Bayesian approach does not apply
directly to this problem.

Problem 1.13: Demonstrate that the relative information of two proba-
bity densisities is invariant under a bijective change of variables.

Solution: Let f(x) be a probability density function representing a
given state of information on the parameters x . The information content of
f(x) has been defined by

f(x

If;p) = |dx f(x) Log f&)| 1
(£3m) J (x) Log u(x) 0y
where pu(x) represents the reference state of information. If instead of the
parameters x we decide to use the parameters

= X', @)

the same state of information is described in the new variables by
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) = ) |2, 3)
9x

while the reference state of information is described by

WM = wx |2, @)
ox

where |9x/0x"| denotes the absolute value of the Jacobian of the transfor-
mation. A computation of the information content in the new variables gives

3 *, %k
") = Jax* £f(x) Log L)
) w(x)
= |dax* 9% f(x) Lo £(x) . 5
" | | 10 Loe 33 (5)
and, using
dx* Q; = dx, 6)
Ix

we directly obtain

") = Wfm) (7)
Problem 1.14; Demonstrate the equivalence

If;p) = 0 “ f(x) = p(x) . (1)
Solution: If f(x) = u(x) , it is evident that I(f;u) = 0. To demon-

strate the reciprocal, let us, for given pu(x) , search the minimumof  S(f)
= [dx f(x) Log f(x)/u(x)  under the constraint Jdx f(x) = 1. Using
the method of Lagrange’s multipliers (see Chapter 4), we can introduce the
function

S(E)) = de f(x) Log %2% - de fx) |, @)

to be minimized with respect to the function f(x) and the parameter X .
We have first
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g_i. =0 & Jax f(x) = 1, €)
which simply is the normalization condition. The definition of functional
derivative is written (see, for instance, Chapter 7) , for arbitrary &f ,

S(E+6£:2) - S(F)) = g% 58+ O(|[s£]]2) . @)

We have successively

S(f+6£)) - S(f;)) =
Jax (f(x) +6f(x) ) Log TR 5 () - fax (£(x) + 66x) ) )

p(x)
- fdx f(x) Log Zi(% +2 (1 - fdx f(x) )
= fax [Log g(% +1 +,\] stx) + O(||sf]]2). )
The condition 8S/8f = 0 then gives successively
Log%%%s—}\—l, ©)
f(x) = e*! wx), €]

and, as the information content is only defined if u(x) is normalized, this
gives A = -1 and

f(x) = wx) . ®

Problem 1.15: Maximum entropy probability density. Let V(x) be an
arbitrary given vector function of x . Demonstrate that among all probabil-
ity densities f(x) for which the mathematical expectation for V(x) equals
A\’

0
J.dx V(x) f(x) =V,, (1)

the one which has minimum information (maximum extropy) with respect
to a given probability density u(x) ,

p(x)

necessarily has the form

de f(x) Log[ fx) ] MINIMUM |, @)
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f(x) = k p(x) exp( - W* V(x) ), (3)
where k and W are constants (independent of x ).

Solution: The problem is:
Minimize S(f()) = [dx f(x) Log[ LML’%] (42)

Jax f(x) = 1 (4b)
Under the constraints {
Jax vix) fx) = v, (4c)

i.e., a problem of constrained minimization, which is non-typical in the sense
that the variable is a function (i.e., a variable in an infinite dimensional
space). Nevertheless, the problem can be solved using the classical method of
Lagrange’s parameters (see Chapter 4). The problem of minimization of §’
under the constraints (4b)-(4c) is equivalent to the problem of unconstrained
minimization of

), U, W) = fdx f(x) Log[%] - U(1- fdx f(x))
- W' (V, - fdx V(x) f(x) ) (5)

because the conditions 8S/0U = 0 and 8S/8W = 0 directly impose the
constraints (4b)-(4c) . We have

S(f()+6f(),U,W)-S(f(),U,W) =

= f(x)+5f £
= fax (f(x) + 8f(x) ) Log[ ﬁ‘i’z—x)ﬁ‘l ] - fdx f(x) Log[ ;%(% ]

+ U fdx 6f(x) + W' [dx V(x) 6f(x) , ©6)
and using the first order development
Log(1+u) = u + O(u?) , )

gives, everywhere f(x) # 0,
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f(x)+8f(x f(x) 8f(x
Log[ 'Ll%;)i—l] = Log[ x) ]+ -(ﬁ—)2+ o(s5£2) , 8)
and then,

SCEC)+8£() , U, W) -S(f(), U, W) =

= [dx [Log[ il) ] +1+U + Wt V(x) ] 5E(x) + O(sf2) . ©)

The condition of minimum of S with respect to f(x) causes the factor of
§f(x) in the right hand of (9) to vanish, from which result (3) follows.

Problem 1.16: Let f (x) and f(x) represent two normalized probabil-
ity density functions. The relative information on f, with respect to f, is
defined by

fo(x)

Demonstrate that if f; and f; are Gaussian probability densities with
mathematical expectations respectively equal to x, and x, and covariance
operators respectively equal to C, and C;, then

(£ if,) = de £(x) Log[ fl(x)] . )

dett/2C, | R
I(fpfo) = L m + z (xl—xo) (:0 (Xl-Xo)
+3 Trace[ c,C,t -1 ] . @)

Solution: By definition,

- 1 1 _ 1 -
e @m)n/2 detl/ZC1 exp[ 2 (xoxy ) G (xoxy ) ] Ga)

and
1

f,(x) =
¢ @mn/2 detl/2C,
Replacing (3) in (1) gives

det'/2C,
o) = [m}

xp[-% (x-x,)f C,* (x—xo)]. (3b)
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{1
-

