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Generalized Nonlinear Inverse Problems Solved Using
- the Least Squares Criterion
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We attempt to give a general definition of the nonlinear least squares inverse problem. First, we
examine the discrete problem (finite number of data and unknowns), setting the problem in its fully
nonlinear form. Second, we examine the general case where some data and/or unknowns may be
functions of a continuous variable and where the form of the theoretical relationship between data and
unknowns may be general (in particular, nonlinear integrodifferential equations). As particular cases of

“our nonlinear algorithm we find linear solutions well known in geophysics, like Jackson’s (1979)
solution for discrete problems or Backus and Gilbert’s (1970) solution for continuous problems.
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1. INTRODUCTION

The aim of physical sciences is to discover the minimal set
of parameters which completely describe physical systems
and the laws relating the values of these parameters to the
results of any set of measurements on the system. A
coherent set of such laws is named a physical theory. To the
extent that the values of the parameters can only be obtained
as a results of measurements, one may equivalently consider
that physical theories impose some relationships between
the results of some measurements.

Theoretical relationships are often functional relation-
ships, exactly relating the values of the parameters to the
results of the measurements. Sometimes, theoretical rela-
tionships are probabilistic, as in geophysics when some
property of the earth is statistically described, or as in
quantum mechanics, where the probabilistic description of
the results of the measurements is essential to the theory.

If, given some information on the values of the set of
parameters, we try to use a theoretical relationship in order
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to obtain information on the values of some measurable
quantities, we are solving, by definition, a ‘direct (or for-
ward) problem.’ If, given some information on the values of
some measured quantities, we try to use a theoretical
relationship in order to obtain information on the values of
the set of parameters, then we are solving an ‘inverse
problem.’ For a direct problem the values of the parameters
are ‘data,’” and the values of some observable quantities are
‘unknowns.’ For an inverse problem the data are the results
of some measurements, and the unknowns are the values of
parameters. We will see later that actual problems are in fact
mixed problems.

One of the difficulties arising in the solution of some
problems is the instability (a small change in the inputs of the
problem produces a physically unacceptable large change in
the outputs). This difficulty appears in direct as well as in
inverse problems (see, for example, Tikhonov [1976]).

Inverse problems may have a more essential difficulty:
nonuniqueness. There are two reasons for nonuniqueness.
In some problems the nonuniqueness comes from the fact
that the data are discrete; if the data were dense, the solution
would be unique (see, for example, Backus and Gilbert
{1970]). In other problems, nonuniqueness may be deeper,
as, for example, in the inverse problem of obtaining the
density structure of a region of the earth from the measure-
ments of the local gravitational field: Gauss’ theorem states
that an infinity of different density conﬁguratlons give identi-
cal gravitational fields. :

The classical formulation of a problem (direct or inverse)
may be stated as follows: (1) We have a certain amount of
information on the values of our data set, for example, some
confidence intervals. (2) We have some theoretical relation-
ships relating data and unknowns. (3) We assume a total
ignorance of the values of our unknowns; that is, the sole
information must come from the data set. (4) Which are the
values of the unknowns?

Such a problem may be ill posed, and the solution may be
nonunique.

For maximum generahty the problem should be formulat-
ed as follows:

1. We have a certain state of information on the values of
our data set.

2. We have also a certain state of information on the
values of our unknowns (eventually the state of null informa-
tion).
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3. We have a certain state of information on the theoreti-
cal relationships relating data and unknowns.

4. Which is the final state of information on the values of
the unknowns, resulting from the combination of the three
preceding states of information? ‘

Posed in terms of states of information, all problems are
well posed, and the uniqueness of the final state of informa-
tion may be warranted. We have given some preliminary
results of such an approach [Tarantola and Valette, 1982]
and have shown that in the particular case where the states
of information can be described by Gaussian probability
density functions, the least squares formalism is obtained.

The main purpose of this paper will then be to state clearly
the nonlinear least squares approach to the generalized
inverse problem and to give practical procedures to solve it.

For the linear problem, generalized least squares solutions
are today well known. Franklin [1970] gave a very general

solution, valid for discrete as well as for continuous prob-

lems, and Jackson [1979] discussed the use of a priori
information to resolve nonuniqueness in geophysical dis-
crete inverse problems.

In contrast, the nonlinear generalized least squares prob-
lem has not received much attention, and the usual way of
solving such a problem is by iteration of a linearized prob-
lem, but as we will show in this paper, this procedure may
give wrong solutions. _

In section 2 we will study the discrete problem, and in
section 3 we will deal with problems involving functions of a
continuous variable. As a particular case of our solution for
continuous problems we find the Backus and Gilbert [1970])
solution. In section 4 we give some numerical illustrations of
our algorithms.

2. THE DISCRETE PROBLEM
a. Notations

We will mainly follow the notations used by Tarantola and
Valette [1982]. We will refer to that work as paper 1.

Let ¥ be a physical system in a large sense. By large sense
we mean that we consider that & is composed of a physical
system in the usual sense plus all the measuring instruments.
We say that the system ¥ is ‘parameterizable’ if any state of
¥ may be described using some functions and some discrete
parameters. This means that we limit ourselves to the
quantitative aspects of &. If any state of ¥ may be described
using a finite set of discrete parameters, we say that P is a
‘discrete system.’ In this section of the paper we will focus
~ our attentiun on such discrete systems.

Let X = {X', -+, X™} be the finite set of parameters
needed to describe the system, and let us use lowercase
letters to note any particular value of the parameter set: x =
{x', -+, x™. Since in ¥ we also include the measuring
instruments, the parameter set contains all the data and the
unknowns of the problem. Let ™ be the m-dimensioned
space where the parameters X take their values; then x is a
point of €™ and will be called a ‘state’ of <.

Physical theories impose constraints between the possible
values of the parameters. In the simplest case these con-
straints take a functional form

FiEd M =0

: M
Fel 2 =0

which may be written
fx) =0 : )

for short. In most usual cases one can naturally define a
partition of the set of parameters as

['D"
X] i
J-\z] -
X=|:|= = 3)
P! 3
X"
L P |

In such a way that equations (1) simplify to

d' =g, -, p)
s @
d’ = g’(pl’ RN ps)

or, for short,

d = g(p) ®)

In the traditional terminology for inverse problems the set
D is named the set of data, and the set P is named the set of
unknowns, but this terminology may be misleading. For
example, in a problem of earthquake hypocenter location the
left-hand side of (5) consists of the arrival times of seismic
waves at stations, the coordinates of seismic stations being
on the right-hand side. But the coordinates of the stations are
the results of some direct measurements, in exactly the same
way as the arrival times of waves; there is thus no reason for
reserving the term ‘data’ for the arrival times (except in the
particular case where uncertainties on station coordinates
have to be neglected). Since we will use the traditional
terminology in this paper, this remark must be kept in mind.

b. The Inputs of the Problem

Let us consider a given parameter X* Two possibilities
arise: either X* is a directly measurable parameter or it is
not. This partition of the set of parameters X is certainly
more intrinsic that the one based on the form of (), as
discussed in section 2a.

If X*is a directly measurable parameter, and if we have
measured it, we assume in this paper that the result of the
measurement has a Gaussian form; that is, it may conve-
niently be described using the expected value Xxo% the
variance, and the covariances with other measurements.

