
 1

MIS 214 / CS 274 LECTURE

GENETIC ALGORITHMS, GENETIC
PROGRAMMING

JOHN KOZA

TUESDAY, APRIL 27, 1999

 2

OUTLINE

• Genetic Algorithm (GA)
• Flowchart, operations, preparatory steps
• Examples
• Characteristics, advice, common mistakes
• Hillclimbing and Simulated Annealing

• Genetic Programming (GP)
• Idea of automatic programming
• Flowchart, operations, preparatory steps
• Examples
• Automatically defined functions (ADFs)
• Architecture-altering operations based on
gene duplication and gene deletion
• Embryos and developmental GP

• Sources of additional information

 3

"[ask] not what mathematics can do for
biology, but what biology can do for
mathematics."

– Stanislaw Ulam 1976

 4

"...WHAT BIOLOGY CAN DO
FORCOMPUTER SCIENCE..."

9 BIOLOGICAL IDEAS USED IN
GENETIC ALGORITHMS (GA) AND

GENETIC PROGRAMMING (GP)

• The Darwinian principle of survival of the
fittest
• asexual mutation operation
• sexual recombination (crossover) operation
• inversion operation
• gene regulation
• gene duplication
• gene deletion
• embryos
• development of embryo into organism

 5

PROMISING GA/GP APPLICATION
AREAS

• Problem areas involving many variables
that are interrelated in highly non-linear
ways

• Problem areas involving many variables
whose inter-relationship is not well
understood

• Problem areas where a good approximate
solution is satisfactory (and no one is
expecting a perfect solution)

• design
• control
• classification, pattern recognition, inage
processing
• forecasting
• model building and data mining

 6

PROMISING GA/GP APPLICATION
AREAS – CONTINUED

• Problem areas where discovery of the size
and shape of the solution is a major part of
the problem

• Problem areas where large computerized
databases are accumulating and
computerized techniques are needed to
analyze the data

• genome and protein sequences
• satellite data
• astronomy
• petroleum
• financial databases
• marketing databases
• World Wide Web

 7

PROMISING GA/GP APPLICATION
AREAS – CONTINUED

• Problem areas for which humans find it
very difficult to write good programs

• parallel computers
• cellular automata
• multi-agent strategies
• distributed AI
• FPGAs

 8

SEARCH METHODS IN GENERAL

• INITIAL STRUCTURE (E.G., A POINT
OR POINTS IN THE SEACH SPACE OF
THE PROBLEM)
• FITNESS MEASURE
• METHOD OF CREATING NEW
STRUCTURE
• PARAMETERS
• TERMINATION CRITERION AND
METHOD OF DESIGNATING THE
RESULT

 9

SEARCHING A SPACE WITH ONE
GLOBAL OPTIMUM POINT AND MANY

LOCAL OPTIMA

X

0

0.5

1

1.5

2

0 2 4 6 8

10 12 14 16 18 20

 10

ENUMERATIVE RANDOM OR BLIND
RANDOM SEARCH

X

0

0.5

1

1.5

2

0 2 4 6 8

10 12 14 16 18 20
NEITHER ENUMERATIVE RANDOM
NOR BLIND RANDOM SEARCH USES
ACQUIRED INFORMATION IN
DIRECTING THE SEARCH

 11

HILL CLIMBING

X

0

0.5

1

1.5

2
0 2 4 6 8

10 12 14 16 18 20

 12

HILL CLIMBING  CONTINUED

• HILL CLIMBING AND GRADIENT
DESCENT (ASCENT) USE ACQUIRED
INFORMATION IN DIRECTING THE
SEARCH

• HOWEVER, HILL CLIMBING AND
GRADIENT DESCENT (ASCENT) ARE
VERY PRONE TO GETTING TRAPPED
ON LOCAL OPTIMA AND THEREBY
MISSING THE GLOBAL OPTIMUM

• If problem can be solved by hill-climbing, it
is probably trivial to begin with.

• One broad approach to problem-solving is
to recast original problem (e.g., “by changing
the representation”) so that it becomes
solvable by hill-climbing

 13

 GIRAFFE

• Long neck
• Long tongue
• Vegetable-digesting enzymes in stomach
• Long legs
• Brown coloration

THE DESIGN
Neck
length

Tongue
length

Carnivorous
?

Leg length Coloration

15.11 feet 14 inches No 9.96 feet Brown
Numerical Numerical Boolean Numerical Categorical

CHARACTERISTICS
• NUMERICAL VARIABLES – floating-
point (such as 15.11 and 9.96) and integer
(such as 14)
• BOOLEAN VARIABLES (two alternatives)
• CATEGORICAL VARIABLES (many
alternatives)

 14

NON-LINEARITY

• Taken one-by-one, the 5 design variables
• Long neck contributes negatively to fitness
(requires considerable material to build,
requires considerable energy to maintain,
prone to injury, etc.)
• Same for long tongue

• Taken in pairs, the 10 possible pairs
• Long neck and long tongue - doubly
detrimental

• But, all 5 taken together are "co-adapted
sets of alleles" and make a very fit animal for
the jungle environment

 15

THE FALLACY OF HILL CLIMBING

Freely-made
concession

Action

Of course, we all
know that the
variables are all
inter-related in a
highly non-linear way

Nonetheless, use hill
climbing

Of course, we all
know that hill
climbing gets stuck
on local optima (non-
global) optima

Nonetheless, use hill
climbing

 16

THE GENETIC ALGORITHM (GA)

• The genetic algorithm is a mathematical
algorithm that transforms a set (population)
of mathematical objects (typically fixed-
length binary character strings), each with an
associated fitness value, into a new set (new
generation of the population) of offspring
objects, using operations patterned after
naturally-occurring genetic operations and
the Darwinian principle of reproduction and
survival of the fittest.

EXAMPLE
Generation 0 Generation 1

Individuals Fitness Offspring
in Population Measure Population
011 $3 111
001 $1 –––> 010
110 $6 110
010 $2 010

 17

GENETIC OPERATIONS USED IN THE
BASIC GENETIC ALGORITHM

• Darwinian reproduction

• Crossover (sexual recombination)

• Mutation (very occasional)

 18

FLOWCHART FOR THE BASIC
GENETIC ALGORITHM

Perform Reproduction

Yes

No

Gen := Gen + 1

Select Two Individuals
Based on Fitness

Perform
Crossover

Insert Offspring
into New
Population

Perform Mutation Insert Mutant into
New Population

Insert Copy into
New Population

i := i + 1

Select One Individual
Based on Fitness

PR

Pc

Pm

Select Genetic Operation

i = M?

Create Initial Random
Population for Run

No

Termination Criterion
Satisfied for Run?

Yes

Gen := 0 Run := Run + 1

Designate
Result for Run

End

Run := 0

i := 0

No
Run = N?

Yes

i := 0

i := i + 1i = M?

Apply Fitness Measure to Individual in the Populat

Yes

No

Select One Individual
Based on Fitness

i := i + 1

 19

PSEUDO-CODE FOR THE BASIC
GENETIC ALGORITHM

PROCEDURE GA:

 BEGIN
 t=0
 Initialize population P(t)

 REPEAT
 t=t+1
 Evaluate individuals in P(t-1) for
 fitness
 Select P(t) from P(t-1) using FPR
 Perform Crossover on P(t)
 Perform small amount of Mutation
 UNTIL (TERMINATION CONDITION)

END

 20

PROBABILISTIC SELECTION

INDIVIDUALS ARE SELECTED FOR
REPRODUCTION TO PARTICIPATE IN
CROSSOVER AND MUTATION BASED

ON FITNESS

• Better individuals are usually chosen
• The best individual is not necessarily chosen
• The worst individual is not necessarily
excluded

• Thus, there is SOME greedy hill-climbing
• But, there is considerable selection of
individuals that are the INFERIOR nased on
the current evidence of the search
• Resembles simulated annealing
• A population is used (i.e., the search is not
merely point-to-point)

 21

"I think it would be a most extraordinary
fact if no variation ever had occurred useful
to each being’s own welfare But if
variations useful to any organic being do
occur, assuredly individuals thus
characterised will have the best chance of
being preserved in the struggle for life; and
from the strong principle of inheritance they
will tend to produce offspring similarly
characterised. This principle of preservation,
I have called, for the sake of brevity, Natural
Selection."

--- Charles Darwin inOn the Origin of Species
by Means of Natural Selection (1859)

 22

CROSSOVER OPERATION

• THE predominant operation with GAs

•Two parental strings chosen based on fitness

• Pick interstitial point from 1 to L–1 (using a
uniform random distribution)

Parent 1 Parent 2
011 110

Two crossover fragments(if point 2 is chosen)
Crossover
fragment 1

Crossover
fragment 2

01– 11–

Two remainders (if point 2 is chosen)
Remainder
1

Remainder
2

– – 1 – – 0

 23

Two offspring produced by crossover
Offspring
1

Offspring 2

111 010

 24

MUTATION OPERATION

• VERY occasional – Maybe 1 bit per
generation

• One parental string chosen based on fitness.

