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A strategy for nonlinear elastic inversion

of seismic reflection data

Albert Tarantola*

The problem of interpretation of seismic reflection
data can be posed with sufficient generality using the
concepts of inverse theory. In its roughest formulation,
the inverse problem consists of obtaining the Earth
model for which the predicted data best fit the observed
data. If an adequate forward model is used, this best
model will give the best images of the Earth’s interior.

Three parameters are needed for describing a per-
fectly elastic, isotropic, Earth: the density p(x) and the
Lamé parameters A(x) and p(x), or the density p(x) and
the P-wave and S-wave velocities a(x) and B(x). The
choice of parameters is not neutral, in the sense that
although theoretically equivalent, if they are not ad-
equately chosen the numerical algorithms in the inver-
sion can be inefficient. In the long (spatial) wavelengths
of the model, adequate parameters are the P-wave and
S-wave velocities, while in the short (spatial) wave-
lengths, P-wave impedance, S-wave impedance, and
density are adequate. The problem of inversion of wave-
forms is highly nonlinear for the long wavelengths of the
velocities, while it is reasonably linear for the short
wavelengths of the impedances and density. Fur-
thermore, this parameterization defines a highly hier-
archical problem: the long wavelengths of the P-wave
velocity and short wavelengths of the P-wave im-
pedance are much more important parameters than
their counterparts for S-waves (in terms of interpreting
observed amplitudes), and the latter ‘are much more im-
portant than the density. This suggests solving the gen-
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eral inverse problem (which must involve all the param-
eters) by first optimizing for the P-wave velocity and
impedance, then optimizing for the S-wave velocity and
impedance, and finally optimizing for density.

The first part of the problem of obtaining the long
wavelengths of the P-wave velocity and the short wave-
lengths of the P-wave impedance is similar to the prob-
lem solved by present industrial practice (for accurate
data interpretation through velocity analysis and “pre-
stack migration”). In fact, the method proposed here
produces (as a byproduct) a generalization to the elastic
case of the equations of “prestack acoustic migration.”

Once an adequate model of the long wavelengths of
the P-wave velocity and of the short wavelengths of the
P-wave impedance has been obtained, the data residuals
should essentially contain information on S-waves (es-
sentially P-S and S-P converted waves). Once the corre-
sponding model of S-wave velocity (long wavelengths)
and S-wave impedance (short wavelengths) has been ob-
tained, and if the remaining residuals still contain infor-
mation, an optimization for density should be per-
formed (the short wavelengths of impedances do not
give independent information on density and velocity
independently).

Because the problem is nonlinear, the whole process
should be iterated to convergence; however, the infor-
mation from each parameter should be independent
enough for an interesting first solution.

INTRODUCTION

Modeling of seismic waveforms can be performed using nu-
merical methods (e.g., finite differencing). Large-scale parallel-
ism in the computers of the near future will make modeling
accurate and inexpensive. Interpretation of industrial seismic
data using inverse methods will probably become routine, and
the stack-plus-migration method will become an ancient tech-

nique. Imaging will not be based on “principles,” but on well-
posed questions about the properties of the Earth’s interior.
At present, it is urgent to develop the theory, to check
approximations made in forward modeling and to study strat-
egies for inversion. , S .,
Seismic reflection data are nonlinearly related to the Earth’s
model parameters. Classical velocity analysis as usually per-
formed in the petroleum industry suggests that it is often pos-
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sible to obtain good enough initial models to reduce the re-
maining nonlinearities.

There has been a considerable amount of recent work in
linearized inversion of multioffset seismic reflection data
(Clayton and Stolt, 1981; Berkhout, 1984; Tarantola, 1984a;
Bleistein et al., 1985; Ikelle et al., 1986).

Some work exists in nonlinear inversion. Using a gener-
alized least-squares method, Tarantola (1984b) develops a
theory for the nonlinear, multidimensional inversion of mul-
tioffset seismic reflection data in the acoustic approximation.
Tarantola (1984c) extends the theory to the elastic (isotropic)
case. A coherent inverse theory including attenuation is miss-
ing.