If X*is not a directly measurable parameter (it is an
unknown), we will assume, in order to solve otherwise
underdetermined problems, that we have some a priori
knowledge and that this knowledge may also be expressed in
a Gaussian form. If the a priori knowledge about a parameter
is weak, the corresponding variance will be large, or even
infinite.

This a priori information may come from different sources.
For example, if the parameter set is describing the properties
of the earth, some a priori information may be obtained from
models of planet formation. Or the a priori information for a
given problem may result from a posteriori information of a
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Fig. 1. Schematic illustration of the nonlinear theoretical mani-
fold, the a priori expected point, the a priori ellipsoid of errors, and
the ‘induced probability’ (shaded area) on the theoretical manifold.

previous inverse problem run with a different data set. More
often the a priori information will simply be obtained by
putting ‘reasonable’ error bars around a ‘reasonable’ central
value. See Jackson [1979] for further discussion.

As is well known, and as we will see later, the definition of
this a priori information, even with weak constraints (large
variances), provides stability and uniqueness to the inver-
sion.

In conclusion, in the least squares approach we assume
that all a priori information on the parameter set (measurable
as well as nonmeasurable parameters) takes the form of a
vector of expected values x, and a covariance matrix Co.

When the theoretical equation (2) simplifies to (5) and the
partition (3) is defined, the a priori information (x, Cp) takes
the partitioned form:

C. C
,0=[d°] c0=[ Aodo ”0"°] 6)
Po CPodo Cl’opo
where in most useful applications the matrix Caypy = (Cppa)”

vanishes.

c. The Least Squares Problem

Let xo be the vector of the a priori expected values, and Co
be the a priori covariance matrix, as defined in section 25.
We have assumed that the a priori information has a Gauss-
ian form. Then xo and C, define in the parameter space €™ a
Gaussian probability density function

p(x) = const - exp {~4(x — x)7- Co ' - (x - x)} (7)
The nonlinear theoretical equation qonsidered in 2),
fix) =0 ®)

defines in 6™ a certain nonlinear manifold (subspace) J. The
a priori density function p(x) induces on the theoretical
manifold J a probability density function which could natu-
rally be taken as the a posteriori density function (see Figure
1). .
If (8) is linear, F will be a linear manifold, and it has been
demonstrated in paper 1 that the induced probability density
function will be Gaussian. If (8) is not linear, the induced
probability density function will generally not be Gaussian.

We state then the least squares problem as the search of
the point R of the theoretical manifold for which the induced
density of probability is maximum.
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In order to find this maximum we must minimize the
argument of the exponential in (7). The problem is thus
equivalent to searching for the point & verifying the set of
equations :

fx) =0

s@) =& - x0T+ Co™' -} ~ x) minimum over J

®
(10)

Equations (9) and (10) are our definition of the least squares
problem.

We have assumed that the a priori information has a
Gaussian form. If this is not the case and if we assume that
the probabilistic distributions under consideration have an
expected value and a covariance matrix, it is usual to employ
the least squares criterion to define a ‘least squares estima-
tor’ and to prove that this estimator has some properties
(variance minimum, - - ). See, for example, Rao [1973].

In fact, if the probabilistic distributions under consider-

ation. are clearly not Gaussian (long tailed, asymmetric,

multimoded, laterally bounded, etc.), it is well known that
the least squares criterion gives unacceptable results. For
such cases the general techniques described in paper 1
should be used.

Equation (10) makes sense only if Cy is regular. A covari-
ance matrix becomes singular if there are null variances or if
there are perfect correlations between parameters. In these
cases the multidimensional ellipsoid representing C, degen-
erates into an ellipsoid of lower dimension. It is always
possible to restrict the definition of the a priori probability
density function to the corresponding subspace. We will see
later that the algorithms leading to the solution of (9) and (10)
are well defined even if C, is singular, :

If a point £ verifies the set of equations (9) and (10), then it
must verify the set

f®) =0

s(X) stationary over J

an
(12)

As is well known in all problems of searching for minima, the
set of equations (11) and (12) may contain, in addition to the
solution of (9) and (10), local minima, saddle points, maxima,
etc. We will discuss this point later. :

We show in the appendix that (11) and (12) are equivalent
to the implicit equation

X=X+ CoFT+(F+Co+ F)™' - {F - (% — xo) — {®)} (13)
where F is the matrix of partial derivatives:

F* = gfifaxk (14)
taken at the point %.

Equation (13) must of course be solved usi_ng an iterative
procedure. If we assume that the elements F* of the matrix
F are continuous functions of x, the simplest procedure is

obtained using a fixed point method:
Rivr = Xo + Co* FT - (Fy+ Co+ F)™!
“{Fi* (e — xo) — f(%0)}
where the derivatives are taken at the current point %;.
In the rest of this paper the algorithm defined by (15) will
be called the algorithm of total inversion (T.1.).
The iterative process (15) must be started at an arbitrary

point %. A reasonable (although not obligatory) choice is to
take the a priori point x, as the starting point, that is, &, = Xo.

(15)
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If s has only one stationary point over J, then it is easy to
see that at this point, s is necessarily a minimum and that the
T.1. algorithm converges always to the point & which mini-
mizes s (independently of the chosen starting point %¢). If we
are not sure that s has only one stationary point, then we
must check the possible existence of secondary minima or
other stationary points (for instance, by starting the iterative
procedure at different starting points % # Xg).

The total inversion algorithm is, in fact, some kind of
generalization of Newton’s algorithm for the search of the
zeros of a nonlinear function f(x). As is the case for
Newton’s algorithm, the total inversion algorithm will only
converge in those problems where the nonlinearity is not too
severe.

In ordinary iterative procedures for inverse problems,
iterations are stopped when two successive solutions are
close enough. In the total inversion algorithm we may also
use this criterion, but because the solution & must verify f(%)
= 0 and because f(%;) is computed at each iteration, we can
alternatively choose to stop the iterative procedure when the
values f(%,) are close enough to zero.

In order to give meaning to (13) and (15) we must assume
that all the matrices of the type F - Cy - FT are nonsingular.
This is true in a great variety of circumstances. For example,
from a practical point of view, a useful set of sufficient
(although not necessary) conditions will be (1) that Cp has
neither null variances nor perfect correlations and (2) that
theoretical equations (2) take the explicit form (5).

By hypothesis 1, C, is a positive definite matrix. By
hypothesis 2 the matrix F takes the partitioned form

F=[I -q]

where [ is the identity matrix and G is a matrix of partial
derivatives. Then F has a maximum rank, and F - Cy - FT is
then positive definite and thus regular.

In fact, the matrix F - Cy + FT will only be singular in some
very pathological cases. Nevertheless, in actual problems
the matrix F- Cp* FT may be numerically singular. This
point will be discussed in section 2d.