• Pick point from 1 to L (using a uniform
random distribution)

Parent 1
010

One Offspring (Point 3 chosen and mutated)
Offspring
011

 25

EXAMPLE RUN OF THE GENETIC
ALGORITHM WITH A POPULATION OF
SIZE 4 BETWEEN GENERATION 0 AND 1

FOR SIMPLE 3-DIMENSIONAL
OPTIMIZATION PROBLEM

Gen 0 Mating
pool

Gen 1

1 011 3 .25 011 3 2 111 7
2 001 1 .08 110 6 2 010 2
3 110 6 .50 110 6 --

-
110 6

4 010 2 .17 010 2 --
-

011 3

Total 12 17 18
Worst 1 2 2
Aver 3.00 4.25 4.5

Best 6 6 7

 26

GENETIC ALGORITHMS ARE
PROBABILISTIC

• Creation of the initial random population
(generation 0) (uniform distribution)
• Probabilistic selection of operation
(uniform distribution)
• Probabilistic selection of participant(s) for
the operation (distribution based on fitness)
• Probabilistic selection of crossover or
mutation point (uniform distribution)
• (Often) probabilistic selection of fitness
cases (uniform distribution)

 27

FOUR MAJOR PREPARATORY STEPS
FOR THE GENETIC ALGORITHM

• Determining the representation scheme
• structure (e.g., fixed length string, variable
length string, data structure, etc.)
• if the structure is fixed length string, then
determine the alphabet size K and the string
length L
• mapping from points in search space of the
problem to the structure, and vice versa

• Determining the fitness measure
• May involve numerous fitness cases

• Determining the parameters
• population size M
• number of generations G
• other control parameters

• Determining the method for designating a
result (e.g., best-so-far) and the criterion for
terminating a run (e.g., maximum number of
generations to be run or achievement of some
satisfactory level of performance)

 28

10-MEMBER TRUSS PROBLEM
(GOLDBERG AND SAMTANI 1986)

A1

A2

A3

A4

A5

A6

A7

A8

A9 30’

100
Kg

100
Kg

30’30’

A10

• Find the 10 cross-sectional areas A1, A2, ...,
A10 that minimize the total weight (dollar
cost) of the 10 members of the truss while
supporting the load (i.e., satisfying stress
constraints).
Goldberg, David E. and Samtani, M.P. Engineering

optimization via genetic algorithms. In Proceedings of the
Ninth Conference on Electronic Computation. 1986. Pages
471-482.

 29

10-MEMBER TRUSS PROBLEM –
CONTINUED

• The weight (dollar cost) of each member of
the truss is based on its volume.

• The volume of a member is its cross-
sectional area, Ai, times its length.

• The length are either 30 feet or 42.4 feet

• The volume is smaller for a member with
smaller cross-sectional area.

• However, the members must be large
enough to support the loads (i.e., satisfy
stress constraints).

• Hence, competition between small cross-
sectional area and strength.

 30

FOUR MAJOR PREPARATORY STEPS
10-MEMBER TRUSS PROBLEM

1. REPRESENTATION SCHEME
40-BIT CHROMOSOME (GENOME)

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
0010 1110 0001 0011 1011 0011 1111 0011 0011 1010

 31

FOUR MAJOR PREPARATORY STEPS
10-MEMBER TRUSS PROBLEM

2. FITNESS MEASURE
• Decode the 40-bit chromosome into the 10
cross-sectional areas: A1, A2, ..., A10.
• Compute the volume of each member of the
truss as its cross-sectional area times its
length (30 feet or 30•2 = 42 feet)
• Compute cost of each member
• Compute the sum, over the 10 members, the
cost to get the total cost.
• The smaller the total cost the better. The
minimal cost is not known in advance.
• Penalize violations of stress constraints.
For example, a stress that is 10% above the
maximum set by the constraint for that
member might be penalized (e.g., 110%).

 32

FOUR MAJOR PREPARATORY STEPS
10-MEMBER TRUSS PROBLEM

– CONTINUED

3. MAJOR PARAMETERS
• Population size, M = 200
• Maximum number of generations to be run,
G = 50

4. TERMINATION
• The minimal cost is not known in advance.
The criterion for terminating a run (e.g.,
maximum number of generations to be run
or plateau in fitness of best-of-generation
individuals
• Method for designating a result is "best-so-
far" individual

 33

GA TABLEAU FOR 10-MEMBER TRUSS

Objective: Find the globally optimum
combination of cross-sectional
areas for the 10 members of
the truss.

Representati
on scheme:

• structure = fixed length
string
• alphabet size K = 2 (binary)
• string length L = 40
• mapping = each 4-bit group
of the 40-bit string
corresponds to the cross-
sectional area (with
granularity of 16) of one of the
10 members of the truss.

Fitness
cases:

Only one.

 34

Raw fitness: Raw fitness = cost (weight) of
10 members with penalty for
constraint violations (uses
packaged evaluation
program).

Parameters: • Population size M = 200.
• Maximum number of
generations to be run G = 50.

Termination
criteria:

The GA has run for G
generations.

Result
designation:

The best-so-far individual in
the population.

 35

GA FOR PROTEIN TERTIARY
STRUCTURE PREDICTION

• Find the φi (phi) and ψi (psi) angles for each
amino acid residue i and the 0-8 additional
angles χi1, ..., χi8 for each residue i.

 36

 37

GA FOR PROTEIN TERTIARY
STRUCTURE PREDICTION

The representation of the sequence of φi and
ψi angles for each amino acid residue i and
the 0-8 additional angles χi1, ..., χi8 for each
residue i

BINARY ENCODING
<----RESIDUE #1--------------------------><----RESIDUE #2----

 φ1 ψ1 χ11 χ12 φ2 ψ2 • • •
101010110 011010110 110100101 001110101 101101101 001001010

REAL-VALUED GENES
<----RESIDUE #1--------------------------><----RESIDUE #2----

 φ1 ψ1 χ11 χ12 φ2 ψ2 • • •
+45.6 –22.7 +156.9 –5.2 +29.8 –122.7

 38

LE GRAND’S USE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION

"AMBER" POTENTIAL ENERGY
FUNCTION

Approximates N-body problem with 2-body
terms by measuring all N2 pairwise
interactions of N atoms

• VAN DER WAALS : Repulsion and
attraction inversely depends on 12th and 6th
powers of distance between each pair of non-
bonded atoms. (Important at short range;
irrelevant at a distance).

• COULOMB: Electrostatic attraction and
repulsion inversely depends on distance
between each pair of non-bonded atoms.

 39

LE GRAND’s USE OF GA FOR Protein
Tertiary Structure Prediction

"AMBER" POTENTIAL ENERGY
FUNCTION

• Force (depending on square of deviation) to
hold each 2-ATOM BOND DISTANCE at a
constant equilibrium value.

• Force (depending on square of deviation) to
hold each 3-ATOM BOND ANGLE at a
constant equilibrium value.

• Force is Fourier series with frequency and
phase dependent on 4-ATOM DIHEDRAL
ANGLE .

 40

LE GRAND’S USE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION

• Fitness is AMBER plus additional van der
Waals and Coulomb contributions for 1st
and 4th atoms of 4-dihedrally-bound atoms
AND additional van der Waals contribution
for polar hydrogens and non-bonded oxygen
and nitrogen.
• 3 kinds of crossover (single-point, two-
point, and uniform)
• Steady-state GA is used. (Tends to be
greedy).
• High (and changing) mutation rate.
• Child only replaces parent if it is better
than most similar existing individual in the
population (a variation of phenotypic
sharing)
• Population sizeM = 200.

 41

LE GRAND’S USE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION

Objective: Given the primary sequence of
a protein, the φi (phi) and
ψi (psi) angles for each amino
acid residue i and the 0-8
additional angles χi1, ..., χi8 for
each residue i.

Representati
on scheme:

• Structure = fixed length
string (for a particular
protein)
• Alphabet of real-valued
genes
• String length L varies
• Mapping: See above.

Fitness
cases:

Only one (for a given protein).

Raw fitness: Modified AMBER potential
energy function.

 42

Parameters: • Population sizeM = 200.
• Maximum number of
generations to be run specified
as 100,000 (200 x 500)
iterations.
• Variation of phenotypic
sharing.

Termination
criteria:

100,000 (200 x 500) iterations
OR variance of population is
less than 0.1 OR average
distance between 200
randomly selected pairs is less
than 0.1.