Passing from theory to numerical experimentation, one-
dimensional (1-D) problems (i.e., problems where the medium
parameters depend only on one dimension) must be dis-
tinguished from two-dimensional (2-D) and three-dimensional
(3-D) problems. Although 3-D forward modeling is within the
capabilities of today’s computers (Edwards et al., 1985), no
attempt has yet been made to solve the 3-D nonlinear inverse
problem with multioffset data numerically.

For 1-D nonlinear inversion with multioffset data, Mora
(1984) uses ray theory to obtain models of density and P-wave
and S-wave velocities. His forward modeling technique has the
advantage of being inexpensive, but unfortunately it does not
take into account multiply reflected energy. He shows that by
using only the vertical displacement at the surface, it is possi-
ble to obtain the three parameters describing the medium, at
least with perfect (synthetic) data. Kolb et al. (1986) solve the
same problem using a more powerful (and much more expen-
sive) finite-difference forward modeling technique. In particu-
lar, they discuss the problem of extracting the long wave-
lengths of the medium; unfortunately, they limit their scope to
an acoustic medium and only invert for a single parameter
(velocity).

Gauthier et al. (1986) give the first realistic example of mul-
tidimensional, nonlinear inversion of multioffset seismic reflec-
tion data. Their work is also limited to a single parameter in
an acoustic medium, but they demonstrate the feasibility of
such an inversion (with present-day software and hardware).
Chen (1985) performs a 2-D elastic inversion of multioffset
seismic data, but with so few parameters (~ 100) and for such
unusual low-frequency “seismograms” [ ~exp (—¢)] that I am
unable to ascertain that their method is applicable to realistic
data. Large-scale inverse problems are qualitatively different
from the discrete problems obtained using rough parame-
terizations.

The aims of this paper are to use recent results to enumer-
ate the remaining difficulties, and to propose a reasonable
strategy for nonlinear inversion of real seismic reflection data
with modern computers. Part of the mathematics needed for a
full understanding of this paper has been developed by Taran-
tola (1984c). The elastodynamic wave equation is well-known
and described in many texts (e.g., Morse and Feshbach, 1953;
Aki and Richards, 1980; Ben-Menahem and Singh, 1981), so it
is not presented here. The particular equations needed for the
inverse theory are available in Tarantola (1984c, 1986).

CHOOSING AN ADEQUATE PARAMETERIZATION

To describe an isotropic elastic Earth, in addition to the
density p(x) two more parameters are needed. The simplest

choice is the Lamé parameters A(x) and p(x), which appear in
the wave equation. The compressional (P)-wave velocity

_ Mx) + 2u(x) (1a)
a0 \/ p(x)
and the shear (S) wave velocity
By = (L (1b)
p(x)

have more direct physical meaning for problems involving
wave propagation.

For inversion, all choices are not equivalent. For instance,
to accelerate iterative inversion algorithms, it is important to
select parameters whose a posteriori uncertainties will be as
uncorrelated as possible. Assume, for instance, that p(x), q4(x),
and g, (x) are chosen for describing the Earth, and imagine an
Earth model that is homogeneous but for three point diffrac-
tors. The first point diffractor is a perturbation of density only,
the second is a perturbation of g, only, and the third is a
perturbation of g, only. A wave sent into the Earth will be
diffracted by these three points. A good choice of parameters
will give three diffraction patterns which are as different as
possible, to allow easy identification of the parameters.

From numerical experiments, I conclude that for a seismic
reflection experiment, an adequate parameter choice is density
p(x), P-wave impedance

IP(x) = p(x)a(x) = \/ p(x) [K(X) + 2H(X)], (1c)
and S-wave impedance

I8(x) = p(x)B(x) = \/p(x)u(x). - (1d)