.
-z E \ (x-x,)t Cl_1 (x-x,) ] + % E1[ (x-x,)t CO_1 (x-x,) ] , @
where E,(-) denotes the mathematical expectation with respect to f 1t

n

E(¥(x)) = [dx f(x) ¥(x). )

o

From the definition of covariance operator, and using the linearity of
the mathematical expection, we obtain

C, = Ef((x-x)) (x-x)! ) = E(xxt-2x, xt+x, x,}) (6)
= E(xx*)-2x, E(x*)+x,x! = E(xx%)-x, xt,

whence, using a tensor notation we deduce

E(x*xf) = C* + x2x/F. )
We have

El[(x—xl)t Cl_1 (x-x,) ] = . = E1[ xt Cl-1 X ] - x,t Cl_1 X,

= (C; ) E(x*xP) - (C; )% x,*xf, ®)
whence, using (7), we deduce

El[ (x—xl)t Cl_1 (x-x,) ] = (Cl‘l)"‘ﬂ Claﬁ = Trace I. 9)
We also have

El[ (x-xg)t Cy* (x-x,) ]

= tc ! - t 1 t ¢t
.—El[x C, x] 2x,Comx; + xS Cyox,

(Co™)2B Ey( x* x8 ) - 2(C, 98 x, x5

+ (Cy~1)B x> x,F (10)
whence, using (7), we deduce

El{ (x-xp)* C, " (x-X,) ]
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(Co 1) C 2P+ (Cy )P (x,%-%,%) (x,P-xf) ‘
Trace[ c,’ ¢ ] + (x,-Xg)t Cy t (x,-X,) - (11)

Inserting (9) and (11) in (4), result (2) follows. Notice that the factor
dett/2C represents the (hyper) volume of the hyper-ellipsoid representing
the covariance operator C .

Problem 1.17: Let X be a parameter space, and P, , P, ,... probabil-
ity distributions representing different states of information on X. In sec-
tion 1.2.6, the conjunction (P, and P,) has been defined by

(P,and P,) = (P,and P)) for any P, and P, )
P(4) =0 = (P, and P,)(4) =0 forany P, ,P, ,andany A C X )
Pand M) = P for any P, 3)

where M represents the state of null information. If the probability densi-
ties representing P, , P, , and M, are respectively f (x), f,(x) , and pu(x)
, show that the probability density representing (P, and P,) is
f,(x) f,(x)

I(x)

Solution: In mathematical terminology, the condition (2) means that the
measure (P, and P,) is "absolutely continuous" with respect to the measure
P,. The Radon-Nikodym theorem (e.g., Taylor, 1966) states that there then
exists a unique function ¢,(x) such that, forany 4 C X,

(P, and P,) (4) = Idx $,(x) f,(x).. 4)
A

Using conditions (1) and (2) and the Radon-Nikodym theorem again, we see
that there also exists a unique function ¢,(x) such that, forany 4 C X,

(P, and P,) (4) = J FKCRCE ©)

At any point x where the product f,(x) f,(x) is non-vanishing, I define

£,(x)
wy(x) = m (62)
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w,(x) = . (6b)
2 $,(x)
For any 4 ¢ X we then have

f.(x) f,(x) f,(x) f,(x)
(P, and P,) (4) = kx —I—Jﬁ— = ij l—wl(i)ﬁ— 7
This gives
w,(X) = w,(x) = w(x) ®)
and

f f
(P, and P,) (4) = L;ix -1(—){(;))()()2()(). %)
Condition (3) then gives
L;ix fiiw)&/;iﬂ - J;x f(x) , (10)
ie.,
wx) = p(x). (11)
We finally obtain

_ £,) £,

(P, and P,) (4) = J;;:lx BT (12)

Equation (11) has been obtained only for the points x where the pro-
duct f,(x) f,(x) is not vanishing. But as elsewhere the probability density
vanishes, the result (12) is valid for the whole space X.

Problem 1.18: Assume the very particular case where the exact relation-
ship d = g(m) between model parameters and observable parameters is a
bijection (i.e., we can also write m = g-1(d) ). In that case, find the rela-
tionship between the a posteriori p.d.f. in the model space, oys(m) , and the a
posteriori p.d.f. in the data space op(d) .
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Solution: We start from the general solution

d,m) 6(d,m

d,m = A_LL(_L__l . 1
o(d,m) s(d.m) (1)
The assumption of an exact theory is written

6(d,m) = &(dm) py(m) = §d - g(m)) py(m) , @)

where py,(m) is the marginal reference p.d.f. for m .
The a posteriori p.d.f. in the model space is

- - pg(m)m)
oy(m) = fdd o(d,m) (g (m).m) tg(m) ®3)

while the a posteriori p.d.f. in the data space is

op(d) = fdm ofdm) = fam EEML 5(d-gen) py(m) @)

Using the bijection, the last sum can be transformed on a sum over a vari-
able 4’ = g(m) :

op (d)

C AN sy e
ad KA-0) ()
s l be | Hdg @) e

- 1 pd.g” 1(d)) ™ (g71(d)) . (5)
og | wmd.gXd)
om

In particular, we have

oplg(m) = —— AEIML y (m), ©)
o

and, by comparison with (eql) we deduce

% | , 1)

om
which is the usual formula relating information in variables related through
an exact bijection,
It should be noticed that pp(g(m)) and oy (m)) are not related by
such an equation, as can be expected using more naive approaches to inverse
problem theory.

oy(m) = op (g(m))
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Problem 1.19: Letting G be an arbitrary linear operator from a vector
space M into a vector space D , and Cy and Cp two covariance oper-
ators acting respectively on M and D (ie., two linear, symmetric, positive
definite operators), demonstrate the following identities:

(G* Cp G+ Cy™) G Cp~1 = Cy Gt (Cp + G Gy GYF, (1)

(G*Cp1G+Cy)" = Cy-Cy Gt (Ch+G Cy GG Cy . |

Solution: The first equation follows from the following obvious identities

Gt + Gt Cp™1 G Cy G* = Gt Cpt (Cp + G Cy GY)