Result
designation:

• Best-so-far individual

 43

LE GRAND’S USE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION

• Tried on 4 proteins
• 46-residue crambin
• 26-residue melittin
• 36-residue avian pancreatic polypeptide
inhibitor
• 106-residue cytochrome b562 (4 helix
bundle)

• Tried on 3 polypeptides
• Polyalanine A9 (Alanine – 9 times)
• AGAGAGAGA (9 amino acid residues)
• {Met}-enkephalin

 44

LE GRAND’S USE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION

• Le Grand, Scott and Merz, Kenneth M., Jr.
1993. The application of the genetic
algorithm to the minimization of potential
energy functions.” Journal of Global
Optimization 3(1) 49–66.
• Le Grand, Scott. 1993. The Application of
the Genetic Algorithm to Protein Tertiary
Structure Prediction. PhD Dissertation.
Department of Biochemistry, The
Pennsylvania State University.

 45

SUN’S USE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION
USING REDUCED REPRESENTATION

MODEL

• Sun, Shaojian. 1993. Reduced
representation model of protein structure
prediction: Statistical potential and genetic
algorithms. Protein Science. Volume 2. Pages
762-785.

• Reduced representation
• Only backbone atoms
• Ideal fixed bond lengths and angles
• Single virtual united-atom as side chain

• Goal is to find the φ (phi) and ψ (psi) angles
(2 per amino acid residue)

 46

SUN’S USE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION
USING REDUCED REPRESENTATION

MODEL

• Results in folded versions of
• 26-residue melittin – RMS error of 1.6 Å
• 36-residue avian pancreatic polypeptide
inhibitor (APPI)
• 18-residue apamin (with 2 disulfide bonds)
from bee venom

 47

SUN’S PROTEIN TERTIARY
STRUCTURE PREDICTION USING

REDUCED REPRESENTATION MODEL –
CONTINUED

• Fitness was a statistical interatomic
potential function of his own design

• Based on 110 proteins (with less than 50%
identity)
• melittin and avian pancreatic polypeptide
inhibitor (APPI) were in the 110

• Fitness - 2 components
• Local (NOTE: possible computer savings)
• Non-local

• Apparently floating-point gene values. 2 x
26 = 52 for melittin. Values are integers
from –180 to +180. Equivalent to 52 x 9 =
468 bits.

• Population sizeM = 90

 48

GA TABLEAU FOR SUN’S PROTEIN
TERTIARY STRUCTURE PREDICTION
USING REDUCED REPRESENTATION

MODEL

Objective: Given the primary sequence of
a protein, find the three-
dimensional conformation of
the protein in the form of the
dihedral φ and ψ angles using
a reduced representation
model of protein.

Representati
on scheme:

• structure = fixed length
string (for a particular
protein)
• alphabet size K = 2 (in binary
equivalent)
• string length L = 468 (in
binary equivalent)
• mapping.

Fitness
cases:

Only one (for a given protein).

 49

Raw fitness: Statistical fitness function.
Parameters: • Population sizeM = 90.

• Maximum number of
generations to be runG = ???.
• Special (???) mutation
operation at ??? frequency

Termination
criteria:

??? (Reports convergence of
all 90!!!).

Result
designation:

Best-so-far individual

 50

SUN’S PROTEIN TERTIARY
STRUCTURE PREDICTION USING

REDUCED REPRESENTATION MODEL –
CONTINUED

• Reproduction NOT based on fitness.
Creates 2M individuals.
• Crossover NOT based on fitness. Creates
M individuals.
• Special mutation operation (sometimes
changing several values at once). Creates 2M
individuals.
• Selects the best M out of 5M new
individuals.
• On generation 0, initial energy of 90
individual ranges from 1,440.08 to 15,746.34
units (with mean of 2912.00 and standard
deviation of 1,960.75)
• On generation X, mean of the 90 individuals
"converged" to 1,290.50 (with a standard
deviation of 0.31 -– i.e., one part in about
4,000).

 51

GA’S AND PROTEIN FOLDING WITH
SELF-AVOIDING GRAPHS

• Unger, Ron and Moult, John. Genetic
algorithms for protein folding simulations.
Journal of Molecular Biology 231 (1993): 75–
81.
• Unger, Ron and Moult, John. On the
applicability of genetic algorithms to protein
folding. Proceedings of the Twenty-Sixth
Annual Hawaii International Conference on
Systems Science 1993. In Mudge, Trevor N.,
Milutinovic, Veljko, and Hunter, Lawrence
(editors). Proceedings of the Twenty-Sixth
Annual Hawaii International Conference on
Systems Science 1993. Los Alamitos, CA:
IEEE Computer Society Press. 1993.
Volume I. Pages 715-725.
• Unger, Ron and Moult, John. A genetic
algorithm for 3D protein folding simulations.
Proceedings of the Fifth International
Conference on Genetic Algorithms. Ed.

 52

Stephanie Forrest. San Mateo, CA:
Morgan Kaufmann Publishers, 1993. 581–
588.

 53

UNGER AND MOULT’S SELF-AVOIDING
GRAPHS

• Individuals in the population are self-
avoiding point-labeled (2 colors) graphs
embedded in a 2-dimensional checkerboard
lattice
• That is, individual in the population are the
actual structures that the GA operates on

• Phenotype (the individual) = Genotype

• 2 psuedo-amino-acids:
• Black (Hydrophobic)
• White (Other)

• Fitness is decremented by -1 for each
adjacent BLACK point along backbone that
is not diagonally adjacent or adjacent along
backbone

• The 2 termini can contribute up to -3
• Ordinary points can contribute up to -2

 54

• There are 83,779,155 20-long self-avoiding
graphs of the sequence -----------. Fitness
ranges from 0 to -9 (best) and there are only
4 9-scoring best conformations out of
83,779,155

 55

UNGER AND MOULT’S SELF-AVOIDING
GRAPHS

• Mutation operation
• Pick point
• Keep trying random rotations that create
self-avoiding graph as a result

• Crossover
• Pick point
• Keep trying random rotations that create
self-avoiding graph as a result

 56

UNGER AND MOULT’S SELF-AVOIDING
GRAPHS

• Population sizeM = 200
• Initialization: All alike (flat = 180 degrees)
• Accept result of mutation with Metropolis
algorithm
• Accept result of crossover with Metropolis
algorithm
• Global minimum of -9 found in all 5 runs
after 8,800,000; 7,400,000; 3,200,000;
470,000; and 292,000 fitness evaluations.
That is, between 9:1 and 284:1.

 57

PROTEIN FOLDING WITH
EXTENSIVELY MODIFIED GENETIC

ALGORITHM (PEDERSEN AND MOULT
1997)

Pedersen, Jan T. and Moult, John. 1997. Protein folding
simulations with gentic algorithms and a detailed molecular
description. Journal of Molecular Biology. 269: 240 – 259.

• Dihedral angle library: For each residue
type, a set of observed Φ, ψ, and χ angles was
compiled
• Conformations were not generated at
random, but, instead, were drawn from the
Φ, ψ, and χ dihedral angle library. Angles
were randomized sequentially residue-by-
residue. If can det Walls overlap exceeds 0.5
Å, rechoose. Bactrack to previous residue if
necessary. In practice, this is linear (while
worst case is exponential for worst case)

 58

PROTEIN FOLDING WITH
EXTENSIVELY MODIFIED GENETIC

ALGORITHM (PEDERSEN AND MOULT
1997)

• Initial random population for genetic
algorithm (GA) comes from 20,000-step
Monte Carlo (MC) (i.e., simulated annealing
(SA)) run (with initial random conformation
as starting point for the SA run). A
population of is created every 100-th point
toward the end of the SA run.
• No mutations in GA.
• 10% elitism. Typical run is 100 generations
and converges in 40 to 60 generations.

 59

PROTEIN FOLDING WITH
EXTENSIVELY MODIFIED GENETIC

ALGORITHM (PEDERSEN AND MOULT
1997)

• Crossover sites are not chosen with usual
uniform probability. Insteasd, choice of sites
is based on conformational diversity.

• Crossover operation is extensively modified.
For both offspring of normal crossover, 50 Φ
/ ψ pairs are searched for sterically
acceptable outcome (half drawn from the
dihedral angle library and half from a
representation set of 7 residue conformtions).
For each trial, 100 rouns of Monte Carolo
simulation are made (based on small 5 degree
moves in angles). The lowest free energy
conformation is accepted using Metropolis
test.

 60

TERITIARY STRUCTURE PREDICTION

• Schulze-Kremer, Steffen. Genetic
algorithms for protein tertiary structure
prediction. Parallel Genetic Algorithms. Ed.
Joachim Stender. Amsterdam: IOS Press,
1992. 129–149.