The corresponding diffraction patterns are shown in Figures
1 and 2. For comparison, the diffraction patterns correspond-
(continued p. 1898)
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FiG. 1. For each type of diffractor considered in Figures 2, 3,
and 4, the diffracted waves are classified as indicated here. The
columns correspond to incident P-, SV-, and SH-waves, re-
spectively, while the rows correspond to diffracted P-, SV-,
and SH-waves. Arrows indicate the sense of first displacement
of the incident wave. )
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F1G. 2. The top section shows the amplitude diffraction patterns of a diffractor with a perturbation of density p but
constant P-wave impedance IP and constant S-wave impedance IS. The middle of section shows the diffraction
patterns of a diffractor with a perturbation of P-wave impedance IP but constant density p and S-wave impedance IS,
The bottom section shows the diffraction patterns of a diffractor with a perturbation of S-wave impedance IS but
constant p and IP. The waves are classified as in Figure 1. The arrows indicate the sense of first displacement of the
diffracted wave. As is well-known, there are only P-P, P-SV, SV-P, SV-SV, and SH-SH conversions. The diffraction
patterns for P-wave impedance diffractors and S-wave impedance diffractors (with constant density) are very different.
A density diffractor (with constant impedances) only diffracts waves forward: this sort of diffractor will be hardly
visible using surface seismic reflection data with moderate offsets.
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FIG. 3. Same as Figure 2 but for parameters p, A, and p (density and Lamé parameters). Different diffractors give
similar diffraction patterns for moderate offsets. For instance, using only P-P waves and small offsets, the responses of
the three types of diffractors considered are almost identical. ;
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FIG. 4. Same as Figure 2 but for parameters p, a, and B (density and velocities of P- and S-waves). The situation is not
as bad as in Figure 3, but using only P-P waves and small offsets, it is still difficult to distinguish between a density
diffractor (with constant o and B) and a P-wave velocity diffractor (with constant p and B).



1898 Tarantola

ing to a parameterization in density p(x) and velocities a(x),
B(x), or to a parameterization in density p(x) and Lamé pa-
rameters A(x) and p(x), are shown in Figures 3 and 4. It can be
seen that the backward diffraction patterns for small offsets
are quite different for the choice of parameters in Figure 2,
and they are more similar for the choice of parameters in
Figures 3 and 4. For obtaining the diffraction patterns, I used
a linearized solution of the wave equation with respect to a
homogeneous medium, for parameter perturbations of the
form K3(x — x,). Some (different) diffraction patterns are also
shown in Sato (1984), Wu and Aki (1985a, b), and Wu and
Ben-Menahem (1985).

As discussed below, only the short wavelengths of the im-
pedances and density will be adequately resolved using a typi-
cal seismic reflection data set. This means that the parameters
that will be truly resolved are the (approximately vertical)
gradients of impedances and density. However, it is simpler to
use impedances and density as parameters than their gradi-
ents; since the relationship between a parameter and its gradi-
ent is linear, the difference in resolution is not important.

NONLINEAR INVERSION OF MULTIOFFSET
SEISMIC REFLECTION DATA

Notation

Consider a typical seismic reflection experiment. In what
follows, x, denotes a generic receiver position and x, denotes a
generic “shot” position. A typical seismic reflection data set

may be represented by
I:ui(x,, t; xs)] , 2

wherei=1,2,3,r=1,2,...,0<t<T,ands=1,2,.... The
time variable ¢ is reset to zero at each shot.

The least-squares criterion of goodness of fit

Define the best Earth’s model [IP(x), IS(x), p(x)] as the
model that minimizes the least-squares expression

S{AP, 1S, p)

1
= _2' (” Uea — “obs“2 + ” IP — IP;:arim'llz

+ ” IS — Isprior”2 + ”p - p’prior”2>a (3)
(the factor 1/2 allows subsequent simplifications), where

” ucal - uobs ”2
T T . .
=y f dtf dt [u‘(x,, t; XJea —U(X,, t; x,)obs]
s r JO 0

X Wij(ta t’; X,, Xs) I:uj(xr > t/; xs)cal _uj(xr » t,; xs)obs:l >

(4a)