(Gt Cp™2 G + Cyy~1) Cy Gt 3)
since G* Cp™t G + ™! and Cp + G Cu G*  are positive definite and,
thus, regular matrices. Furthermore,

Cm - Cp G* (Cp + G Cy GY™ G Cy

Cy - (G* Cp™1 G + Cy™) ™ Gt Cp~1 G Cy

(G* Cp™* G+ Cyy™) " ((G* Cp ™1 G + Cyy™)) Cy - G* Cp™1 G Cyy)
(Gt Cp 1 G+ Gy . )

Problem 1.20 (the convolution of two Gaussians is Gaussian): Evaluate
the sum

I= Jdd exp [ é [(d-do)t Cq™1 (d-d,) + (d-g(m))t Cp™* (d-g(m))]] R,

Solution: The separation of the quadratic terms from the linear terms
leads to:
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I=Jddexp[—%(thd—zbtd+c)], @)
where

A=Cjl+cpt (3a)
bt = df Cq ' +gm)t Cpt (3b)
c = d;t CT-1 d, + g(m)t CT'1 g(m) . (3¢)

Since A is positive definite, it follows:

I= Jdd exp [ %((d-A'l b)Y A (d-A™ b) + (c-bt A™ b))]

exp [ %(c-bt Al b)] Jdd exp [ %(d-A'l b)t A (d-A7 b)]

(2mP/2 (det A)-1/2 exp[ % (c-bA D) ] : (4)
By substitution we obtain

c-bt AT b = dg [Cd'l -yt [Cd'1 +Cpt ] Cyt ] d,

+ g(m)t [CT-1 -Cp ! [Cd—1 +Cpt ] C,t ] g(m)

- 2 g(m)t Cp* [cd“ +Cpt ] Cyld,. )

Thus, by using the two identities demonstrated in the previous problem, we
get

c-b* AT b = d,(Cq+Cp)ld, + gm) (Cy+Cp )™ gm)
-2 g(m)t (Cq + Cp ) ' d, ‘
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= (dy - gm) )t (Cq+Cp)' (d, - gm) . 6)
Finally, we obtain:

I =(2mn/2 det(cD-1+cT-1)'1/2exp [—%(do-g(m))t (Cp+Cp) ™ (do—g(m))]. (7)

Problem 1.21: The Generalized Gaussian of order p is defined by

1-1/p
2 0 I(1/p)

p
|x-x0|

fo(x) = exp| - (1)

1
p oP

Demonstrate that it is normalized. Give a direct computation of its E norm
estimator of dispersion.

Solution: We have

+00 +00 o}
I, = J dx f (x) = J dx fp(x+x,) = 2 de f(x+x,) =
-00 -00 O
1-1/ o 1
= PP lax e -1 2
o T(1/p) J'o A B 2)
Introducing the variable
w= X 3)
p xP-1
we successively have
-1
oP
1-1
dx = gy = culMe g ce(5)
and ‘
l (o o]
= 1'1/P -u
I, T(1/5) Ldu u eu . (6)

Using the definition of the Gamma function
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(o o]
I(t) = J’du ul-t eu (7
0
we directly obtain
r 400
I, = dx f(x) = 1. 8)
J=00

By definition, the estimator of dispersion in norm £, is (see Box 1.2)

r

+00 D 1/p
0, = J dx | X - X, | £,(x) . %)

-00

.
We successively have

+00 1/p 00 1/p
0, = J dx | X |p fo(x+%,) = |2 de | X Ip fo(x+x)
-00 0
o0 1/p
I 1l

and, again using the change of variables previously defined

00 1/p Y
= |.po® 1-(1+1 -u _ oP T(1+] P
% T(1/p) Ldu ul-(1+1/p) ¢ [ (1) ] . (11)

Finally, using the property I'(1+t) = t I'(t) , we obtain

o, = 0. (12)
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CHAPTER 2

THE TRIAL AND ERROR METHOD

Would you tell me, please, which way I ought to go from here?,
said Alice,

That depends a good deal on where you want to get to,

said the Cat,

I don’t much care where,

said Alice,

Then it doesn’t matter which way you go,

said the Cat.

Lewis Carroll, 18685.

Let m represent an arbitrary model, d_,, the observed data values,
and '

dey = g(m)

the predicted data values for the model m . Trial and (correction of) error
is a method in which a user starts from some initial model m, , computes
d.. = g(m,) , compares d_,; with d_, , and appeals to his physical intui-
tion to guess a new model m,; for which g(m,) fits the observed data
values better than g(m,) . The procedure is iterated until successive updat-
ings of the model do not significantly improve the fit between observed and
computed data values.

Usually, the method is worked interactively on a computer terminal
which allows a convenient display of the data. The misfit between observed
and computed data values may be measured through some "cost function"
(such as, for instance, equation (1.104)), or may simply be qualitatively esti-
mated. Only model updatings are considered which are compatible with the
user’s a priori information on model parameters.
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CHAPTER 3

MONTE CARLO METHODS

Dans I'ordre biologique établi par la sélection,

Ie hasard vient de temps en temps semer le désordre.

Il secoue périodiquement ces barriéres trop contraignantes
et permet 4 ['évolution de changer de cap.

Le hasard est anti-conservateur.

Jacques Ruffié, 1982

We have seen in Chapter 1 that the most general method for solving
nonlinear inverse problems needs a complete exploration of the model space.
For problems other than academic, the method is in general too computer in-
tensive to be useful. This is why usual methods limit their scope to obtaining
some "best" model, i.e., a model maximizing the probability density oy (m)
or minimizing some misfit function S(m).