• Schulze-Kremer, Steffen. Genetic
algorithms for protein tertiary structure
prediction. Parallel Problem Solving from
Nature 2. Ed. Reinhard Maenner and
Manderick, Bernard. Amsterdam: North-
Holland, 1992. 391-400.

• Schulze-Kremer, Steffen. Genetic
algorithms for protein tertiary structure
prediction. Machine Learning: European
Conference on Machine Learning, Vienna,
Austria, April 5–7, 1993, Proceedings. Ed.
Pavel B. Brazdil. Berlin: Springer-Verlag,
1993. 262–279.

 61

SCHULZE-KREMER’S TERITIARY
STRUCTURE PREDICTION

• Tried on 46-residue crambin - 1.86 Å RMS
• Reduced representation model using the
φ (phi) and ψ (psi) angles and 8 additional
angles χ1, ..., χ8 per each amino acid residue.

• Chromosome for GA consists of floating-
point numbers (i.e., 10 x 46 = 460 floating-
point numbers for crambin) (NOTE: If as
few as 10 bits were assigned to a floating
point number, that's 4,600 bits).

• Initial population was either to all-180-
degrees or used list of 10 most frequent
angles appearing in 129 proteins from PDB.

 62

SCHULZE-KREMER’S TERITIARY
STRUCTURE PREDICTION –

FITNESS MEASURE

• Simplified version of CHARMM potential
energy function

• van der Waals, EvdW

• Coulomb electrostatic, Eel

• bond-length potential, Ebond (CONSTANT)
• bond-angle potential,Ephi (CONSTANT)
• torsion-angle potential, Etor

• improper torsion-angle potential, Eimpr

(CONSTANT)
• hydrogen bonds EH (EXCLUDED)
• solvent interaction, Ecr and Echpi

(CONSTANT)
• That is, E = EvdW + Eel + Etor

 63

SCHULZE-KREMER’S TERITIARY
STRUCTURE PREDICTION –

PARAMETERS FOR RUN

• Population sizeM = 10.
• Maximum number of generationsG =
1,000.
• Mutation changes an angle by plus or minus
1, 5, or 10 degress
• 20% mutation rate at start of run (with 10-
30-60 weighting among 1, 5, and 10 degree
changes) and 70% at end (with 80-20-0
weighting).
• Crossover 70% rate at start of run (with 90-
10 weighting between uniform and two-point)
and 10% at end of run (with 10-90
weighting).
• Selection 80% at beginning and 20% at end.

 64

SCHULZE-KREMER’S TERITIARY
STRUCTURE PREDICTION

Objective: Given the primary sequence of
a protein, find the three-
dimensional conformation of
the protein in the form of the
φ (phi) and ψ (psi) angles and
8 additional angles χ1, ..., χ8

per each amino acid residue.
Representati
on scheme:

• structure = fixed length
string
• alphabet of floating-point
genes
• string length L = 460
floating-point numbers for
crambin.
• mapping: There are 10
angles for each amino acid
residue for a total of 460
floating-point numbers for
crambin.

 65

Fitness
cases:

One.

Raw fitness: CHARMM potential energy
function.

Parameters: • Population sizeM = 10.
• Maximum number of
generations to be run, G =
1,000.

Termination
criteria:

G = 1,000 generations have
been run.

Result
designation:

Best-so-far individual

 66

GENETIC PROGRAMMING

How can computers learn to solve problems
without being explicitly programmed? In
other words, how can computers be made to
do what is needed to be done, without being
told exactly how to do it?

---Attributed to Arthur Samuel - about 1959

 67

AUTOMATIC PROGRAMMING

WYWIWYG – "WHAT YOU WANT IS
WHAT YOU GET"

• Starts from a high-level statement of the
problem
• Produces an entity that runs on a computer
• Produces the size and shape of the solution
(i.e., user doesn't prespecify exact number of
primitive steps or exact arrangement of steps
• Can automatically identifies useful groups
of steps (i.e., subroutines) and then reuses
them (sometimes with different instantiations
of parameters)
• Can implement internal memory and data
structures such as single variables, vectors,
arrays, stacks, queues, lists, and relational
memory

 68

A AUTOMATIC PROGRAMMING –
CONTINUED

• Can implement iterations and recursions
• Can automatically determine the number of
subroutines, the number of arguments that
they each possess, how the subroutines
hierarchically refer to one another, and
whether to employ internal memory,
iterations, and recursion
• Can automatically organize groups of steps
into a hierarchy
• Can implement the full range of
programming constructs that human
computer programmers find useful,
including macros, libraries, typing, pointers,
conditional operations, logical functions,
integer functions, floating-point functions,
complex-valued functions, multiple inputs,
multiple outputs, and machine code
instructions

 69

AUTOMATIC PROGRAMMING –
CONTINUED

• Unmistakably distinguishes between what
the user must provide and what the system
delivers, is problem-independent, and
operates in a well-defined way that does not
rely on discretionary human intervention or
any hidden steps
• Can produces satisfactory solutions for a
wide variety of problems from many
different fields
• Scales well to larger versions of the same
problem
• Can produce results that are competitive
with human-produced results

 70

GENETIC PROGRAMMING (GP)

"Genetic programming is automatic
programming. For the first time since the
idea of automatic programming was first
discussed in the late 40’s and early 50’s, we
have a set of non-trivial, non-tailored,
computer-generated programs that satisfy
Samuel’s exhortation: Tell the computer
what to do, not how to do it.’ "

– John Holland, University of Michigan, 1997

 71

A ONE-INPUT, ONE-OUTPUT
PROGRAM IN C

int foo (int time)

{

 int temp1, temp2;

 if (time > 10)

 temp1 = 3;

 else

 temp1 = 4;

 temp2 = temp1 + 1 + 2;

 return (temp2);

}

 72

RESULTS OF THE PROGRAM IN C
Independent

variable
(input)
TIME

Dependent
variable
(output)

0 6
1 6
2 6
3 6
4 6
5 6
6 6
7 6
8 6
9 6
10 6
11 7
12 7
13 7
13 7
15 7

 73

16 7
17 7
18 7
19 7
20 7

 74

PROGRAM IN LISP = INDIVIDUAL
PROGRAM =

PARSE TREE = PROGRAM TREE =
DATA = LIST

(+ 1 2 (IF (> TIME 10) 3 4))

• ATOMS = 1, 2, 10, 3, 4, TIME

• FUNCTIONS = +, IF, >

 75

PROGRAM IN LISP = INDIVIDUAL
PROGRAM =

PARSE TREE = PROGRAM TREE =
DATA = LIST

(+ 1 2 (IF (> TIME 10) 3 4))

+

>

10

43

21

TIME

IF

 76

FOUR RANDOM COMPUTER
PROGRAMS FOR THE INITIAL

RANDOM POPULATION OF A RUN
(GENERATION 0)

• Terminal set T = {X, Y, Z, ←}
• Function set F = {+, –, * , %, IFLTE }

• The 4 programs are of different size and
shape

X 0.789

–

+

0.314 Z

*Y

+

Y + 0.314Z + X – 0.789

Z Y

*

*

0.234 Z

*

0.234Z Y
2

 77

0.234 Z

*

0.234Z

0.314 Z

*Y

+

Y + 0.314Z

 78

EXAMPLE OF THE CREATION OF A
RANDOM PROGRAM TREE

• Terminal set T = {A, B, C}
• Function set F = {+, –, * , %, IFLTE }

• Randomly choose a function or terminal
from the combined set {+, –, * , %, IFLTE , A,
B, C}. Suppose it the two-argument addition
(+) function.

+

• Randomly choose another function or
terminal from { +, –, * , %, IFLTE , A, B, C},
say the two-argument multiplication (*)
function.

+

*

1

2

 79

EXAMPLE OF THE CREATION OF A
RANDOM PROGRAM TREE –

CONTINUED

• Continue in this manner. Suppose that the
next 3 random choices from {+, –, * , %,
IFLTE , A, B, C}, say A, B, and C.

+

*

A B

C

• The growth process ends when all paths end
in a terminal {A, B, C}.
• Force a choice from the terminal set (rather
than the combined set) if the preestablished
maximum size (measured in terms of number
of functions and terminals or in terms of
depth) is being exceeded.