“ IP — IPprior ”2
- J V(%) J dV(x’)[IP(x) -~ IP(x)p,io,:l
v 1 4
x W, (x, x) [IP (x) - IP("’)prior]’ (4b)
" IS — Isprior "2
=j d V(X)_[ dv(x) I:IS(X) - IS(x)p,ior]
x W.(x,x") [IS(X') - IS(X')p,ior] s (4¢)
and
" p— pprior “2
f d V(X)J dV(X')[P(X) - p(x)prior:l
v 14
x VVp(x’ X’) I:P(x/) - p(x,)prior:l . (4d)

Here u/(x,, t; X,)., Tepresents the data predicted by the model
[IP(x), IS(x), p(x)] and Wi(t, t'; x,, X,), W, (x, x'), W,(x, x'), and
W, (x, x') represent weighting functions.

The physical interpretation of criterion (3) is simple: one
wishes a model [TP(x), IS(x), p(x)] not too far from the a priori
model [TP(X) 005 IS(X),rigrs P(X)prior] Such that the predicted
data are not too far from the observed data. The constraint
that the final model cannot be too far from some a priori
model is necessary for avoiding a possibly ill-posed problem:
if very different models give approximately the same seismo-
grams, I prefer the simplest model.

When so defined, the problem is fully nonlinear (the best
model is defined without invoking any linear approximation
of the basic equations). In particular, I do not use the Born
approximation. Note that because the computed seismograms
are nonlinear functions of the model parameters, the functional
(3) is a nonquadratic function of the parameters.

Choice of the weighting functions

In the context of least-squares, a weighting function is the
integral kernel of the inverse of a covariance operator. For
instance, if C(x, x’) is a covariance function, the associated
weighting function W(x, x’) verifies

J dV(X)C(x, X)W (X, x") = 8(x — x"). ©)
14

Taking the covariance function

Cx, x)=C(x, y,2 x,y, 2)
= K8(x — x)8(y — ) min (z, 2) A6)
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gives (Tarantola, 1986)
“ ¢_¢prior ”2

= f dV(X)J av(x’) [¢(X) - ¢(X)prio,]
v |4

x Wi(x, x) [¢(X’) - ¢(x,)prior] ,

_l a_(b. a(bprior 2
_KLdV(x)[dz (x,y,z)—T(x,y,z)] .

which is an adequate norm to impose for impedances or den-
sity in the Earth. The final model should not be close to the
initial model, but the vertical gradient of the model should be
close to the vertical gradient of the a priori model. For in-
stance, taking a homogeneous a priori model in impedances
and density, the norm (7) will require the final model to have
small vertical gradients. The random process with covariance
function (6) corresponds to a “random walk” in the z direc-
tion. Godfrey et al. (1980) suggest use of more general Markov
chains. In the x-y directions, the random process with covari-
ance function (6) is white noise. More general a priori con-
straints can be imposed by choosing adequate covariance
functions; in particular, it is easy to impose lateral smoothness
on the model by taking

Cix, x)=C(x, y, 2z, x, y, Z)

N2 w2
=Kexp|:—\’(x Xy +U y)]min(z,z’), ®)

L

where L represents the length over which the model has to be
smooth.
If there are uncorrelated errors in the data set, depending
upon time or source and receiver positions, then
Cl, t'; x,, x,) = 62(x, t; x,)878(t — t'), ©®

and
' T
” Uy — Uy “2 = Z Z J dt
s r JO

2
3 l:ui(xr’ t; xs)cal - ui(xrs t; xs)obs]
gL . (10)
i=1

o2(x,t; X))

Usually, only the vertical component u? is recorded. The sum
over i then disappears from equation (10).

Methods of resolution

There are two classes of methods for minimizing a function-
al. The first has methods which extensively explore the model
space. The exploration can be systematic or random (Monte
Carlo). The inverse seismic problem has too many degrees of
freedom for these methods to be useful with present-day com-
puters. The second class contains iterative methods which,
using the local properties (at a given point of the model space)
of the functional to be minimized, define a “descent direction”
along which a new and better point of the model space will be
obtained. The more efficient methods are generally gradient
methods. There are a number of good books on nonquadratic
optimization (e.g., Céa, 1971; Fletcher, 1980; Scales, 1985).
Some methods are reviewed in Tarantola (1984c, 1986). My

personal experience in the present problem suggests the fol-
lowing strategy. i

First, as for all nonlinear problems, it is important to start
iterating at a point as close as possible to the final solution, to
minimize the nonlinearity of the problem. In the present con-
text, this means starting from a model for which the long
wavelengths of the P-wave and S-wave velocities are reason-
ably correct. .