‘In the iteration of algorithm (15) we must compute the
vector V = F - (& — xo) — f(X,). We must also compute the
matrix M = (F; - C,  F;7) and then compute the vector V' =
M™'-V. It is well known in numerical analysis that the
computation of the vector V' does not require the effective
inversion of the matrix M. This in an important point when
the dimension of M is large, because the inversion is very
time consuming.

d. Cased = g(p)

Let us assume that the parameters X may be divided into
the data set D and the parameter set P in such a way that the
theoretical equation f(x) = 0 simplifies to

fx) =d —gp) =0 17
The matrix F defined by (14) takes then the partitioned form
' F=0 -G (18)

where G is the matrix of partial derivatives.
G'® = ag'lap® 19)

Using (6), (17), and (18), the solution (15) givesAthe corre-
spondyg algorithms allowing the computation of d and p. As
is shown in the appendix, we obtain easily

(16)

Ber1 = Po + [Cppp, * GiT = Cp)
: [Cdodo - Cdopo GkT - Gk * CPodo + Gk ' CPoPo : G"T]—l
“{do — g(B) + Gi* (px — po)} 20)

The corresponding algorithm for d,; may then be written
(see appendix) as

div1 = 80 + G Brst — PO (1)

Formula (20) generalizes to the nonlinear case the solution
of Franklin [1970] for the linear problem.

Uncertainties in d, are often independent of uncertainties
in po. Correspondingly,

CdoPo = (Cpodo)T =0 (22)

In that case, (20) becomes simpler and may be written in
three different ways (see appendix):

Pir1 = Po + Cppp,* Gi” * (Cyy + Gi* Cpp, * G
[do — 8B + Gi* (B — Pl (23)
Per1 = Po + (G- Cag, ™' * G + Cppp, N7 G - Ca, "
"[do — g0 + Gi- (B — po)]  (29)
Pev1 = P + (G - Cya, ™" - G + Copp N1 {GYT - Caa, !
“[do — gBI] — Cppp, ' - (B — PO} (29)

For different configurations of matrices Caydys Cpopyr and G,
these three algorithms, although mathematically equivalent,
may be very different in time consumption.

It is easy to see that if the matrices C4y, and C,,, are
regular, all the inverse matrices in (23)—(25) are also regular.

It may happen in actual problems that although mathemat-
ically regular, the algorithm may become numerically singu-
lar or unstable. This will always mean that the a priori
information does not constrain the solution enough. A
reduction of the variances in Cp,», Will stabilize the solution,
in the same way that dropping ‘small eigenvalues’ stablizes
the solution of Wiggins [1972], which is based on the
Lancséz decomposition. But we must emphasize that since
variances in C,, , describe our a priori knowledge on param-
eters, reducing these variances in order to stabilize the
solution means that we are introducing a priori information
that, in fact, we do not possess. This fact may be hidden in
formalisms where the a priori information on parameters is
not explicitly stated.

Nevertheless, in most actual geophysical problems, vari-
ances in C, , representing the actual a priori knowledge
(confidence in py) allow a stable inversion of the data set,
even when the number of parameters is, by many orders of
magnitude, larger than the number of data (see section 2f for
the measure of the extent to which the data set resolves the
value of a given parameter). '

The case where the a priori constraints on parameters are
infinitely weak is obtained using a covariance matrix Cpop, OF
the form C,, = o* - I in the limit where o’ — . Two
particular cases give simple solutions. For obvious reasons a
problem where the matrix G;” - Gy is regular will be named ,
purely overdetermined, whereas a problem where the matrix
Gy * G/T is regular will be named purely underdetermined.

For a purely overdetermined problem the limit ¢? — o
gives, using (25),
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Fig. 2. The projector P = I — Co* F'(F * Co+ F?)™! - F is the
orthogonal (relative to C,~!) projector over the linear theoretical
variety. It projects the a priori vector x, as well as the a priori
covariance tensor Cy, giving & and C, respectively.

Pitt = Pk + (GiT+ Cug, ™' - GO ™!
“GiT+ Capg, '+ {do — g(B0)} (26

which corresponds to the solution of the classical nonlinear
least squares problem.

For a purely underdetermined problem the limit o> — o
gives, using (23),

Pis1 = Po + GiT - (Gi* G - {do — g(pw) — Gi - (po — PO}
27

Equation (26) shows that the solution of a purely overde-
termined problem is independent of the a priori value py.

Equation (27) shows that the solution of a purely underde-
termined problem is independent of the values of observa-
tional errors Cyq,. If in the limit k — » we left-multiply (27)
by G, we see that the solution p = P, of a purely underdeter-
mined problem fits exactly the observed values of data: d =
g(P) = do.

e. Linear Problem

By linear problem we mean that the general equations f(x)
= 0 take the linear form

fx) =F-x=0 (28)

where F is a matrix of perfectly known elements (if some of

the elements are not perfectly known, they must be consid-

ered as parameters, and then the problem is not linear).
Using (28), (13) simplifies to the explicit solution

=% —Co-FT-(F-Cy*F))"' - F-x (29)

As was pointed out in section 2c¢, if the probability density
function describing the a priori information is Gaussian, the
a posteriori density function will also be Gaussian; thus
solution (29) will be the expected value. The a posteriori
covariance matrix may also be computed, leading to (see
appendix)

C= Co—Co‘FT'(F‘Co‘FT)-"F'CQ

(30
If we define the linear operators
=CoFT-(F-Cy-FO)!'-F
0=2Co o F) 31)
P=1-0Q
it may easily be shown that they have the following proper-
ties: v

P+Q=1 P-Q=Q-P=0
P’=Pp =0 (32)
P'C0=C0'PT Q'C():CO'QT

which imply that P and Q are projectors and that they are
orthogonal relative to Co~!.
Equations (29) and (30) then take the beautiful form

£=P-x
C=P'Co

(33)
(34

These equations show that the same projector P projects the
a priori value x, to give the a posteriori value x and projects
the a priori covariance matrix Cy to give the a posteriori
covariance matrix C (see Figure 2).

Equations (33) and (34) have been obtained in paper 1 for a
Gaussian problem, without the use of the least squares
criterion.

Let us now turn to the usual linear problem where the set
of parameters X is divided into the data set D and the
parameter set P and where the theoretical equation (28)
simplifies to

SO Fex=1[I —G]-[‘;]=d—c-p=o (35)

that is,
d=G-p

where G is a matrix of perfectly known elements.

Using (35) and equations (6), the solution of this problem
is readily obtained from (33) and (34). For the parameter
components, (33) gives

P =pot+ (Cpp, G" - Coody) * (Cagay = Cayp, * G’
=G Cpu,+ G Cppy* GH™'e(do— G po) 37

For the data components the expression obtained from (33)
can be put in the form (see appendix for details)

d=G-p

(36)

(38)

_where p is the solution (37). This simply means that the least

squares solution exactly verifies the theoretical equation.
Equation (34) gives, for the parameter components of the a
posteriori covariance matrix,

Cﬁﬁ = CpoPo - (CpoPo GT - CPodo) : (Cdudo - Cdol’o - GT
- G * Cpodﬂ + G M Cpopo * GT)-1 * (G * CPoPo - CdOPO) (39)

while the other components may be put in the form (see
appendix)

Cop =G Cypp
Coa= Cpp* G
Caa= G'Cpﬁ'GT

(40)

in accordance with (38).

In the particular case py = 0, (37) and (39) coincide with
the solution of Franklin [1970].