 80

CROSSOVER (SEXUAL
RECOMBINATION) OPERATION FOR

COMPUTER PROGRAMS (TREES)

• Select two parents probabilistically based
on fitness
• Randomly pick a number from 1 to
NUMBER-OF-POINTS – independently for
each of the two parental programs
• Identify the two subtrees rooted at the two
picked points

 81

CROSSOVER (SEXUAL
RECOMBINATION) OPERATION FOR

COMPUTER PROGRAMS (TREES)

0.234Z + X – 0.789

X 0.789

–

0.234 Z

*

+

ZY(Y + 0.314Z)

Z Y

*

0.314 Z

*Y

+

*
1 1

2 25 5

8 9

3 34 46 7 76

Parent 1:
(+ (* 0.234 Z) (- X 0.789))

Parent 2:
(* (* Z Y) (+ Y (* 0.314 Z)))

 82

CROSSOVER FRAGMENTS (THE TWO
SUBTREES ROOTED AT THE TWO

PICKED POINTS)

0.234 Z

*

0.234Z

0.314 Z

*Y

+

Y + 0.314Z

Crossover Fragment 1:
(+ (* 0.234 Z) (- X 0.789))

Crossover Fragment 2:
(* (* Z Y) (+ Y (* 0.314 Z)))

 83

TWO REMAINDERS

X 0.789

–

+

Z Y

*

*

 84

TWO OFFSPRING
THE CROSSOVER OPERATION
PRODUCES TWO OFFSPRING

X 0.789

–

+

0.314 Z

*Y

+

Y + 0.314Z + X – 0.789

Z Y

*

*

0.234 Z

*

0.234Z Y
2

Offspring 1:
(+ (+ Y (* 0.314 Z))

 (- X 0.789))

Offspring 2:
(* (* Z Y) (* 0.234 Z))

 85

THE CROSSOVER OPERATION
PRODUCES SYNTACTICALLY VALID,

EXECUTABLE COMPUTER PROGRAMS

IF SET OF FUNCTIONS AND
TERMINALS IS CLOSED (I.E., ANY

FUNCTION CAN ACCEPT THE OUTPUT
PRODUCED BY ANY OTHER FUNCTION

OF TERMINAL

• Protected division % takes two arguments
and returns one when division by 0 is
attempted (including 0 divided by 0), and,
otherwise, returns the normal quotient
• Protected multiplication, addition, and
subtraction

 86

MUTATION OPERATION FOR
PROGRAM TREES

• Select one parent probabilistically based on
fitness
• Pick point from 1 to NUMBER-OF-POINTS
(say the terminal D2 from among the 5 points
here)

OR

NOR

D0 D1

D2

• Delete the entire subtree rooted at the
picked point (i.e., delete the D2)
• Grow new subtree at the mutation point in
the same way as used to generate trees for
initial random population (generation 0)

AND

NOT NOT

D0 D1

OR

NOR

D0 D1

 87

FIVE MAJOR PREPARATORY STEPS
FOR GP

• determining the set of terminals
• determining the set of functions
• determining the fitness measure
• determining the parameters

• population size
• number of generations

• determining the method for designating a
result and the criterion for terminating a run

 88

REGRESSION PROBLEM OF UNKNOWN
FUNCTION

Independent variable
X

Dependent Variable Y

-1.0 0.0
-0.9 -0.1629
-0.8 -0.2624
-0.7 -0.3129
-0.6 -0.3264
-0.5 -0.3125
-0.4 -0.2784
-0.3 -0.2289
-0.2 -0.1664
-0.1 -0.0909

0 0.0
0.1 0.1111
0.2 0.2496
0.3 0.4251
0.4 0.6496
0.5 0.9375
0.6 1.3056
0.7 1.7731
0.8 2.3616
0.9 3.0951
1.0 4.0000

 89

REGRESSION PROBLEM OF UNKNOWN
FUNCTION

 Also Called
• System Identification problem
• the "Black Box" problem
• Model building
• Empirical discovery
• Non-parametric regression
• Datamining
• Forecasting / Time-series prediction

• We seek
• Functional form of a good fit
• Numerical parameters
• Size and shape of the mathematical
expression

• Error is the fitness measure
• Sum, over fitness cases, of absolute error
• Sum, over fitness cases, of squared error

 90

TABLEAU FOR SYMBOLIC
REGRESSION OF UNKNOWN FUNCTION
Objective: Find a function of one

independent variable, in
symbolic form, that fits a
given sample of 20 (xi, yi) data
points

Terminal
set:

X (the independent variable).

Function set: +, -, *, %, SIN,
COS, EXP, RLOG

Fitness
cases:

The given sample of 21 data
points (xi, yi) where the xi come
from the interval [–1,+1].

Raw fitness: The sum, taken over the 21
fitness cases, of the absolute
value of difference between
value of the dependent
variable produced by the
individual program and the
target value yi of the
dependent variable.

 91

Standardize
d fitness:

Equals raw fitness.

Hits: Number of fitness cases (0 –
21) for which the value of the
dependent variable produced
by the individual program
comes within 0.01 of the target
value yi of the dependent
variable.

Wrapper: None.
Parameters: Population size, M = 500.

Maximum number of
generations to be run,G = 51.

Success
Predicate:

An individual program scores
21 hits.

 92

GENERATION 0 – SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN

FUNCTION

WORST-OF-GENERATION INDIVIDUAL
IN GENERATION 0 WITH RAW FITNESS

OF 1038

(EXP (- (% X (- X (SIN X)))
(RLOG (RLOG (* X X)))))

Equivalent to
ex/(x-sin x) - log log x*x

 93

GENERATION 0 – SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN

FUNCTION

MEDIAN INDIVIDUAL IN GENERATION
0 WITH RAW FITNESS OF 23.67

(COS (COS (+ (- (* X X) (% X
X)) X)))

Equivalent to
Cos [Cos (x2 + x – 1)]

-1 0 1

-1

0

1

2

3

4

x + x + x + x4 3 2

Cos [Cos (x + x –1)]2

 94

GENERATION 0 – SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN

FUNCTION

SECOND-BEST INDIVIDUAL IN
GENERATION 0 WITH RAW FITNESS OF

6.05

x + [RLog 2x+x][Sin 2x+Sin x2]

-1 0 1

-1

0

1

2

3

4

x + x + x + x4 3 2

x + [RLog 2x + x] * [Sin 2x + Sin x]2

 95

GENERATION 0 – SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN

FUNCTION

BEST-OF-GENERATION INDIVIDUAL IN
GENERATION 0 WITH RAW FITNESS OF

4.47

(* X (+ (+ (- (% X X) (% X X))
(SIN (- X X)))
 (RLOG (EXP (EXP X)))))

Equivalent to
xex

-1 0 1

-1

0

1

2

3

4
x + x + x + x4 3 2

xe x

 96

GENERATION 2 – SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN

FUNCTION

BEST-OF-GENERATION INDIVIDUAL IN
GENERATION 2 WITH RAW FITNESS OF

2.57

(+ (* (* (+ X (* X (* X (% (% X
X) (+ X X)))))
 (+ X (* X X))) X) X)

Equivalent to...

x
4
 + 1.5x

3
 + 0.5x

2
 + x

 97

GENERATION 34 – SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN FUNCTION

BEST-OF-RUN INDIVIDUAL IN
GENERATION 34 WITH RAW FITNESS

OF 0.00 (100%-CORRECT)
(+ X (* (+ X (* (* (+ X (- (COS
(- X X)) (- X X))) X) X)) X))

Equivalent to

 x
4
 + x

3
 + x

2
 + x

 98

GENERATION 34 – SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN FUNCTION

XX

COS

–

XX XX

–

XX XX

–

+

*

XX

*

XX

XX

+ XX

*

+

XX

 99

OBSERVATIONS

• GP works on this problem
• The answer is algebraically correct (hence
no further cross validation is needed)
• It's not how a human programmer would
have written it

• Not parsimonious
• Cos X - X

• The extraneous functions – SIN, EXP,
RLOG, and (effectively) RCOS are all absent in
the best individual of generation 34

 100

STRUCTURE ARISES FROM FITNESS

x i
5 − 2 x i

3 + x i x i
6 − 2 x i

4 + x i
2

Fitness measure A

y i − x i
5 − 2 x i

3 + x i()
i

∑
Fitness measure B

y i − x i
6 − 2 x i

4 + x i
2()

i
∑

Generation 0 :
Population of programs

composed of
x , + , − , * , % , ℜ

 101

INTER-TWINED SPIRALS
CLASSIFICATION PROBLEM

 102

GP TABLEAU – INTERTWINED SPIRALS
Objective: Find a program to classify a

given point in the x-y plane to
the red or blue spiral.

Terminal
set:

X, Y, ← , where ← is the
ephemeral random floating-
point constant ranging
between –1.000 and +1.000.

Function set: +, -, *, %, IFLTE,
SIN, COS.

Fitness
cases:

194 points in the x-y plane.

Raw fitness: The number of correctly
classified points (0 – 194)

Standardize
d fitness:

The maximum raw fitness
(i.e., 194) minus the raw
fitness.

Hits: Equals raw fitness.
Wrapper: Maps any individual program

returning a positive value to
class +1 (red) and maps all
other values to class –1 (blue).