If the forward problem is not excessively nonlinear, the functions Op(m)
and/or S(m) are well behaved and usually have a single extremum, which
can be obtained, for instance, using gradient methods, i.e., methods that use
the local properties of the function at a current point m, to decide on a
direction of search for the updated model m,,, . For highly nonlinear
problems, there is a considerable risk that gradient methods will converge to
secondary solutions. It happens that, for model spaces with more than a few
parameters, it is dramatically more economical to select points in the model
space randomly, than to define a regular grid dense enough to ensure that at
least one point will be in the optimal area.

Any method which uses a random (or pseudo-random) generator at any
stage is named Monte Carlo, in homage to the famous casino. For instance,
we can use a Monte Carlo method for computing the number = : on a regu-
lar floor, made of strips of equal width w , we throw needles of length 1=
w/2 . The probability that a needle will intersect a groove in the floor equals
1/m (Georges Louis Leclerc, Comte de Buffon (1707-1788)). Deltheil (1926)
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CHAPTER 4

THE LEAST-SQUARES (£,-norm) CRITERION

If we know that our individual errors and fluctuations

follow the magic bell-shaped curve exactly,

then the resulting estimates are known to have

almost all the nice properties that people have been able to think of.

John W. Tukey, 1965.

Least squares are so popular for solving inverse problems because they
lead to the easiest computations. Their only drawback is their lack of robust-
ness, i.e., their strong sensitivity to a small number of large errors (outliers)
in a data set.

In this book, the least-squares criterion is justified by the hypothesis
that all sources of errors present in the problem can be modeled using Gaus-
sian functions. Covariance operators play a central role in the method. The
underlying mathematics are simple and beautiful.

The methods of resolution suggested in this chapter are based on the
classical optimization theory. Gradient and Newton methods for the resolu-
tion of nonlinear problems are introduced. The approach followed in this
chapter is fully nonlinear, and linear or linearized problems are treated as
special cases.
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4.1: Introducing least squares

Let d denote a generic data vector, m a generic model vector, and d
= g(m) the theoretical relationship between data and model parameters, A
measurement of the true value of d gives d., , with Gaussian uncertain-
ties described by the covariance operator C4 . The a priori information on
m may be described by the a priori value m,.r » With Gaussian uncertain-
ties described by the covariance operator Cy - Finally, the theoretical rela-
tionship d = g(m) holds only approximately, and the corresponding uncer-
tainties are Gaussian and are described by the covariance operator Cr . As
demonstrated in Chapter 1, the probability density representing the posterior
information in the model space is then given by (equation 1.85);

op(m) = const x 4.1)

X exp [—é[(g(m)-dobs)t ! (8(m)-d ) + (m-m ;. ) Cy'’ (m—mprior)]] .

where

CD = Cd + CT . » (4'2)
If the equation solving the forward problem is linear

dical = gi(m) = Z Gie mo (iely), (4.32)

acly
or, for short,

dy = Gm, (4.3b)

the posterior probability density op(m) is then Gaussian (equations (1.89) to
(1.94)):

opi(m) = (0™ det Cpp)2exp [% m-(m) ) Cypy' (m-(m) )], (4.4)
with center

(m)

- -1]°1 - -
[Gt Cp ' G +Cy 1] [Gt Cp ' dy, + Cy " mpﬁor] ,  (4.52)

- -1 171 -
= mprior + [Gt CD ! G+ CM 1] Gt CD ! (dobs -G mprior) ,(4-5b)
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-1
= My, + Cy Gt [G Cu G + CD] (dops - G m5,) 5 (4.5¢)
and covariance operator
- 111
Cyr = [Gt Cp ' G+Cy ‘] , (4.6a)
-1
= CM - CM Gt [G CM (}t + CD] G CM . (4.6b)

The value (m ) , center of the Gaussian, is both the mean value of
op(m) and its maximum likelihood point. It is abusively referred to as the
solution of the inverse problem. We see thus that, for linear problems, we
have explicit expressions for the solution and for the posterior covariance
operator.

If the forward problem is nonlinear, the posterior probability density
op(m) is not Gaussian, and the analysis of the solution is not so straightfor-
ward. For strongly nonlinear problems, oy(m) may be quite chaotic
(multimodal, with infinite dispersions, etc.), and the general methods
described in Chapter 1 should be used to analyse the solution. If oy,(m) is
reasonably well behaved, the a posteriori information in the model space may
be well represented by a central estimator of oy(m) and a properly defined
covariance operator. Among all the central estimators, the easiest to compute
is generally the maximum likelihood point mygq :

opg(m) MAXIMUM for m = my, , (4.7a)

because the obtainment of m,, corresponds to a problem of optimization
of a scalar function, and many methods exist allowing an economical resolu-
tion of that problem.

Defining the misfit function (or cost function, or objective function, or
least-squares function, or chi-squared function) by

sm) = 1 ((em)-dg) Cp™ (Bm)-dgy) + (@Mt Oyt (momp) ]

(4.8)

the maximum likelihood point is clearly defined by
S(m) MINIMUM for m = my; . (4.7b)

For uncorrelated errors,
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(Cp)i = (o))" Y,
Cu)* = (62)" 58,

the misfit function S(m) becomes

o -y y L] g [ ]
i€lp [UID] acly, [U;}]

which justifies the name of least.squares for the criterion (4.7b).