If uncertainties in d, are uncorrelated with uncertainties in
Po, then Cyp, = (Cpq)” = 0, and (37) simplifies to

P=pot Cpp,* GT* (Cay, + G+ Cpypy* GN™'+(do — G po)
@n
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while the a posteriori covariance matrix becomes
Cﬁﬁ = CPuPo - CPOPO ‘GT (Cdodu +G- CPoPo : GT)_I G- CPd’o
: 42)

Using matricial identities, (41) and (42) may be written in a
different form (see appendix):

p=po+ (G- Cdado_l "G+ Cpp, )G Cayay !
“(do- G- py) (43)
Cpp=(G"* Cyg,™" G + Cpp, 7! 44

Equations (41) and (42) coincide with the solution given by
Jackson [1979].

The case where the a priori constraints on parameters are
infinitely weak has been discussed in section 2d4. For a
purely underdetermined problem we obtain, using (41),

P=po+ G- (G-GDH' (dy — G- po) 45)
and, using (42),
Css = o}l -GT-(G-GDH!- G} (46)

For a purely overdetermined problem we obtain, using
(43),

P=(G" Cus, ' G GT- Cyy, ™" - do
and, using (44),

C)

Cﬁp = (GT * Cdodo‘] * G)—l (48)

Equation (45) shows that the solution of a purely underde-
termined problem is independgnt of Cy44, and fits exactly the
observed values of the data (d = G - p = dy).

Equation (47) shows that the solution of a purely overde-
termined problem is independent of py. This solution is well
known and is traditionally called the ‘normal solution.’

_Of course, if G is a square matrix and if it is regular, then
(45) and (47) reduce to the Kramer solution: p=G"1 d,

f. Remarks

1. The usual approach to solving the nonlinear problem
is through iteration of a linearized problem. If the data set D
overdetermines the problem sufficiently so that all a priori
information on the parameter set P can be neglected, then
the iteration of a linearized problem always leads to the
correct solution. If the data set does not overdetermine the
problem, there is a common mistake which leads to a wrong
solution. Let us examine this problem in some detail in the
usual case where Cyp, = (Cppap” = 0.

Our solution to the nonlinear problem was (equation (25))

Pr+r1 = P + (G- Capdy '+ G + Cropy )"

AG" + Caa,™" - [do — g(PR] + Coors ' * [P0 — Pul}
whigh has been shown to be equivalent to

(49)

Pevt = Pi + (G- Cu, ™"+ Gy + Coun, )71 G+ Cug,!

“{do — g() + G- (b — p))}  (50)
The solution to the linear problem was (equation 43))
P=po+ (GT' Cdodoh—l G+ Cpopo_l)_]
-GT- Cdod.," *(do — G- po) 1

If we want our approach to be consistent, we must force the
general (nonlinear) solution to give the linear solution as a
particular case. It is easy to see that for a linear problem the
algorithm (50) reduces to (51).

Let us show that this is not the case in the usual approach.
Linearizing a problem means replacing the nonlinear equa-
tion d = g(p) by its first-order development around a point
Px:

d=gPpo + Gi*(p — po) (52)
If we call the values
Ady = do — g(py) (53)
‘residuals’ and we call the values
APpst = Prar — Pr (54)

‘corrections’, then the linearized least squares problem
consists of the search for the values Apy., minimizing the
sum

s = (Gi* Aprst — AAYT + Cag, ™"+ (Gi+ Aprsr — AdY)  (55)

if the problem is overdetermined enough. For an underdeter-
mined problem it is usually required that each successive
correction Apy., be as small as possible, and the sum (55) is
replaced by

s'=s5+ (Aﬁk+l)T' Cpopo_l * (Af)k*-l)
The corresponding solution is then easily found to be

Bpp+y = (G"T ' Cdodo_l *Gi + Cl’opo_l)«l : GkT * Cdodo_1 ) Aak
57

Using (53) and (54) we see that (57) leads to the algorithm
Biet = Pi + (Gi” - Capg, ™" - G + Coops V7"
"Gy Capa, ™'+ {do — g0} (58)

By comparison of (58) with (49) we see that in (58) the term
Cpopo ' * [Po = Pl is missing. Thus the linear solution (5 1))
cannot be obtained as a particular case of (58), which clearly
means that (58) is wrong. :

The mistake is to require each successive partial correc-
tion P+ — Py to be as small as possible. The right condition
is, in fact, to require each successive total correction Pr+1 —
Po to be as small as possible. It is then easy to see that the
right equation (49) is obtained.

In any case the fully nonlinear approach developed in
sections 2¢ and 2d is simpler and more natural than the
approach consisting of the linearization of a nonlinear the-
ory.

2. We have only been able to define the a posteriori
covariance matrix for the linear case. For a strongly nonlin-
ear problem the a posteriori errors may be far from Gauss-
ian, and even if the covariance matrix could be computed, it
would not be of great interest. If the nonlinearity is weak,
then the a posteriori covariance matrix can be approximately
computed using the formula obtained for the linear case.

3. Let us recall the formula (30) giving the a posteriori
covariance matrix for a linear problem:

C=Cy—Co*FT-(F-Cy-F)™'-F-C,

(56)

(59)
Since the second right-hand term is clearly positive semide-

finite, its diagonal terms are not negative, so the a posteriori
variances are small or equal to the a priori ones. Further-
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more, a parameter will be completely unresolved if it does
not appear, in fact, in the equations f(x) = 0 and if no
correlation is introduced by the a priori covariances between
this parameter and other parameters. The corresponding
column of F will then be null, and the corresponding row of
C, will only have one nonnull element, the diagonal one. It is
then easy to see that the corresponding diagonal term of the
" second right-hand term of (59) will be null. This implies that
the a posteriori variance will equal the a priori one. _

We have thus demonstrated that in the total inversion
approach, the variances have the following properties:

In general,

(a posteriori variance) < (a priori variance)
For a nonresolved parameter,
(a posteriori variance) = (a priori variance)

The more the a posteriori variance differs from the a priori
variance, the more we have increased the amount of knowl-
edge on the value of the parameter.

We see thus that in the total inversion approach, the
classical analysis of variance contains the analysis of resolu-
tion. '

4. In this paper we have assumed that our theory allows
an exact computation of the direct problem. Sometimes our
theories contain some approximations and allow only an
approximate computation of the values of the data. Let Cr
be the covariance matrix of theoretical errors. In paper 1 we
have demonstrated that to take into account these theoreti-
cal errors we must simply replace Capdy by C44, + Crin all
formulas of sections 2d and 2e.

3. THE CONTINUOUS PROBLEM
a. Notations

In this section we will formally extend the results of
section 2 to the case where some of the data and/or unknows
are functions of a continuous variable.

Let us start with one linear problem involving only one
data function and one unknown function:

d(s) = [ g(s, r) - p(r) dr (60)

In order to have compact notations, (60) is usually written in
vectorial notation:

d=G:'p (61

where, as is easily seen from (60), G is a linear operator. The
function g(s, r) is then called the kernel of G.

In some problems, instead of having two functions d(s)
and p(r) we may have one function and one discrete vector.
For example, in a problem with discrete data, (60) becomes

d = [ g, r-p(r) dr (62)

while (61) keeps the same form.

We will admit that the linear operator G may be of the
most general form. In particular, we accept for G differential
operators.