The three parameters IP(x), IS(x), and p(x) have been
chosen to be as independent as possible. Furthermore, these
parameters have very different importance. Most of the data
features can be explained with P-waves alone, suggesting that
the iteration starts with a gradient method for the P-wave
impedance alone (i.e., maintaining fixed S-wave impedance
and density). This requires a reasonably good model of the
long wavelengths of the P velocity. Later I show that each
iteration for the gradient strongly resembles a migration (for
unstacked data).

Once a good model IP(x) has been obtained, the remaining
data residuals will contain S-waves. If a reasonably good
model for the long wavelengths of the S velocity can be ob-
tained, then some gradient iterations to model S-wave im-
pedance should be performed. The remaining residuals may
contain some information on the short wavelengths of the
density. Some gradient iterations for the density will end the
process.

Because the total problem is nonlinear, the entire process
should in principle be iterated until convergence. However,
since the chosen parameters are acceptably independent, I
hope the model obtained after a single loop will be good
enough, if the long wavelengths of the P-wave and S-wave
velocities in the starting model are right.

The long wavelengths

Claerbout (1985) suggests that normal seismic data sets con-
tain information on the long wavelengths of the model which
is totally independent of the information on the short wave-
lengths.

Gauthier et al. (1986) give an example of nonlinéar inver-
sion of multioffset seismic reflection data for a 2-D model,
using the acoustic approximation. However, one of their nega-
tive conclusions is that the gradient methods have an ex-
tremely poor convergence rate if the starting model does not
contain the long wavelengths of the true model.

Kolb et al. (1986) solve a nonlinear acoustic inverse prob-
lem with multioffset data, for a depth-dependent medium;
they also use a gradient method. They show that if the first
iterations are performed with a data set that has been severely
low-pass filtered (i.e., using only the very low frequencies), then
an adequate model for the long wavelengths may be obtained.
It is not clear if such a method will work well with real data. If
s0, it allows use of the gradient methods from the beginning of
the interpretation. If it does not work well on real data, the
starting models of the long wavelengths of the P velocity and
S velocity have to be obtained using an independent method,
such as a t-p method (Phinney et al., 1981; Carrion and Kuo,
1984) or a traveltime inversion (Nercessian et al., 1984). Stork
and Clayton (1985) suggest a kind of iterative tomographic
migration method of reconstruction. The use of methods
based on Rytov’s approximation (e.g., Devaney, 1984) is also
promising.
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[

In what follows, it is assumed that an Earth model [po(x),
IP, (x), IS, (x)] that contains the long-wavelength component
of the P and § velocities is given.

Optimization of the P-wave impedance

Denote by p(x),, IP(x),, and IS(x), the model obtained at
the nth iteration, which needs to be further optimized for the
impedance IP(x). I use a gradient iterative method which gives
models IP(x),+ , IP(X), 45, ....

Using the method from Tarantola (1984c, 1986), an iter-
ation of the steepest-descent method is performed through the
following equations (interpreted below):

ui(xrs L xs)n _ ui(xr’ L xs)obs

ddi(x, t; x)), = , (11a)

S\Pi(x, t; xs)n = z rij(xs 07 X,, t),,* 6l"‘\j(xr’ t; Xs),,,

(11b)
T
SIP(x), = —2a(x), ¥ J dt u(x, t; x),
s JO
x 8WH(x, t; xJ),, (11¢)
SIP(x), — J. dx’ Cy(x, X)SIP(X),, (11d)
AIP(x), = Precond [5IP(X),,] s (11e)

and

IP(x),+, = IP(x), — a,.I:AIP(X),. + IP(x), zlP(X)pﬁor],
(11f)

where a, is the real constant which makes S(IP,.,, IS,, p,)
minimum, and which can be analytically estimated (see Taran-
tola 1984c) or simply obtained by trial and error.