As introduced here, the least-squares criterion is intimately related with
the Gaussian probability assumption. Many people like to justify least squares
from a statistical point of view. They deal almost exclusively with linear
problems. For them, d and m are random variables with known covari-
ance operators Cp and Cy , and unknown mathematical expectations
dye and my,. . dg, and m_; . are then interpreted as two particular
realizations of theé random variables d and m . The problem is then to
obtain an estimator of m;.. , m., , which is, in some sense, optimum. The
Gauss-Markoff theorem (see, for instance, Plackett, 1949, or Rao, 1973)
shows that, for linear problems, the least-squares estimator has minimum var-
iance among all the estimators which are linear functions of d,, and
m.. s irrespectively of the particular form of the probability density func-
tions of the random variables d and m. This is why the least-squares cri-
terion is sometimes used even if the form of the density functions is not
Gaussian. The trouble is that the criterion of minimum variance is not magic,
and, in fact, it may be a very bad criterion in some cases, such as, for in-
stance, when a small number of large, uncontrolled errors are present in a
data set (see problem 1.9). As the general approach developed in Chapter 1
justifies the least-squares criterion only when all errors (modelization errors,
observational errors, errors in the a priori model) are Gaussian, I urge the
reader to limit the use of the techniques described in this chapter to the
cases where this assumption is not too strongly violated.

It often happens that some model parameters are, by definition, positive.
To take a Gaussian function to model the a priori information is not coher-
ent because a Gaussian function gives a non-nul probability to negative
values. Sometimes, a least-squares criterion is used for such parameters, com-
pleted with a positivity constraint. This is not the most rigorous nor the easi-
est way to attack this sort of problem. As suggested in section 1.2.4, these
parameters usually accept a log-normal function as a prior probability den-
sity. Taking the logarithm of the positive parameter defines a new
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(unbounded) parameter whose a priori probability density is Gaussian, and
for which standard least-squares techniques apply.

4.2: Methods of resolution (I )

We have just seen that the central problem in general least squares con-
sists in the minimization of the misfit function

St = L [(@m)-d)t Cp ™ Bm)-dyy) + (momiyie) Coy™* (mompe) )

This section reviews the simplest (although not necessarily the more
economical) methods for the resolution of this minimization problem. After a
few mathematics, section 4.5 will deal with more sophisticated methods.

4.2.1: Systematic exploration of the model space

A regular grid is defined over the model space M , and the value S(m)
is computed at each point. Taking a dense enough grid, the point minimizing
S(m) can be approached with arbitrary accuracy. The method can only be
used if the model space has a small number of dimensions.

If this method has to be used, instead of plottmg S(m) I recommend
dealing directly with

op(m) = const exp(-S(m)) ,
because, after proper normalization, the results obtained are directly inter-
pretable in terms of probabilities.
4.2.2: Trial and error
If the number of dimensions of the model space is small, it is also possi-
ble to work interactively with a computer terminal, modifying the current
point on an intuitive basis, until a point m which gives an acceptably low
value for the misfit S(m) is found. See Chapter 2 for more details.
4.2.3: Relaxation
Let m, represent the "starting point". To obtain the updated point m,

, all the components of m but one are fixed, and the value of the free
component for which S(m) has a minimum is obtained using an arbitrary
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method (trial and error, interpolation,..). All the components of m are
chosen in turn, and the procedure is iterated until subsequent updatings alter
the result only negligibly. Figure 4.1 illustrates the method. The convergence
rate is, in general, poor.

Figure 4.1: The path obtained using the relaxation method of minimiza-
tion in a schematic problem with two variables.

4.2.4: Monte Carlo methods

As explained in Chapter 3, a Monte Carlo method is any method using a
random generator at any stage. These methods are particularly useful for
highly nonlinear problems. In its simplest formulation, a threshold value of
S is fixed. Any model m for which S(m) is less than the threshold value
is named an acceptable model. Random points are generated over the model
space M until a sufficient number of acceptable models has been obtained
as being representative of the acceptable domain of the model space (see
Chapter 3 for more details).

4.2.5: The Gauss-Newton method

If the functions gi(m) solving the forward problem are differentiable,
1.e., if the derivatives

G = égi_] (4.9)
om? m,,
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can be defined at any point m, (or at "almost” any point), and if they can
easily be computed, then the derivatives of S(m) can also be easily obta-
ined, and the very powerful gradient and Newton methods can be used for
minimizing S(m) . Although their detailed study is left for section 4.5, the
Gauss-Newton method is introduced here in an elementary way.

Equation (4.8) can be written explicitly as

S(m) = é [ Z Z [gi(m)-diobs] [CD’I]ij [gJ (m)- dobs]

i€l jElp

-1 ﬁ
YD Lo V5 R | RS
a€ly BEly
We obtain easily

[aan?a] Z Z Gy [CD ]” [gJ(m -l ]

i€l jelp
+ Z [CM‘l]aﬁ [mﬁ—mgrior] . (41 1)
BEL
or, in more compact notation,
[—a%]n = Gnt CD_l (g(ml’l)_dobs) + CM_l (mn-mprior) . (4.12)

The vector defined in (4.11) and (4.12) is named the gradient of S(m) at
m = m, (seec Box 4.7 for more details). At the minimum of S, the gradient
will vanish: /

S(m) minimum for m=m = [S—S] =0,
m oy,

the reciprocal of course not necessarily being true. In practical applications,
once we get a point at which the gradient vanishes, in general it is easy to
verify that it is not a maximum of S or a saddle point, because when any
iterative method provides a sequence of points m,, m,, .., it is easy to
verify that the sequence S(m,), S(m,),..., is decreasing. Saddle points are in
general not obtained with iterative methods because the path leading to them
is very unstable (the only possible way for a drop of rain to reach the saddle
point of a horse saddle is just to fall on that point).

Another more difficult question is to know whether the point reached is
the absolute minimum, or if it only is a secondary minimum. As no local test
can answer the question, the only possibility is to start iterating at different



194 Section 4.2: Methods of resolution (I)

points and to check if we converge into the same point.
A traditional way of obtaining the minimum of a function (i.e., the zero
of its gradient) is to use the Newton method:

m . [e8) [es
m,,; = m, [amz]mn [am]mn s (4.13)
where the operator 8S2/dm? is named the Hessian of S, and is here defined
by its components:

o8
[as2 « 8 8 _ _as @.14)

om? | dmP Jm« om*mp
From equation (4.11) we readily obtain

328 ) i -1 )ij : -1)aB
[_amﬂ:i - Z Z o [ J s (cw ]

i€l jely
\ Z E [ZG';] ()’ [gj(mn)-dibs]_ @.15)
m
i€l jelp "

The last term is small if: i) the residuals are small, or ii) the forward equa-
tion is quasi linear. As in Newton methods we never need to know the Hes-
sian with great accuracy, and as the last term in equation (4.15) is, in gen-
eral, difficult to handle, it is generally dropped off, thus giving the approxi-
mation

2Q ) N . is .