 103

Parameters: M = 10,000 (with over-
selection). G = 51.

Success
predicate:

An individual program scores
194 hits.

 104

 INTER-TWINED SPIRALS
FITNESS CURVES

0 9 18 27 36
0

100

200

Worst of Gen.
Average
Best of Gen.

Spiral — Best of Generation, Worst and Average

Generation

St
an

da
rd

iz
ed

 F
it

ne
ss

 105

INTER-TWINED SPIRALS
HITS HISTOGRAMS FOR

GENERATIONS 0, 7, 12, 27, AND 36

0 100 190
0

2500

5000

7500
Spiral — Generation 0

Hits

F
re

qu
en

cy

0 100 190
0

2500

5000

7500
Spiral — Generation 7

Hits

F
re

qu
en

cy

0 100 190
0

2500

5000

7500
Spiral — Generation 12

Hits

F
re

qu
en

cy

0 100 190
0

2500

5000

7500
Spiral — Generation 27

Hits

F
re

qu
en

cy

0 100 190
0

2500

5000

7500
Spiral — Generation 36

Hits

F
re

qu
en

cy

 106

10 FITNESS-CASES SHOWING THE
VALUE OF THE DEPENDENT

VARIABLE, D, ASSOCIATED WITH THE
VALUES OF THE SIX INDEPENDENT

VARIABLES, L0, W0, H0, L1, W1, H1

Fitne
ss
case

L0 W0 H0 L1 W1 H1 D

1 3 4 7 2 5 3 54
2 7 10 9 10 3 1 600
3 10 9 4 8 1 6 312
4 3 9 5 1 6 4 111
5 4 3 2 7 6 1 –18
6 3 3 1 9 5 4 –171
7 5 9 9 1 7 6 363
8 1 2 9 3 9 2 –36
9 2 6 8 2 6 10 –24
10 8 1 10 7 5 1 45

 107

SOLUTION USING GENETIC
PROGRAMMING WITHOUT
AUTOMATICALLY DEFINED

FUNCTIONS (ADF’S)

(- (* (* W0 L0) H0)

 (* (* W1 L1) H1))

W0 H0

* L0

*

*

L1 H1

*

W1

—

 108

DIFFERENCE IN VOLUME OF TWO
BOXES

(- (* (* W0 L0) H0)

 (* (* W1 L1) H1))

D = W0*L0*H0 – W1*L1*H1

L1

W1

H1

L0

W0

H0

 109

AUTOMATICALLY DEFINED
FUNCTIONS (SUBROUTINES -

PROCEDURES - SUBFUNCTIONS -
DEFUN’S)

(progn

(defun volume(arg0 arg1 arg2)
(values

(* arg0 (* arg1 arg2))))

(values

(- (volume L0 W0 H0)

(volume L1 W1 H1))))

 110

AUTOMATICALLY DEFINED
FUNCTIONS

TOP-DOWN VIEW OF THREE STEP
HEIRARCHICAL PROBLEM-SOLVING

PROCESS

Subproblem 1

Subproblem 2

Original
problem

Solution to
original probl

Solution to subproblem 1

Solution to subproblem 2

Decompose Solve
subproblems

Solve original
problem

•Decompose a problem into subproblems

• Solve the subproblems

• Assemble the solutions of the subproblems
into a solution for the overall problem

 111

AUTOMATICALLY DEFINED
FUNCTIONS

BOTTOM-UP VIEW OF THREE STEP
HEIRARCHICAL PROBLEM-SOLVING

PROCESS

Identify
regularities

Change
representation Solve

Second recoding rule

First recoding ruleOriginal
representation

of the
problem

New
representation

of the
 problem

Solution to
problem

• Identify regularities

• Change the representation

• Solve the overall problem

 112

AN OVERALL COMPUTER PROGRAM
CONSISTING OF ONE FUNCTION-

DEFINING BRANCH AND ONE RESULT-
PRODUCING BRANCH

DEFUN

PROGN

VALUES

Argument
List

ADF0

Body of ADF0
Function Definition

VALUES

1

2

3 4 5

6

7
Body of R

Producing B

8

 113

100%-CORRECT PROGRAM FOR THE
TWO-BOXES PROBLEM with ADFS

(progn

(defun volume (arg0 arg1 arg2)

(values

(* arg0 (* arg1 arg2))))

(values (- (volume L0 W0 H0)

(volume L1 W1 H1))))

progn

(ARG0 ARG1 ARG2)

defun

ARG0 *

ARG2ARG1

*

valuesVOLUME

—

values

L1 W1 H1

VOLUME

W0 H0L0

VOLUME

 114

8 MAIN POINTS – GENETIC
PROGRAMMING II BOOK

• ADFs work.
• ADFs do not solve problems in the style of
human programmers.
• ADFs reduce the computational effort
required to solve a problem.
• ADFs usually improve the parsimony of the
solutions to a problem.
• As the size of a problem is scaled up, the
size of solutions increases more slowly with
ADFs than without them.
• As the size of a problem is scaled up, the
computational effort required to solve a
problem increases more slowly with ADFs
than without them.
• The advantages in terms of computational
effort and parsimony conferred by ADFs
increase as the size of the problem is scaled
up.

 115

8 MAIN POINTS – GENETIC
PROGRAMMING II BOOK

• Genetic programming can evolve the
architecture of the solution to a problem at
the same time that it solves a problem.

 116

FOUR APPROACHES TO MEMORY AND
STATE

(A) (B) (C) (D)

• (A) Settable variables (Genetic
Programming) using terminals M0 and M1
and functions (SETM0 X) and (SETM1 Y)

• (B) Indexed memory (Teller) using (READ
K) and(WRITE X K)

• (C) Memory isomorphic to world (Andre)

• (D) Point-labeled, line-labeled directed
graph for relational memory (Brave)

 117

AUTOMATICALLY DEFINED
ITERATION (ADI)

• Uses an iteration-performing branch IPB0
• Iteration is over a preestablished sequence,
vector, list, two-dimensional matrix, etc.

• protein or DNA sequence
• time sequence
• two-dimensional arrangement of pixels

• Overall program consisting of
automatically defined function(s), iteration-
performing branch(es), and a result-
producing branch.

progn

Body of ADF0
Function Definition

Argument
List valuesADF0

defun

Body of Iteration
Performing Branch

IPB0

looping-over-
known-finite-set values

Body of Result-
Producing Branch

RPB0

 118

AUTOMATICALLY DEFINED
ITERATION (ADI)

values

progn

%

M0 LEN

progn

ADI0

V

SETM0

M0

+

valuesADI0 LIST

defiterate

200

221

234

236235

211

212 213

214

237

 119

RESTRICTED ITERATION

1 (loop initially (progn (setf M0 0.0)
 (setf.M1 0.0)
 (setf M2 0.0)
 (setf M3 0.0))

2 for residue-index from 0
 below (length protein-segment)
3 for residue =
 (aref protein-segment
 residue-index)
4 do (eval IPB0)
5 finally (return
 (wrapper (eval RPB))))

 120

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

THE 446 RESIDUES OF D3DR_MOUSE

FGVTVLVYAR IYMVLRQRRR KRILTRQNSQ CISIRPGFPQ QSSCLRLHPI 250

CQACHVSPEL YRATTWLGYV NSALNPVIYT TFNIEFRKAF LKILSC 446

RLSTSLKLGP LQPRGVPLRE KKATQMVVIV LGAFIVCWLP FFLTHVLNTH 400

RYYSICQDTA LRHPNFEGGG GMSQVERTRN SLSPTMAPKL SLEVRKLSNG 350

RQFSIRARFL SDATGQMEHI EDKPYPQKCQ DPLLSHLQPL SPGQTHGELK 300

ALMITAVWVL AFAVSCPLLF GFNTTGDPSI CSISNPDFVI YSSVVSFYVP 200

ICCDVFVTLD VMMCTASILN LCAISIDRYT AVVMPVHYQH GTGQSSCRRV 150

CAAVLRERAL QTTTNYLVVS LAVADLLVAT LVMPWVVYLE VTGGVWNFSR 100

MAPLSQISSH INSTCGAENS TGVNRARPHA YYALSYCALI LAIIFGNGLV 50

 121

KYTE-DOOLITTLE HYDROPHOBICITY
VALUES FOR THE 20 AMINO ACID

RESIDUES

Category Kyte-Doolittle
value

One-letter
code for
amino acid

Amino acid Three-letter
code

Hydrophobic +4.5 I Isoleucine Ile
Hydrophobic +4.2 V Valine Val
Hydrophobic +3.8 L Leucine Leu
Hydrophobic +2.8 F Phenylalanine Phe
Hydrophobic +2.5 C Cysteine Cys
Hydrophobic +1.9 M Methionine Met
Hydrophobic +1.8 A Alanine Ala
Neutral –0.4 G Glycine Gly
Neutral –0.7 T Threonine Thr
Neutral –0.8 S Serine Ser
Neutral –0.9 W Tryptophan Trp
Neutral –1.3 Y Tyrosine Tyr
Neutral –1.6 P Proline Pro
Hydrophilic –3.2 H Histidine His
Hydrophilic –3.5 Q Glutamine Gln
Hydrophilic –3.5 N Asparagine Asn
Hydrophilic –3.5 E Glutamic Acid Glu
Hydrophilic –3.5 D Aspartic Acid Asp
Hydrophilic –3.9 K Lysine Lys
Hydrophilic –4.0 R Arginine Arg