I now turn to the physical interpretation of this result.

Equation (11a).—u'(x,, t; x,), are the data predicted for the
model IP,, IS,, p,. A(x), and p(x), are the Lamé parameters
corresponding to the model IP,, IS,, p, [through equations
(1c) and (1d)]. By definition, ui(x,, t; x), is the solution of the
set of differential equations

0%u

i
5 (X, t; X)),

p(x), e

_2 [x(x)n ux, 1 xs)n]
ox

ox!

P [H(X).. ul(x, t; xs),.:l =0, (12a)

Mx), u(x, t; x,), n'(x)
+ 2u(x), u(x, t; x,), n(x)
= Ti(x, t; x,), X€eS, (12b)

ui(x, 0; x,) = 0, (12c)

and
ui(x, 0; x,) = 0, (12d)

where it is assumed that the source of seismic waves is a
vibrator whose action is completely described by the surface
traction Ti(x, t; x). For instance, a simplistic description
could be T'(x, t; x,) = 8"3S()3(x — x,), thus assuming a vertical
point source located at x = x, with time function S(t). The
actual computation of the field u'(x, t; x,), may be made using
any numerical method, such as finite differencing (Gauthier et
al., 1986). )

o?(x,t; x,) represents the estimated (squared) error at time ¢
of the displacement measured at x, for the source at x,. Oi(x,,
t; X,), then clearly represents the weighted residuals.

Equation (11b).—Define the field §¥(x, ¢; x,), by the equa-
tions
2 i

3 4
p(x), e (x, t; X)),
~ 2 0,695, 12 x)
ax[ n > k3 s/n

22 [H(X),. S¥(x, t; Xs),,] =0, (13a)

ox’

Mx), 3P (x, t; x,), ni(x)
+2u(x), SWH(x, ¢; x,), m(x)
=Y 8(x — x,)84x,, 1;x),, x€S, (13b)

3¥ix, T; x,), =0, (13¢)
and

SWix, T; x,), = 0, (13d)

where 8Wi(x, t; x,), satisfies homogeneous final conditions
(13c) and (13d), instead of initial conditions. The “sources” of
the field 8¥i(x, 1, x,) are the weighted residuals 8#(x,, t; x,),,
acting as if they were tractions (13b), all radiating in-phase.

Using the representation theorem [Aki and Richards, 1980,
eq. (27)] with reversed time allows the following compact rep-
resentation for §¥Wi(x, t; x):

Wi, t; x,), = Y. TU(x, 0; x,, t), * 8i(x,, t; X,),, 27

which corresponds to equation (11b). I'(x, 0; x,, #), represents
the Green’s function in the current model, satisfying homoge-
neous initial and (traction) boundary conditions. (The Green’s
function is useful for analytical developments or to simplify
notation, but it never has to be used explicitly in numerical
computations.)

The field 8¥i(x, t; x,), can, for instance, be numerically
obtained using a finite-difference code, with time running
backward from ¢ =T to t = 0, and where for a given shot-
point x,, I consider virtual sources, one at each receiver, radi-
ating the weighted residuals backward in time. See Gauthier et
al. (1986) for a numerical implementation in an acoustic exam-
ple.

Note that the physical dimension of 8¥i(x, ¢; x,), is not a
displacement, because the right side of equation (13b) is not a
traction. Because the surface “tractions” corresponding to
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3Wi(x, t; x,), equal the weighted residuals, this field is closely
related to the missing field at iteration n, ie., a field whose
surface displacements equal the residuals at the receiver lo-
cations. I liberally name §¥i(x, ¢; x,), the “current missing
field.”