(_gmsz ‘;ﬂ ~ 2 g G (Cp™)” G¥ + ()™, (4.16)
= A=
or, in compact form,

4 A

82 -1 -1

— ~ G tC G, +C . (4.17)
kanlan n D n M

Using equations (4.11), (4.13), and (4.17), we arrive at the following algo-
rithm ,

-1
-1 -1
m,,y = m, - [Gnt CD Gn + CM ]

[G,,t Cp ™" (g(m,) - dgp) + Cy ™ (m,, - mprior)]. (4.18)

If the components of the data and model vectors have been ordered in a
column matrix, this equation can then be interpreted as an ordinary matricial
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equation.

As covariance operators are, by definition, positive definite (if they do
not contain null variances or perfect correlations), the matrix G,' Cp~1 G,
+ Cyy~1 is symmetric and positive definite, so that Cholesky’s decomposition
methods can be used (see Appendix 4.5). It should be noticed that, given a
regular matrix A and a vector y , the most economical way of computing
the vector x = A"l y , is not to compute the inverse matrix A~!, and then
to multiply A~! by y, but to use an algorithm allowing the direct resolu-
tion of the matricial equation A x = y , which can be done much more
economically (see, for instance, Appendices 4.4 and 4.5).

If the functions gi(m) are linear, then the function S(m) is a qua-
dratic function of m , in which case the Newton algorithm converges in
only one iteration. For nonlinear functionals gi(m) , not only do we need to
iterate, but we cannot be sure that the Newton algorithm will converge.
Thus, at each iteration we have to compute S ., =S(m_,,), and check if
the condition

Sn+1 < Sn s

is fulfilled. If not, equation (4.18) has to be replaced by
-1
m,, = m, +e¢ [Gnt Cp ' G, + CM‘l]

[Gnt Cp ™' (g(m,)-dg,) + Cy (mn-mpﬁor)] , (4.19)

where ¢, is an ad-hoc constant less than unity. Alternatively, it is also pos-
sible to dump the Newton updates by artificially diminishing the a priori
variances in C,, . This last method is almost equivalent to the method pro-
posed by Levenberg (1944), or Marquardt (1963). See section 4.5 for more
details.

4.2.6: Characterization of the solution.

At the minimum of the misfit function, the gradient must vanish. This
gives, using (4.12),

Cy ' (m-m,) = - Gt Cp™ (g(m)-dgy,) -

Adding Gt Cy™' G (m-m,..) to both sides we obtain



196 Section 4.3: Analysis of error and resolution

{Gt CD—1 G+ CM-I] (m_mpl'ior) = -Gt CD_1 (g(m)_dobs_G (m—mprior) ),

ie.,
-1 Yt -1

m = mprior - [Gt CD G + CM ] Gt CD

(8(m)-d -G (m-m,;.,)) , (4.202)
or, using the identity demonstrated- in problem 1.19,

-1

m = mprior - CM Gt [CD + G CM G]

(g(m)-d ;-G (m-m;)) . (4.20b)
Equations (4.20) characterize the solution. Notice that these are implicit

equations (the unknown m appears at both sides). In fact it is possible to
obtain the solution from (4.20) using a fixed point algorithm:

-1
-1 -1 -1
m,,; = mprior - [(;nt CD Gn + CM ] Gnt CD

(8(m,)-d,p, -Gy, (m,-m_; ), (4.21a)

-1
m,y = mprior - CM Gnt [CD + Gn CM Gn]
(g(mn)_dobs—Gn (mn_mprior)) . (4.21b)

4.3: Analysis of error and resolution
4.3.1: Computation of the posterior covariance operator

We have seen in section 4.1 that if the equation solving the forward
problem is linear,

gm) = Gm,

the posterior probability density is then Gaussian (equation (4.4)), with center
given by (4.5), and with covariance operator given by

-1
Cy = [Gt Cp, ' G+ CM'l] (4.22a)
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-1
= CM - CM Gt [G CM Gt + CD] G CM . (4.22b)
A problem is "linearizable around m_ " if, for any m of interest,
gm) ~ g(m;) + G (M - m) (4.23)
where
3
G, = [—&] : (4.24)
* om Mypef

m,, is named the reference model and usually (but not necessarily) corres-
ponds to the a priori model

= mprior . (4.25)

ref

It is easy to see that within the approximation (4.23), the a posteriori proba-
bility density in the model space is approximately Gaussian, with center

-1
< m ) = Mpyor = [G:e{ CD ' Gref + CM 1]

G, Cp ™ (B(myg) - doge) (4.262)

-1
= DMy - Cum G:ef [ ref Cm G:ef + CD]

(g(mprior) - dobs) ’ (4-26b)
and covariance operator
-1
Cy = [G:;-ef Cp ' Gy + CM‘l] (4.27a)
t t o
= CM - CM Gref [Gref CM Gref + CD] Gref CM . (4.28b)

For true nonlinear problems, the approximation (4.23) is no longer
acceptable. As explained in Figure 1.13, least squares can only be applied to
problems where the nonlinearity is not too strong, i.e., in problems where the
function g(m) is linearizable in the region of significant posterior probabil-
ity density. Let m,, be the maximum likelihood of oy(m) obtained by
any of the methods described in this chapter, without linearizing g(m) (the
index "oo" stands because the maximum likelihood point is always obtained as
the limit point of an iterative algorithm). That g(m) is linearizable in the
region of significant posterior probability density means that, once the point
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m,, has been obtained using a nonlinear algorithm, for evaluating op(m)
we can use the linear approximation

g(m) ~ g(m,)+ G, (m - m), (4.29)
where

- | %8
G, [ am]m (4.30)

00
Inserting (4.29) in (4.1) gives
op(m) =~ const exp [—% (m-m_ ) CM"1 (m-m_) ] s (4.31)
where m,, has been obtained by a nonlinear computation, and where
-1
Cy = [Goot Cp ' G, + CM‘l] (4.32a)
-1
= Cy - Cu Gt [Goo Cu Gt + CD] Gy Cu - (4.32b)

Kennett (1978) studied the first~order modification of the posterior cov-
ariance operator due to non linearity.