 122

SOME OF THE 246 IN-SAMPLE FITNESS
CASES

Protein Length Number
of TM
domains

Length
of chosen
TM
domain

Location
of the
chosen
TM
domain

Length
of
chosen
non-TM
segment

Chosen
non-tTM
area

3BH1_MOUSE 372 2 19 287–305 19 330–348
3BH3_MOUSE 372 2 19 287–305 19 330–348
5HT3_MOUSE 487 4 20 465–484 20 385–404
5HTE_MOUSE 366 7 25 24–48 25 235–259
A2AB_MOUSE 455 7 24 411–434 24 277–300
A4_MOUSE 770 1 24 700–723 24 736–759
ACE_MOUSE 1312 1 17 1265–

1281
17 625–641

ACHB_MOUSE 501 4 19 277–295 22 391–412
ACHE_MOUSE 493 4 19 273–291 24 381–404
ACM1_MOUSE 460 7 23 25–47 23 277–299
AG2S_MOUSE 359 7 21 276–296 21 168–188
ANPA_MOUSE 1057 1 21 470–490 21 225–245
ATNC_MOUSE 290 1 28 40–67 28 7–34
AVRB_MOUSE 536 1 26 135–160 26 55–80
B2AR_MOUSE 418 7 23 107–129 24 363–386
B3AT_MOUSE 929 10 24 424–447 18 829–846
BASI_MOUSE 273 1 24 210–233 24 242–265
CADE_MOUSE 884 1 24 710–733 24 798–821
CADP_MOUSE 822 1 23 648–670 23 736–758
CD11_MOUSE 336 1 29 298–326 29 135–163

 123

4 OUTCOMES FOR THE
TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

Nfc = Ntp + Ntn + Nfp + N fn

CORRELATION

C =
Sj − S()Pj − P()

j∑
Sj − S()

j∑ 2
Pj − P()

j∑ 2

C =
Ntp Ntn − Nfn Nfp

Ntn + Nfn() Ntn + Nfp() Ntp + Nfn() Ntp + Nfp()

STANDARDIZED FITNESS

1 − C

2
.

 124

OVERALL PROGRAM FOR THE
TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

CONSISTING OF AN AUTOMATICALLY
DEFINED FUNCTION, ADF0, AN

ITERATION-PERFORMING BRANCH,
IPB0, AND A RESULT-PRODUCING

BRANCH, RPB

progn

Body of ADF0
Function Definition

Argument
List valuesADF0

defun

Body of Iteration
Performing Branch

IPB0

looping-over-
known-finite-set values

Body of Result-
Producing Branch

RPB

 125

TABLEAU WITH ADFS
Objective: Find a program to classify

whether or not a segment
of a protein sequence is a
transmembrane domain.

Architecture of
the overall
program with
ADFs:

One result-producing
branch, one iteration-
performing branch, and
three zero-argument
function-defining
branches, with no ADF
hierarchically referring to
any other ADF.

Parameters: Branch typing for the
three ADFs.

Terminal set for
the IPB:

LEN, M0, M1, M2, M3, and
the random constants ←bigger-

reals.

 126

Function set for
the IPB:

ADF0, ADF1, ADF2,
SETM0, SETM1, SETM2,
SETM3, IFLTE, +, -, *,
and %.

Terminal set for
the result-
producing
branch:

LEN, M0, M1, M2, M3, and
the random constants ←bigger-

reals.

Function set for
the result-
producing
branch:

IFLTE, +, -, *, and %.

Terminal set for
the function-
defining
branches ADF0,
ADF1, and
ADF2:

Twenty zero-argument
functions
(A?), (C?), …, (Y?).

 127

Function set for
the function-
defining
branches ADF0,
ADF1, and
ADF2:

Numerically valued two-
argument logical
disjunction function ORN.

 128

GENERATION 0 OF RUN 1 FOR THE
SUBSET-CREATING VERSION OF THE

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ADFS
• in-sample correlation of 0.48
• a standardized fitness of 0.26
• 99 true positives
• 83 true negatives
• 40 false positives
• 24 false negatives
• out-of-sample correlation of 0.43

(progn (defun ADF0 ()

(values (ORN (ORN (ORN (I?) (M?)) (ORN (V?) (C?)))
(ORN (ORN (W?) (L?)) (ORN (Y?) (A?))))))

(defun ADF1 ()

(values (ORN (ORN (ORN (L?) (L?)) (ORN (R?) (K?)))
(ORN (ORN (I?) (V?)) (ORN (R?) (Q?))))))

(defun ADF2 ()

(values (ORN (ORN (ORN (R?) (S?)) (ORN (F?) (Q?)))
(ORN (ORN (P?) (F?)) (ORN (Y?) (C?))))))

(progn (looping-over-residues
 (SETM0 (SETM3 (SETM0 (ADF0))))

(values (IFLTE (+ (- M3 M0) (+ M1 M3)) (% (IFLTE M0
M3 6.212 M1) (IFLTE M0 M2 M1 L)) (* (% M1 M2) (* M3
0.419)) (+ (% L M2) (- M0 M2)))))))

 129

GENERATION 5 OF RUN 1 FOR THE
SUBSET-CREATING VERSION OF THE

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ADFS

• in-sample correlation of 0.764
• out-of-sample correlation of 0.784

(progn (defun ADF0 ()

(values (ORN (ORN (I?) (A?)) (ORN (ORN
(L?) (G?)) (N?)))))

(defun ADF1 ()

(values (ORN (ORN (ORN (ORN (G?) (D?))
(ORN (E?) (V?))) (ORN (ORN (R?) (E?))
(ORN (T?) (P?)))) (ORN (N?) (S?)))))

(defun ADF2 ()

(values (ORN (ORN (ORN (L?) (R?)) (ORN
(V?) (P?))) (ORN (G?) (L?)))))

(progn (looping-over-residues
 (SETM1 (- (+ M1 (ADF0)) (ADF1))))

(values (* (% (+ (% -9.997 M3) M1) 6.602)
(+ 6.738 (% (- M3 L) (+ M3 M2)))))))

 130

GENERATION 8 OF RUN 1 FOR THE
SUBSET-CREATING VERSION OF THE

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ADFS

• in-sample correlation of 0.92
• out-of-sample correlation of 0.89

(progn (defun ADF0 ()

(values (ORN (ORN (ORN (I?) (M?)) (ORN
(V?) (C?))) (ORN (ORN (L?) (G?)) (N?)))))

(defun ADF1 ()

(values (ORN (ORN (ORN (ORN (G?) (D?))
(ORN (E?) (V?))) (ORN (ORN (R?) (E?))
(ORN (T?) (P?)))) (ORN (N?) (S?)))))

(defun ADF2 ()

(values (ORN (ORN (ORN (L?) (R?)) (ORN
(V?) (P?))) (ORN (G?) (L?)))))

(progn (looping-over-residues
 (SETM1 (- (+ M1 (ADF0)) (ADF1))))

(values (* (+ M1 M3) (+ 6.738 (% (- M3 L)
(+ M3 M2)))))))

 131

GENERATION 11 OF RUN 1 FOR THE
SUBSET-CREATING VERSION OF THE

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ADFS
• in-sample correlation of 0.94
• standardized fitness of 0.03
• out-of-sample correlation of 0.96
• 122 true positives  • 123 true negatives
• 2 false positives  • 3 false negatives
• out-of-sample error rate 2.0%

(progn (defun ADF0 ()

(values (ORN (ORN (ORN (I?) (M?)) (ORN (V?) (C?)))
(ORN (ORN (L?) (G?)) (N?)))))

(defun ADF1 ()

(values (ORN (ORN (ORN (ORN (G?) (D?)) (ORN (E?)
(V?))) (ORN (ORN (R?) (E?)) (ORN (ORN (ORN (ORN (G?)
(D?)) (ORN (E?) (V?))) (ORN (ORN (R?) (K?)) (ORN (T?)
(P?)))) (ORN (N?) (S?))))) (ORN (N?) (S?)))))