It must be pointed out that if we accept distributions as
kernels, the differential equation

d(s) = (dp(r)/dr),-; (63)

may be written as

dis) = [ [=8&(s = N p(r) dr (64
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where &' is the derivative of the Dirac distribution. With this
convention, (60) may represent integral as well as differential
equations. : ’

A slightly more general equation than (61) is

Flox' =P @ (65)

where F! and F? are linear operators and x' and x? are
continuous or discrete vectors. In actual problems in geo-
physics we must deal with more than one data vector (for
example, some seismograms or magnetic records) and with
more than one parameter vector (for example, some func-
tions describing the earth). Let us write x!, - - -, x™ for all the
continuous or discrete vectors we need to describe our
system. A general linear relationship between these vectors
is written as

F'x! + + Flmxm. =0
: : : (66)
Flx! + + F"x™ =0
Let us define
Xl
X = 67
xm

If X’ belongs to a Hilbert space H, the vector X belongs to
the real Hilbert space H = H' X - - - x H™. If we also define
the linear operator

Fll A Flm
F = : (68)
Ft ... pm
then the linear equations (66) are simply written as
F-x=0 (69)

Since we also want to deal with nonlinear problems, we
must consider a general nonlinear relationship of the form

f(x) =0 (70)

where f is any nonlinear integrodifferential operator acting
on x. We will later assume that f is differentiable. Its
derivative is, by definition, a linear operator and will have
the form (68).

b. Results of Measurements and a Priori
Information on Parameters

Let X' be one of the elements of X. If X’ is a discrete
vector, as was discussed in section 2b, we use a vector of
expected values and a covariance matrix to describe the
results of our measurements, as well as the a priori informa-
tion on nondirectly measurable parameters.

If X is a continuous vector, that is, a function s — X(s) of a
continuous variable s, we must use the concepts of the
theory of random functions. A random function is defined as
a function which, for each value of the variable, is a random
variable. The expected value X(s) of the random function is
defined as the (nonrandom) function whose value at each
point s equals the expected value of the random variable
X(s). The covariance function Cy(s, s') is defined as the two-
variable (nonrandom) function whose value at the point (s,
s') equals the covariance between the random variables at
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the points s and s’. It is well known (see, for example,
Pugachev [1965]) that covariance functions have almost all
the properties of covariance matrices: they are symmetric,
positive semidefinite, etc.

Covariance matrices and covariance functions naturally
define linear operators which are named covariance opera-
tors.

For the sake of generality we will not assume that errors
between two vectors X’ and X* must be uncorrelated; we
will thus also consider cross-covariance operators C’*. To
make our notations compact, we will define the matrix of
covariance operators as

Cll Clm
Co = H : (71)
le Cmm
We will assume that C, is a positive definite operator.
Matrix Cy and vector
"o
X=| ¢ 72
(x™)o

display the results of measurements, the a priori informa-
tion, and our confidence in these a priori estimators.

¢. The General Nonlinear Least Squares Problem

Let a system be described through a set X of continuous
and/or discrete vectors. Let x, be the a priori value of X, and
let Cyp be the corresponding covariance operator. Let a
physical theory impose a nonlinear relationship of the form

fx) =0 (73)

on the possible values of X, where f is any nonlinear
differentiable operator acting on X. There is no reason for xg
to verify (73). Since C, is a positive definite operator, its
inverse Cy~! can be defined, and the least squares problem
may then be stated as the search for the point & minimizing

s(x) = [(& — %), Co™'® — %o)] 74

among the points verifying (73), where [ ,
scalar product of H. ‘

The problem defined by (73) and (74) is formally the same
problem as the one defined in section 2¢, so the solution
given by (13) can be formally extended to give the solution of
the present, more general problem. The solution of (73) and
(74) will then verify

X=X+ Co* F*-(F-Co- F*)™' - {F+ (& — x0) = f®)} (75)

where the linear operator F is the derivative of the nonlinear
operator f (having structure identical with that of the opera-
tor defined in (68)) and where F* is its adjoint.

The solution of (75) may be obtained using a fixed point
method:

] represents the

Ri+1 =X+ Co* Fi* - (Fy+ Co- Fi*) ™' {Fr* (R —

Xo) — f(%}
(76)

d. Remarks

1. If the problem is discrete, the linear operator Cy is a
matrix, and its inverse Co~! can act on any vector (& — xg),
so (74) has always a sense. If the problem involves some
functions of a continuous variable, the operator C, is not
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necessarily surjective (the image of C, is not the entire
Hilbert space). To give a meaning to (74), we must assume
that (x — xo) belongs to the image of C,. It is easy to see from
(75) that the solution furnished by the algorithm (76) verifies
this constraint. From a practical point of view, this means
that the definition of C, defines also the space of possible
solutions. For example, covariance operators are, in gener-
al, smoothing operators; if this is the case, then the differ-
ence between the computed solution and the a priori point,
(X — xp), will be smooth (see section 3f).

2. Since (75) is a transcription of (13), the particular
cases studied in sections 3d and 3e are automatically general-
ized to the case where some of the vectors are continuous,
and they do not have to be studied here.

e. The Backus and Gilbert Problem

Backus and Gilbert [1970] have examined the problem of
the inversion of a finite set of discrete data, &, when the
unknown is a function p(r).

We will first state the problem in a general way and later
make the particular Backus and Gilbert assumptions. If a
problem involves a discrete vector d and a continuous vector
p, the vector x defined in (67) takes the form

<[4

We will assume that the theoretical equation is nonlinear and
takes the explicit form

fix) =d —g(p) =0 (73

With our assumptions, g is a vector of ordinary nonlinear
functionals

an

d = g'p(] 79

The results of the measurements will be described by the
discrete vector of expected values dy and the covariance
matrix Cyg4. If we have some a priori knowledge on the
function p(r), let us describe it using the expected value py(r)
and the covariance function Cpop(r> r'). If we assume null
covariances between do and po, the covariance operator
defined by (71) takes the form

C 0
e[
0 C

PoPo

(80)
With these hypotheses the general algorithm (76) leads to
the equivalent of (23):
Pit1 = Po + Cpyp, * Gi* * (Capa, + Gi* Cpp, " G ™!
*{do — () + Gi* (b — Po)} (8D
Explicitly,

Pi+r(r) = po(r) + j dr' 3% Cpyp, (r, 1) - Gil(r') - (S

i
{dd - &by + j dr' - G(r) - [Bur) ~ po(l}  (82)

where the matrix S, is given by

S = (Capg)? + [dr'fdr" Gi(r') + Cppp (', P) - GE(Y)  (83)
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and G,i(r) is the derivative of the nonlinear functional g'(p)
taken at p = .
-For a linear problem, (79) becomes

d = [dr . Gi(n - p(®
Equation (81) then gives the explicit solution
P=Po+ Cpp,* G** (Capg, + G+ Cpp, GH)™' - {do — G - po}
85

(84

Explicitly,

B(r) = po(r) + I dr' 3 3 Cppp, 1, 1) - G(r') - (S7H

1 J
: {do’ = j dr' - G(r") - 1’0("")} (86)

where the matrix § is given by
SV = (Ca)¥ + fdr'fdr G'(r') - Copr's ) - G 87

In this linear case we can compute exactly the a posteriori
covariance function of p(r). By analogy with (43) we have

Cﬁﬁ = CPoPo - CPoPo "Gt (Cdodo +G- CPoPu ' G*)_l ‘G- CPoPo
(88)
Explicitly,
Cysr, rf) = Cpopr, ') — AQr, 1) (89)
where

A(r, r') = f '3 s f dr''" « Cpupi(r, P) - Gy - (S1)V
i J

. (;i(rlll) . Cpopo rnr’ r:) (90)

The closer the function A(r, r') approaches the function
Cpopi(r> '), the closer the a posteriori covariance function
approaches zero, that is, the better the data set resolves the
function p(r).