If you are not sure of the validity of the linearized estimation of poste-
rior errors, you can solve the inverse problem a few times, with different
values of d,, and of m_, ,and make a rough statistics of the results. If
you have more time, generate Gaussian random data vectors with mean d,
and covariance operator Cp and Gaussian random model vectors with mean
m, .. and covariance operator Cp, , solve the nonlinear inverse problem
for each realization, and make a proper computation of the mean value and
covariance operator of the results.

4.3.2: Interpretation of the posterior covariance operator

The most trivial use of the posterior covariance operator Cy 1s to in-
terpret the square roots of the diagonal elements (variances) as “error bars"
describing the uncertainities on the posterior values of the model parameters.

A direct examination of the off-diagonal elements (covariances) of a
covariance operator is not easy, and it is much better to introduce the corre-
lations

paﬁ = Caﬂ
(Can)M® (Cop)/?
which have the well known property
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-1 < p*P < 41,

If the posterior correlation between parameters m® and mf is close to
zero, the posterior uncertainties are uncorrelated (in the intuitive sense). If
the correlation is close to +1 (resp. -1), the uncertainties are highly corre-
lated (resp. anticorrelated). A strong correlation on uncertainties means that
the two parameters have not been independently resolved by the data set,
and that only some linear combination of the parameters is resolved.

Sometimes the parameters m?*, m2, ... represent the discretized values of
some spatial (or temporal) function. Each row (or column) of the posterior
covariance operator can then directly be interpreted in terms of spatial (or
temporal) resolution power of the data set. See the color plate in Chapter 7
for a nice example.

It should not be forgotten that a covariance operator over the model
space can be represented by its "ellipsoid of error". For instance, if m_, is
the maximum likelihood posterior point, and C,y is the posterior covari-
ance operator, then we know that the posterior probability density in the
model space is Gaussian (or approximately Gaussian), as given by (4.31). We
can then represent the iso-density values corresponding, for instance, to pro-
babilities of 10% , 20% , etc.

In all usual examples, the prior covariance operators Cp and Cy; are
chosen regular (no null or infinite variances, no perfect correlations), so that
their inverse exists. But it is possible to give more general sense to the obta-
ined results. For instance, in equation (4.22b) the prior covariance operator
Cp may well be singular, if G Cy G is not. If in equation (4.22a) the
operator Wy = (Gt Cp 1 G + Cy™Y) was singular, the posterior covariance
operator Cyp = Wy¢~! would not be defined, but all useful information
could be extracted from the weighting operator W),» . From a geometrical
point of view, a regular covariance operator defines a probability density
which takes its maximum at a single point. If the covariance operator is sin-
gular, the maximum corresponds to a subspace of dimension >1 .

4.3.3: The resolution operator

In the approaches to inversion not directly based on probabilistic con-
cepts, it is usual to introduce the "resolution operator". In order to make the
link with these methods, let me briefly introduce this concept.

Let m,,, represent "the true" model (which is known only by the
gods). The observed data values d_, generally do not equal the computed
values g(m,..) because of observational errors and of modelization errors.
The concept of resolution operator arises when the relationship is sought
between the least-squares solution ( m ) and the true model m,,, ,
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(m) = r(m,,) (4.33)
in the optimum case where, by chance, data are error free:
dobs = g(mtrue) .

Equation (4.33) defines 1() , the nonlinear resolution operator. Using equa-
tion (4.20a) and linearizing around {( m ) we obtain

(m) - Mpyrior = R (my, - mprior) s (4.34)
where
-1
R - [ 6rq) ¢ 6te (4.352)
-1
= CM Gt [G CM Gt + CD] G s (4-35b)

thus defining the linearized resolution operator, R . From the last expression
we obtain

-1
R =1I- [CM-CMGt [GCM G"+CD] GCM]CM'I,

and, using the expression (4.6b) for the posterior covariance operator,

R = 1-CyyCyt. (4.36)

If the resolution operator is the identity operator, equations (4.33) or
(4.34) show that (m ) = m, . , and the model is perfectly resolved. The
farther the resolution operator is from the identity, the worse the resolution
is. Following Backus and Gilbert (1968), we can consider the resolution oper-
ator as a filter: the computed a posteriori model equals the true model fil-
tered by the resolution operator. We cannot see the real world; we can only
see a filtered version. For more details (in linearized problems), the reader is
referred to Backus and Gilbert (1968). Interesting examples are also given by
Aki and Lee (1976) or by Aki, Christofferson and Husebye (1977).

Usually, we do not wish to examine the whole kernel R®® of R . We

only wish to analyze R®* for some selected index a, (a"column" of R
, if using matrix notations). We have

R*0 = ZRaﬂ 6% .
B
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Introducing the vectors p,* = R** and u, = §%%0 we have
P = R u, ,

ie.,

-1
Po [(;t Cp ' G+ CM'I] Gt Cp ' Gu,

-1
Cy G [GCM G*+CD] Gu,.