Equation (11¢).—This is the most important of the equa-
tions, because this is the inversion. After some corrections
[equations (11d)—(11f)] 81P(x), will essentially be the correc-
tion to be applied to IP, for obtaining IP,,, [as shown by
equation (11f)]. Equation (11c) shows that this correction at a
given point x, for given shot x;, equals the time correlation of
the dilatation u'(x, t; x,), of the current predicted field with
the dilatation 8¥¥(x, t; x,), of the current missing field. The
physical interpretation is as follows. If for a given source point
x, and at a given point x, the dilatation of the current predic-
ted field is time-correlated with the dilatation of the missing
field, this missing field should be created by adding a P im-
pedance diffractor at point x. This interpretation is strikingly
similar to the imaging principle of Claerbout (1971), but here
it is in an elastic context and results from a general opti-
mization criterion.

Equation (11d).—The “migrated” field 8IP(x), is operated
with the covariance operator incorporating a priori infor-
mation. If a covariance function such as equation (8) is used,
this equation corresponds to a convolution over the x and y
coordinates and a sum over the z coordinate which in fact
corresponds to taking twice the primitive of 8IP(x), with re-
spect to z. The parameter K in equation (8) controls the
tradeoff’ between the importance of the a priori information
and the information obtained from the data set.

Equation (11e).—As in all gradient methods, some precondi-
tioning may greatly speed convergence. At least, a precondi-
tioning operator has to simulate the action of the inverse
Hessian appearing in the Newton-like methods of opti-
mization. Using physical intuition, operators can be defined
that may be better than the inverse Hessian. The simplest
operator in this example corresponds to a correction for
spherical divergence of waves (Gauthier et al.,, 1986), i.e., to a
multiplication by z”, where n ~ 1 for a 2-D problem and n ~ 2
for a 3-D problem.

Equation (11f).—The new model IP(x), is obtained here. An
optimum value of a, (for which the cost function is a mini-
mum) is obtained by trial and error.

Each iteration corresponds to a sort of generalized elastic
“prestack” migration. A few iterations should suffice (if it is
not necessary to improve the long wavelengths). Readers not
interested in inversion, but only in prestack migration, may
consider these equations as a serious candidate for replacing
acoustic migration equations.

Optimization of the S-wave impedance

Turning now to S-wave impedance, denote by p(x),, IP(x),,
and IS(x), the model already obtained, which must be further
optimized for the impedance IS(x). The gradient iterative
method gives models IS(x),+ 1, IS(X), 42, .- -

An iteration of the steepest-descent method is performed

through the following equations:

ui(xr’ t; xs)n - ui(x', t; xs)obs

Sul(x, t; X)), = oAx. . 15 %) , (14a)
3Wix, t; x), =Y T'(x,0;x,, ), * Si/(x,, t; X,),, (14b)
N T
SIS(x), = —4B(x), z f dt
s JO
x I:u"'”(x, £; x.), P*™(x, t; X,),
—u(x, t; x,), PH(x, t; xs),,] , (14c)
SIS(x), = J\dx'C,s (x, x’)SIg(x’),, s ' (14d)
AIS(x), =Precond [BIS(X)"] s (14e)

and

I8(x), + , =18(x), — 4, [AIS(X),.+IS(X)..—IS(X)pmf], (14f)

where a, is the real constant which makes S(IP,, IS,, , p,)
minimum. The physical interpretation is as for the P-wave
impedance.

Optimization of the density

Finally for the density, denote by p(x),, IP(x),, and IS(x),
the model already obtained, which must be further optimized
for the density p(x). The gradient iterative method gives
models p(x), 41, P(X)y125--- -

An iteration of the steepest-descent method is performed
through the following equations:

w(x,, t; X)— (X, , t; X )0,

8Z'ZKII(X"t;xs)nz 0'2(x t'x)
rts Ag,

, (15a)

WX, 1;X,), =Y T¥(x,0;x,, 1), * 8i#(x,, t; X)), (15b)

r

px),=Y J dt{d‘(x, t; x9), OPix, £ x),
s JO

+[a2(x)" - ZBZ(x)..]u“(x, t;x,), 8WH(x, t; x)),
+2B%(x), (X, £; x,), S¥*™(x, t; xs).,} ) (15¢)
3p(x) = j dx’ C, (x, X)8p(x),, (15d)

Ap(x), = Precond [Sp(x),,:l , (15¢)

and

p(x)n+1 = p(x)n - a, [Ap(x)n + p(x)n - p(x)prior] ’ (lsf)
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where a, is the real constant which makes S(IP,, IS,, p,.,)
minimum. The physical interpretation is the same as for the
P-wave impedance.