In order to obtain the Backus and Gilbert solution of the
problem we must consider the particular case where the data
are assumed to be error free.

Cdodo =0 (91)

and the confidence we have in our a priori information po(r)
tends to vanish; that is, the a priori covariance function
Cpopo(rs ') has infinite variances and null covariances:

Couprs 1) = k- 8(r — 1) 92)

where 8 is the Dirac distribution and k is a constant. The
linear operator whose kernel is given by (92) is proportional
to the identity operator

' Cowpo = k-1 93)
Using (91) and (93), (85) and (88) become

P=po+GG-GH'(do~ G- py) %4

Cop = k-l - G*-(G-GH'G] 95

Explicitly,
P =p) + T 3 Gir) - (s7HY

toJ

. {doi - f dr' - G/(r') 'po(r')} 96)
Cop(rs 1) = k- [8(r = 7') — A(r, )] 97
where
SV = [dr-G(r)- G 98)
A, r) =2 3 G- S H -G 99

i J

By left-multiplying (94) by G, we see that our solution
exactly fits the observed data set (d = G - p = dy).

If we put po(r) = 0 in (96), we obtain the Backus and
Gilbert solution of the problem. Let us explain the existence
of po(r) in (94) from the Backus and Gilbert point of view.
With our notations their solution is written as

Pec = G** (G- G ™' - dy (100

Backus and Gilbert argue that we can add to (100) any

function p’(r) which has no effect on the values of computed
data, that is, such that

[dr-G( p'(= k0 (101)

that is,
G'p =0 (102)
Our solution (94) differs from (100) by the additive term
P=p-G*G GG p (103)

By left-multiplying this term by G we see that the addition of
p’ to g has no effect on the values of computed data, so the
solution (94) verifies the Backus and Gilbert requirements.
From our point of view, the Backus and Gilbert solution
corresponds to the particular choice py = 0.

The function (99) is named the ‘resolving kernel’ in the
Backus and Gilbert paper, and they show that the closer
A(r, r') approaches a Dirac function 8(r — r'), the better the
solution is resolved by the data set. Equation (97) gives the
probabilistic interpretation of their ‘8-ness’ criterion: If
A(r, r') approaches &(r — r'), the a posteriori covariance
function Cy(r, r') tends to vanish; that is, the solution tends
to be perfectly resolved. Equation (89) shows the generaliza-
tion of the &-ness criterion to the case where the a priori
information is used.

We have then shown that our solution contains the Backus
and Gilbert solution and that we generalize this solution to
the case where the data may have a general Gaussian error
distribution, where we may take into account a priori
assumptions on the unknown function and where the theo-
retical relationship between the data and the unknown
function is nonlinear.

4. THREE NUMERICAL ILLUSTRATIONS

In this section we examine three problems that cannot
naturally be solved using traditional approaches. These three
problems are as follows.

1. The computation of a regional stress tensor from the
measurements of the strike and dip of faults and the direction
and sense of striae on these faults. This is a discrete
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Fig. 3. Data used for the problem of estimation of a curve, given
some of its points, and error bars. We also show the a priori value
Po(r) and its a priori error bar.

problem, and its interest arises from the fact that the
theoretical nonlinear equations do not take the form d = g(p)
but the more general form f(x) = 0.

2. The estimation of a curve given some of its points, or
given the values of its derivative at some points. This is a
linear and highly underdetermined problem. We will show
that we can naturally solve it using the a priori hypothesis
that the corresponding curve is smooth.

3. The solution of a gravimetric nonlinear problem with an
unknown function and a discrete set of data.

a. Computation of a Regional Stress Tensor

To describe the orientation of a fault plane and striae, we
use three angles: strike (d), dip (p), and slip (). The
components of the unit normal, n, and unit striae, s, are then
easily computed as functions of d, p, and i. Let T be the
regional deviatoric stress tensor. It is shown by Angelier et
al. [1982] that if we assume that slickenslides on faults are
caused by the existence of a regional stress tensor T, then on
each fault we must have ‘

s T n—[TnfP-@-T-0)2"?=0 (104)

We see then that each set of three measured quantities (d, p,
i) leads to one theoretical nonlinear equation of the form
f(x) = 0. Algorithms which assume that the theoretical equa-
tions have the form d = g(p), where d is the data set, cannot
solve this problem in a natural way. See the paper by
Angelier et al. for more details and numerical results.

b. Estimation of a Curve Given Some Points

This is a very common problem in all branches of physics.
Let d be a quantity that physically dépends on a quantity 7;
that is, we assume that d and r are functionally related:

d=p@r) (105)

Let us assume that we have measured the value of d for
some values of r and that we have obtained the results shown
in Figure 3. Our aim is to give a ‘reasonable’ expression for
p(r) that fits the experimental points ‘reasonably well.’

Our unknown is the function p(r), and our data are the
points 4. The theoretical equation is

d = p(r) (106)
which can also be written as
d=[8r-r) p@dr 107)

Equation (107) shows that our problem is linear with
kernel

G =&"-n (108)

The a priori information on the problem is as follows: (1)
The results of the measurements are described using the
observed values dy’ of Figure 3 and their standard deviations
a¢’. (2) Since the problem is highly underdetermined, we
must use some kind of a priori information. Let us assume
that we have some reasons to force the solution p(r) to be not
too far from p(r). Let o be the confidence we have on this a
priori value. This means that we expect the dispersion of p(r)
around pg(r) to be of the order of o. Finally, we will
introduce the assumption that p(r) is smooth. Since py(r) is
smooth by definition, the simplest way to impose the
smoothness of p(r) is to impose that if, at a given point r, the
value of p(r) has a deviation p(r) — po(r) of given sign and
magnitude, we want, at a neighboring point r’, the deviation
p(r') — po(r') to have the same sign and similar magnitude. In
other words, we want to impose a priori nonnull covariances
between points r and r'. Many choices of covariance func-
tions may correspond to the physics of each problem. Let us
take here a covariance function of the form

a2
CPoPo(r’ r’) = 02 €Xp {"' l SLW'C")—'} (109)

which means that the variance at the point r, Coooi(rs 1),
equals o and that the correlation length between errors is A.

Since we have precisely defined the a priori values d,, -
Cay,» Po, and Cy,p, and the theoretical equation (107), the
solution of our problem is readily obtained from (86). Using
(108), (86) gives

PO = Po®) + 3 3 Copplrs M)+ (ST - [dd ~ po(F)]
i

(110)
where
SU = (Caa)? + Cpoo(P's P 111

The a posteriori covariance function is obtained from (89):

Seeseveeea.,
.