As noticed by Hirahara (1986) the computation of p, will need the same
operations as the computation of the solution of a linear (or linearized) prob-
lem (see for instance equations (4.5)). It follows that all the gradient methods
developed in sections 4.5 to 4.7 for computing ( m ) , can also be used to
compute the resolution vector p, .

Taking the trace of equation (4.36) gives

N

Trace( 1) = Trace( R )+ Trace[ Cw x|, (4.37a)
P
an equation that that can be interpreted as follows:

TOTAL NUMBER OF NUMBER OF
NUMBER PARAMETERS PARAMETERS
OF RESOLVED RESOLVED BY
MODEL - | BY THE DATA +| THEA PRIORI (4.37b)
PARAMETERS SET INFORMATION [ '

4.3.4: Eigenvector analysis
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CHAPTER 5

THE LEAST-ABSOLUTE-VALUES (£,-norm) CRITERION
AND THE MINIMAX (¢, -norm) CRITERION

When a traveler reaches a fork in the road,
the £,-norm tells him to take either one way or the other,
but the £,-norm instructs him to head off into the bushes.

John F. Claerbout and Francis Muir, 1973.

Because of its simplicity, the least-squares criterion (£,-norm criterion) is
widely used for the resolution of inverse problems. We have seen that least
squares is intimately related with the hypothesis of Gaussian uncertainties.
For other types of uncertainties, better criteria exist. Among them, those
based on an £, norm ( ! < p < oo ) have the advantage of allowing an easy
mathematical formulation.

As suggested in Chapter 1, when outliers are suspected in a data set,
long-tailed probability density functions should be used to model uncertain-
ties. "Long tailed" means, in fact, funcnons tending to zero less rapidly than
the Gaussian function, when the dfstance between the variable and any of its
central estimators tends to infinity. Two typical long-tailed probability densi-
ties are: the Cauchy function 1/(1+x2) and the symmetric exponential func-
tion exp(-| x |) . The former is a very tempting function to use because,
although being nicely bell-shaped, it has infinite variance, which seems to be
adequate for modeling suspected outliers by an unknown amount. The sym-
metric exponential function, on the other hand, has the advantage of leading
to results intimately related with the concept of the ¢, norm, so that a lot of
mathematics are already available for solving the problem. The results obta-
ined using the minimum ¢,-norm (least-absolute-values) criterion are known
to be sufficiently insensitive to outliers (i.e., to be robust).

The £,-norm criterion was already used by Laplace and Gauss. In the
words of Gauss (1809), quoted by Plackett (1972), "Laplace made use of
another principle for the solution of linear equations, the number of which is
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CHAPTER 6

THE GENERAL PROBLEM

When in doubt, smooth.

Sir Harold Jeffreys (Quoted by Moritz, 1980)

Many inverse problems involve functions: the data set sometimes consists
in recordings as a function of time or space, and the main unknown in the
parameter set sometimes consist in a function of the spatial coordinates
and/or of time. Nevertheless, there are two kinds of arguments suggesting
that the Inverse Theory could be limited to finite-dimensional problems:

i) The "technological" argument. data "functions” are recorded digitally
(or, if they are recorded analogically, they have a finite bandwidth and, thus,
a finite amount of information (Shannon, 1948)). The "functions" used to
describe the model are handled by digital computers which can only consider
a finite amount of information.

ii) The "mathematical' argument: central in the theory of inverse prob-
lems is the concept of probability. We will see in this chapter that the con-
cept of probability density function, so essential for finite-dimensional
spaces, cannot be generalized to infinite-dimensional spaces. Also, in a func-
tion space, a probability can only be defined over certain subsets, named
cylinder sets, whose elements have, in fact, a finite number of degrees of
freedom. '

For the general inverse problem, these arguments prevail. From both the
technological and mathematical points of view, after a proper understanding
of all the subtleties of infinite-dimensional spaces, practical applications can
only be developed over discretized problems (with finite numbers of degrees
of freedom). It is only for particular cases (e.g., Gaussian assumption) that
the functional approach reveals itself to be tremendously more powerful
(both practically and intellectually) than the discretized approach, as demon-
strated in Chapter 7.
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CHAPTER 7

THE LEAST-SQUARES CRITERION IN FUNCTIONAL SPACES

Tu quoque, filil.

Caius Julius Caesar
(when he saw that even Brutus discretized least-squares problems).

Many objects in the physical world are "fields", i.e., functions defined
over spatial coordinates and/or time and taking values in an arbitrary space.
For instance, seismologists describe an Earth model using the fields p(x) ,
K(X) , u(x) ,... (density, bulk modulus, shear modulus,...) as functions of the
spatial coordinates x = (x1,x2,x3) , and describe a seismic wave as the field
u(x,t) (displacement at the point x at time t ). Given the boundary and
initial conditions, the (macroscopic) relationships between a wavefield and an
Earth model are described by a differential equation (the wave equation). As
analytic solutions of the wave equation are usually not known (except for
some trivial nonrealistic examples), the problem of obtaining the wavefield
corresponding to a given Earth model is solved numerically, for instance, by
discretizing the fields representing the Earth and the wavefield, and by rep-
lacing the differential equation by the corresponding finite-difference equa-
tion. But even if all the computations of wavefields that we might perform
in our whole life were discretized, the functional language would remain
useful, because of its compactness.

The same thing happens in least-squares inversion for problems involv-
ing fields. A theory can be built up which is essentially functional, and
which considers the fields as abstract elements of a conveniently defined in-
finite-dimensional space. The resolution of the problem implies the use of
differential and integral operators. Nevertheless, for all non-trivial applica-
tions, numerical results are always obtained after discretization. As the theory
of least squares is considerably more abstract in infinite-dimensional spaces,
the question arises whether we could limit ourselves to the consideration of
discrete least squares. Unambiguously, the response is mo, as, again, the
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