DISCUSSION

With the previous algorithms, nonlinear inversion of seismic
reflection data requires computations which are quite similar
to those in use today for accurate prestack migration. These
algorithms are more expensive because they use a full elasto-
dynamic wave equation instead of an approximate acoustic
wave equation.

Although the equations given here are for three-component
data, the restriction to vertical component data is obvious.

It is difficult to analyze errors in the solution of such an
inverse problem. There are two sources of error, the simplest
of which is due to noise in the data set. Generalized least-
squares using a priori information on model parameters are
known to be stable (Jackson, 1979; Tarantola and Valette,
1982), and the estimated errors as given by the a posteriori
covariance operator in the model space seem to be reliable (as
far as Gaussian statistics are acceptable for errors in the data
set). Unfortunately, in a problem as large as the present one
there is no computable method for estimating these errors
(Tarantola, 1984c, 1986).

Errors more difficult to analyze are those due to dis-
cretization. All the main computations in the present method
consist of wave propagation (both for solving the forward
problem and for iterating in the inverse resolution), and these
errors are relatively well-known (Alterman and Karal, 1968;
Virieux, 1986).

Waves propagate in a 3-D Earth, and, even if the geology is
invariant in the direction perpendicular to the survey line,
accurate modeling of amplitudes can be obtained only by
using 3-D models. Finite-difference approximations to the 3-D
wave equation are possible (Edwards et al., 1985) but expen-
sive with modern vector computers. The newest generation of
parallel computers will probably make the modeling task fea-
sible. For now, some adhoc corrections in the observed ampli-
tudes may account for part of the effect. However, correct
inversion is highly dependent upon forward modeling, and this
could be a major limitation.

The source time function is not known exactly, and this is
itsell a full inverse problem. However, the relationship be-
tween observed amplitudes and the source time function is
strictly linear, so the problem is not difficult.

Here I have used a simple, preconditioned steepest-descent
method that is probably too rough to be efficient. More so-
phisticated methods using not only the gradient of the func-
tional S, but also the Hessian (second derivative) have to be
envisaged (see Tarantola, 1984c). Unfortunately no progress
has been made in that direction. The Hessian is difficult to
interpret and too complicated to use. The numerical experi-
ments of Gauthier et al. (1986) suggest conjugate gradients to
be more efficient than steepest descefit, but good precondition-
ing is more important.

Here, I have used a least-squares (L,-norm) criterion of
goodness of fit. It is well-known (e.g., Claerbout and Muir,
1973) that this criterion is not as robust as the L,-norm cri-
terion for adequately handling blunders in a data set, but the

theory of large-scale inversion using an L,-norm has not yet
been developed.

" CONCLUSION

Some numerical experiments suggest separation of the pa-
rameters describing the Earth in long spatial wavelengths and
short spatial wavelengths. In the long wavelengths, the P-wave
velocity a(x) and the S-wave velocity B(x) are adequate param-
eters. In the short wavelengths, the P-wave impedance, the
S-wave impedance, and the density are adequate.

The nonlinear inverse problem is set as the problem of mini-
mizing a (nonquadratic) functional of the model parameters,
essentially measuring the distance between observed and pre-
dicted data. Use of a generalized least-squares criterion allows
introduction of a priori constraints in which the vertical gradi-
ents of the model have to be small so that the resulting equa-
tions are very simple. The minimization problem is solved
iteratively, first optimizing the P-wave impedance, second op-
timizing the S-wave impedance, and then optimizing the den-
sity. Each partial optimization problem corresponds to a type
of “generalized iterative elastic migration of unstacked data.”
Each iteration requires resolution of two forward problems
per source. )
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