. . -
. .

boososoe” . seoee]

“oencaseet’

Fig. 4. Solution obtained using our algorithm (solid curve). We
also show the standard error at each point [Cyy(r, 1"?). Note that
far from the data the standard error tends to equal the a priori
standard error.
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Cpopo(r7 r') - 2 E Cpopo(rs 'J)

i J

Cpplr, r') =

-STH-C ,,o,,o(r’ r) (112

In Figure 4 we show the solution p(r) given by (110), and
we also show the a posteriori standard deviation [Cop
(r, N1,

Figure 5 shows the covariance functionCpp(r, ') for a
particular value of r’.

If instead of giving the value of the function at some pomts
we give the value of its derivative, the problem is very
similar. Equations (106), (107), and (108) should be written
as

d =p'@) (113)
d=[(-8F - ) p@ dr (114)
G =-80 -7 (115)

respectively, where &' is the derivative of the Dirac distribu-
tion.

Equations (110), (111), and (112) then become
p(r) = po(r)

OC ’ ij j j
+ 2 2 (_Lﬂ(r‘r_)_) . . (S—I)U . [dOJ - po'(rl)] (116)

J

aC PoPo(r’ r)
ar or'

SV = (Caa)? + ( ) 117
r=pri,r'=ri

FCpy(r, ¥
C»(r’ r’) = Cpopﬁ(r, r’) - 2 2 ( pa:flr ')> "
iy =

.(S—l)ﬁ.(a CPoPor ’r)) (]18)

ar'll

respectively.
The curve p(r) is a smooth curve whose denvatlve at the
points » approaches dy.

Cﬁﬁ(r’ l")

. R /\ .

Fig. 5. The covariance curve ?p(r, r') computed at an arbitrary
point r'. This curve generalizes the ‘resolving kernel’ of Backus and
Gilbert [1970].
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Fig. 6. The gravitational inverse problem of obtaining the shape
of a frontier between two media of different density, using as data
the anomaly at the surface.

x

c. Nonlinear Problem With Discrete Data
and a Function as Unknown

Our last example has been borrowed from Tikhonov
[1976], who shows it as an example of an ill-posed nonlinear
problem.

Let us assume a layer of uniform density over a half space
of uniform but different density. If between two points a and
b the interface is not planar but has a shape z(w) (see Figure
6), the vertical component of gravity and the free surface will
have an anomaly u(x). Assuming a two-dimensional prob-
lem, it may be shown that

b 2 2
x — w)” + H
uix) = | log ( 3 ) 5 dw
a (x = w)* + [H — z(w)]
We want to solve the inverse problem of estimating the
function z(w) from a finite set of measurements of the
anomaly

(119)

= u(x) (120)

The general solution of the problem is given by (81) or
(82). Let us explain the computation of the kernel G,/(w) of
the nonlinear functional (119).

Equation (119) defines a nonlinear operator which may be
written as

u = g(z) az2n

Let € be a function of w. It can be shown that in the limit

when £ — 0, the operator which associates to g, the function

gz + ) — gz (122)

is a linear operator. It is by definition the derivative of g(z) at
the point z,. If we note G;'(w), the kernel of the derivative,
we have then

b
f Gi'(w) e(w) dw

b
= f {log ( g
& - w? + H?

-1 -
* ((x' =Wy H - zk(w)lz)} v (B

in the limit £ — 0. The computation of the limit on the right-
hand side is carried out formally in exactly the same way as

- w) + H?
w)? + {H — [z(w) + eW)]?
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. . u(x)

10km
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z(w) 1,,?
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| ~20km" W
Fig. 7. Synthetic data (top) generated from a ‘true model’
(triangle at bottom). The smooth curve near the triangle corresponds

to the results of the inversion of the synthetic data (which have been
contaminated with errors, as shown in Table 1).

for the computation of the classical derivative of the expres-
sion

log LW+ B (124)
g o —w?+ H - 2)?
with respect to the variable z. We obtain then
) . 2(H -
Gilw) = # — 2w) (125)

& — w)? + [H — zw))?

We have generated a set of synthetic data as described in
Figure 7 and Table 1. This data set has been contaminated
with arbitrary errors, and it has then been inverted in order
to evaluate z(w). The following assumptions have been
made:

1. The standard error of the data is 0.10 units (Cgy, =
0.01-D.

2. The a priori estimate of z(w) is zo(w) = 0 with an error
bar of § km.

3. We do not want any oscillations of the solution with
wavelength shorter than 1 km.

From assumptions 2 and 3 it follows that an adequate a
priori covariance function may be

— w2
CpopW> W) = 0% exp { - % e A2w) } (126)

with ¢ = 5 km and A = 1 km.
The result is obtained by application of the algorithm (82):

Zeri(w) = f dw' 3 3 Cpppw, w') - Gi(w") - (ST

o J

: {doi - &@) + J’ dw'GE(w") - Zk(W")} 127

and is shown in Figure 7.

The number of iterations needed depends strongly on the
starting point. For the starting point Z4(w) = zo(w) = 0 an
accuracy of a few percent is obtained in two iterations.

Figure 8 shows the results of the first two iterations for a
remote starting point. The final result is independent of the
starting point Zo(w) (but of course depends on the a priori
point zg(w), which has always been taken as null in this
example.

The result of the inversion looks similar to the true value
of Figure 8, but the sharp slope discontinuities of the true
solution have been smoothed.

The integrations involved in the algorithm (82) have been
numerically performed using a grid of 100 points. The

" reduction of the number of points to 50 does not alter the

solution significantly.

5. CONCLUSION

We have shown that the least squares problem admits a
general definition, valid for discrete as well as for continuous
problems, for overdetermined as well as for underdeter-
mined problems and for linear as well as for nonlinear
problems. We have shown that the use of the concept of an a
priori covariance matrix (or function) allows one to obtain
stable solutions for otherwise unstable problems, or smooth
solutions when required. Our general solution (76) solves the
simpler problems of least squares adjustments, as well as
problems involving any number of integrodifferential equa-
tions. The convergence of the algorithm will only be ensured
if the nonlinearity is not too strong.

APPENDIX

Let us first demonstrate the equivalence of (13) and (11)
and (12).

We will call J the nonlinear manifold defined by the
equation f(x) = 0 (the theoretical manifold). We assume f to
be differentiable. The matrix of partial (Fréchet) derivatives,

F* = afijax* (A1)

defines a linear application which is named the tangent linear
application. We will assume F to be of maximum rank. Let §
be the tangent linear application of s:

Sk = asfaxk (A2)

Let & be a solution of (11) and (12). Then s is stationary at %;
that is, the tangent linear application § is null over the

tangent linear manifold to J at . We easily obtain
S =2%&-x)" Cp! (A3)

Since a vector V belongs to the tangent linear manifold to I
at % if and only if F- V = 0, (11) and (12) are equivalent to

TABLE 1. Values of Data. Used for the Gravitational Problem
Values of Data

Error Free Values

of Data Contaminated With Errors
0.181 0.200
0.280 0.250
0.487 0.500
1.023 1.000
2.676 2.650
4.770 4.800
2.676 2.700
1.023 1.050
0.487 0.450
0.280 0.300

. 0.181 0.150
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fR) =0 (Ad)
F-v=0>@&~-x)7-Col-v=0 (AS)

Since F is of maximum rank, (AS5) implies the existence of a
vector of Lagrange parameters, L, such that (8 — xg)7 - Cp™!
= LT . F. Equations (A4) and (AS) are then equivalent to

f(x) = 0 (A6)
AL:(®—x) =CoFT-L (A7)

By left-multiplying (A7) by F we obtain
F-&8—x)=(F-Cy-F)-L (A8)

and since C, is positive definite and F is of maximum rank,
L=(F-Co-F)'" F- (% — x0) (A9)
Equations (A6) and (A7) are then equivalent to the set of
equations
f) =0
R-%)=CoF'-(F-Co-F)™' - F- (X — %)
which are equivalent to the single equation
(R —x0) =Co+F'-(F-Co- F)™' - {F - (% — x0) — f(%)}
(A12)

It is obvious that (A10) and (A11) imply (A12). The recipro-
cal is easily demonstrated by left-multiplying (A12) by F.
Let us now turn to the demonstration of equations (20) and
1).
Using (6), (17), and (18), we successively obtain

4 - do

Px — Po ]

— [dx — g(po)]

—{do —g(pw) + Gi* (bx — Po)} (A13)

[ Cdodo Cdol’o ] . [ I ]
dedo Cl’opo _G"T

[ G0
Cpodo - CPoPo : GkT

(A10)
(Al1)

Fr (e —x0) —f(x) = [I —Gyl- [

Co * FkT

(A14)

z(w)
z,(w)
2 (w)

/\
N

Z2,(w)

Fig. 8. The problem is nonlinear, and this figure illustrates the
convergence of the algorithm when the ‘starting point’ is far from
the ‘true solution.’ The final solution is rigorously independent of
the starting point. '

Fk * Co * FkT = Cdodo - CdoPo * GkT-
— Gy Cpgy + Gi* Cpppy* G (A15)

then (15) gives
[ dist ] _ [do ] N [Cd.,,,,,-cf— cdodo]
pk+1 Po . dePo . GkT - CPodo
. [Cdodn - Cdopo . GkT - Gy Cpodo + Gy * CPnPo . GkT]_l

 [do —g(pW) + Gi* (Bx — Po]

The solution for Py, coincides with (20). To obtain (21), we
must first demonstrate a matricial identity. From the trivial
equality

(Caoty = Caop, * G = (Cayty = Caypy * G'-G- Cody
+ G+ Cpp,* GN = G+ (Cpp,* GT = Cppa)

we deduce, by right-multiplication with the appropriate
matrix,

(Cady = Capy " G * Cagy = Capy* GT = G * Cpg
+ G Cppy"GN' =1~ G (Cppp,* G" = Cpa)
“(Capdy = Cappy” GT = G+ Cppgy + G+ Cpp* GN™' (A18)

Using (A18), the solution for ﬁkH, as given by (A16), may be
written as

desy = do — [I = Gi* (Cppp, " Gi” = Cpya)
“(Cady = Caopy* Gk¥ = G * Cppgy + Gk * Cpppy * GiN 71
* [do —g(Pe) + Gi* (Bx — Po)]
= g0 — Gi* br + Gi* P

which demonstrates (21).
To demonstrate (24) and (25), we will use the matricial
identities

CPoPo . GT . (Cdodo + G- Cpopg . GT)—]

(Al6)

(A17)

(A19)

= (G- Cdodo_l -G+ CI,,,,po)"1 - GT- Cdodo'l (A20)
G- Cdodo"l G+ Cpopo_l)—l = Cpypy
- CPuPo -GT- (Cdodo +G- CPoPo ' GT)_l G Ci’ol’o (A21)

which have been demonstrated in paper 1.
Equation (24) is deduced from (23) using (A20). It is
obvious that (23) can be written as

Pir1 = Pr + Cpyp, Gk” * (Capg, + Gic* Cppp, * Gk
*[do ~ (B — [Cpyp, = Cpppy * Gi”
. (Cdodo + Gy * CPoPo . GkT)_l . Gk . CPoPo]

¢ Cpopo_l ¢ (f’k - PO) (A22)

Equation (25) is deduced from (A22) using (A20) and (A21).
A proper derivation of (30) has been made in paper 1,
where C is obtained as the covariance matrix of the a
posteriori probability density function. A formal derivation
of (30) is obtained if we consider (29) as a reldtion between
random variables. By definition of covariance matrix,

C = E{lx - E®Iiz - E®)} (A23)



232 TARANTOLA AND VALETTE: GENERALIZED NONLINEAR INVERSE PROBLEMS

where 'E stands for mathematical expectation. Using the
notations of (31), (32), and (33), we successively obtain

C = E{[Pxo — E(Pxo)l[Pxo — E(Pxo)]"}
= P E{lxo — E(xo)lixo — E(xo)]"}P"
=P-Co*PT=P2-Cyo=P-C,

which demonstrates (34) and (30).
The proof of (37) and (38) is a particular case of that of (20)
and (21). Using (6), (35), and (36), (33) becomes

B[] [ Gl o]
P Po Cow, * G - Chrydy

(A24)

“[Cuapdy = Capp,* G — G+ Cpy,

+ G Cppy - G [do — G * o] (A25)

The solutionl for p coincides with (37). Using (A18), the
solution for d may be written as

a = d0 - [I— G'(CPoPo'GT_ Cl’odo)'(cdodo - CdoPo.GT
_G.CPMD+G'CP0P0.GT)_]
"o-G'p)=G-p (A26)

which demonstrates (38).
Using (6) and (35), (34) becomes

[ C&& Caﬂ :| — [ Cdndo CdoPo ] - [Cdodo - Cdol’o ' GT]
Coa Cop Coods  Cropo Coudy = Coopy * GT
: [Cdodo - Cdopo : GT -G- CPodo +G: CPoPo ' GT]_l

: [Cdodo -G- CPodo Cdol’o -G CPoPo] (A27)

For Cy, we directly obtain from (A27) the expression (39).
For Cj, we obtain successively

C30‘= Cdd’o - (Cdodo - Cdﬂl’o ) GT)[ ]_I(Cdd’o -G de’o)
= Cap, = I = G+ (Cpp,* GT = Cpg)l 17]
“(Capy, = G* Cpp) = G+ Cpp (A28)

where we have used (A18). For Cy; we obtain successively
from (A27), using (A18),

Cia = Capgy = (Caay = Cappy " Gl 17 (Cupq, = G * Cppa)

= Capty = I = G+ (Cppp,* GT = Cpiid)l 171
*(Cap, = G * Cppa)

=G Cpyy+ G (Cpp,* GT -
*(Cay, = G * Cpoay)

=G Cpy, + G (Cpppy * G" - Coa)l — [ I
(G- Cppp, — Cdopo) - GM

=G+ Cpp,* G' = G (Cppp, " GT —
(G Cpyp, = Capp)) * G7

=G-Cg~GT

Equations (A28) and (A29) demonstrate (40).
Equations (43) and (44) are obtained from (41) and (42)

Co)l 17"

Cpodo)[ ]_,

(A29)

 using (A20) and (A21).
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