(defun ADF2 ()

(values (ORN (ORN (ORN (L?) (Y?)) (ORN (V?) (P?)))
(ORN (G?) (L?)))))

(progn (looping-over-residues
 (SETM1 (- (+ M1 (ADF0)) (ADF1))))

(values (* (+ M1 M3) (+ 6.738 (% (- M3 L) (+ M3
M2)))))))

 132

COMPARISON OF VALUES OF IN-
SAMPLE AND OUT-OF-SAMPLE

CORRELATION FOR RUN 1 FOR THE
SUBSET-CREATING VERSION OF THE

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ADFS

8 13 18
0.8

0.9

1.0

In Sample
Out of Sample

Generation

C
or

re
la

ti
on

 133

GENERATION 20 OF RUN 3 FOR THE
SUBSET-CREATING VERSION OF THE

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ADFS

• in-sample correlation of 0.976
• out-of-sample correlation of 0.968
• out-of-sample error rate 1.6%

(progn (defun ADF0 ()

(values (ORN (ORN (ORN (I?) (H?)) (ORN (P?) (G?)))
(ORN (ORN (ORN (Y?) (N?)) (ORN (T?) (Q?))) (ORN (A?)
(H?))))))

(defun ADF1 ()

(values (ORN (ORN (ORN (A?) (I?)) (ORN (L?) (W?)))
(ORN (ORN (T?) (L?)) (ORN (T?) (W?))))))

(defun ADF2 ()

(values (ORN (ORN (ORN (ORN (ORN (D?) (E?)) (ORN (ORN
(ORN (D?) (E?)) (ORN (ORN (T?) (W?)) (ORN (Q?)
(D?)))) (ORN (K?) (P?)))) (ORN (K?) (P?))) (ORN (T?)
(W?))) (ORN (ORN (E?) (A?)) (ORN (N?) (R?))))))

(progn (loop-over-residues
 (SETM0 (+ (- (ADF1) (ADF2)) (SETM3 M0))))

(values (% (% M3 M0) (% (% (% (- L -0.53) (* M0 M0))
(+ (% (% M3 M0) (% (+ M0 M3) (% M1 M2))) M2)) (% M3
M0))))))

 134

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBELM WITH

ITERATION CREATION OPERATION

PREPARATORY STEPS

INITIAL FUNCTIONS AND TERMINALS
Tinitial = {←, M0, M1, M2, M3, M4, M5, LEN,
(A?), (C?), ... , (Y?)}
Finitial = {+, -, *, %, IFGTZ, ORN, SETM0,
SETM1, SETM2, SETM3, SETM4, SETM5}

POTENTIAL FUNCTIONS AND
TERMINALS

Tpotential = {IPB0, IPB1, IPB2, ARG0,
ARG1, ARG2, ARG3}
The set of potential additional functions,
Fpotential, for this problem consists of
Fpotential = {ADF0, ADF1, ADF2, ADF3}

 135

PARAMETERS

• Populaion size M = 64,000
• The percentage of operations on each
generation after generation 6:
• 85% crossovers
• 10% reproductions
• 0% mutations
• 1% restricted iteration creations
• 1% branch duplications
• 1% argument duplications
• 0.5% branch deletions
• 0.5% argument deletions
• 1% branch creations
• 0% argument creations

 136

PARAMETERS

• The percentage of operations on each
generation after generation 6:
• 70% crossovers
• 10% reproductions
• 0% mutations
• 6% restricted iteration creations
• 2% branch duplications
• 2% argument duplications
• 2% branch deletions
• 2% argument deletions
• 6% branch creations
• 0% argument creations

 137

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

THE MYOPIC PERFORMANCE OF THE
BEST OF GENERATION 0

(CORRELATION OF 0.3108)
(setm2 (* (setm5 (setm0 (orn
LEN M0))) (* (* (setm4 LEN)
(setm4 (M?))) (% (setm1 (W?))
(setm4 (V?))))))

A MYOPIC ITERATION-PERFORMING
BRANCH FROM GENERATION 1

(CORRELATION OF 0.4702)
• classification of the entire protein segment
is myopically done on the basis of just the last
residue from the protein segment

 138

AN ITERATION-PERFORMING BRANCH
THAT GLOBALLY INTEGRATES

INFORMATION
• Result-producing branch, RPB, is
(orn (IPB0) (L?))

• Iteration-performing branch, IPB0, is
(% (setm3 (orn (K?) M3)) (E?))

 139

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

AN ITERATION-PERFORMING BRANCH
THAT COMPUTES A CONVENTIONAL

RUNNING SUM

• Result-producing branch of first pace-
setting program from generation 2
(correlation of 0.7224) is just (IPB0)
• Iteration-performing branch, IPB0, is
(setm3 (+ (* (H?) (E?)) (+ (V?)
M3)))

• +1 in contributed by each hydrophobic V
residue (+4.2 on the Kyte-Dolittle scale), +1 is
contributed by each residue that is neither E
(–3.5 on the Kyte-Dolittle scale) nor H (–3.2
on the Kyte-Dolittle scale), and -1 is
contributed by either an E or a H

 140

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

EMERGENCE OF AUTOMATICALLY
DEFINED FUNCTIONS

• Pace-setting program from generation 6
contains both a one-argument automatically
defined function as well as an iteration-
performing branch

Emergence of Multiple Iteration-Performing
Branches
• First pace-setting program from generation
8 has multiple iteration-performing
branches. One of these iteration-performing
branches globally integrates information
over the entire protein segment.

 141

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

EMERGENCE OF COOPERATIVITY
AMONG ITERATION-PERFORMING

BRANCHES

• First iteration-performing branch, IPB0, of
second pace-setting program from generation
11 is
(setm3 (+ (* (H?) (E?)) (+ (orn
(setm2 M0) (set2 (W?))) M3)))

• IPB0, computes a running sum, M3. An
increment of +1 is contributed by W
(tryptophan); +1 is contributed by each
residue that is neither E nor H; and -1 is
contributed by either an E or a H (histidine).

 142

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

EMERGENCE OF COOPERATIVITY
AMONG ITERATION-PERFORMING

BRANCHES

• Second iteration-performing branch, IPB1,
makes an additional contribution to M3 based
on H, E, and V (valine) as follows:
 (setm3 (+ (* (H?) (E?)) (+
(V?) M3)))

• Result-producing branch is simply (IPB1).
Its value is the running sum to which +1 is
contributed by each V; +1 is contributed by
each W; +2 is contributed by each residue
that is neither E nor H; and -2 is contributed
by either an E or a H.

 143

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

EMERGENCE OF HIERARCHY AMONG
AUTOMATICALLY DEFINED

FUNCTIONS

* A pace-setting program from generation 24
has two automatically defined functions (a
one-argument ADF1 and a zero-argument
ADF3) such that ADF3 refers to ADF1 (and
also to IPB1).

 144

EMERGENCE OF MULTIPLE
AUTOMATICALLY DEFINED
FUNCTIONS AND MULTIPLE

ITERATION-PERFORMING BRANCHES

• The pace-setting program from generation
26 has three one-argument automatically
defined functions as well as two iteration-
performing branches.

 145

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

BEST-OF-RUN PROGRAM FROM
GENERATION 42

• Best-of-generation program scores 122 true
positives, 122 true negatives, 1 false positive,
and 1 false negative and has an in-sample
correlation of 0.9938. It has an out-of-sample
error rate of 1.6%.
• This program has two one-argument
automatically defined functions (ADF0 and
ADF1) and two iteration-performing
branches (IPB0 and IPB1) that
cooperatively integrate global information.
• The result-producing branch is (IPB1)

 146

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

BEST-OF-RUN PROGRAM FROM
GENERATION 42

• ADF0 is
(adf1 (+ (setm0 (E?))(setm4
(Q?))))

Since ADF1 merely returns its one argument,
ADF0 returns 0 if the current residue is E or
Q (glutamine) and otherwise returns –2 (as
well as side-effecting the settable variables
M0 and M4).

 147

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

BEST-OF-RUN PROGRAM FROM
GENERATION 42 – CONTINUED

RPBIPB0 IPB1ADF1ADF0

PROGN

• First iteration-performing branch, IPB0:
(setm1 (– (– (setm1 (setm1 (– (setm1 M1)
(setm3 (setm3 (% (– (I?) (R?)) (adf0
(H?)))))))) (setm3 (setm3 (% (– (+ (V?)
M3) (setm2 (+ (– (D?) (+ (V?) (setm3 (+
(orn (Y?) (* (E?) (setm5 (orn (P?)
(D?)))))(+ (setm5 (orn M0 (L?))) M3)))))
(setm3 (R?))))) (adf0 (% (setm1 (– (–
(setm1 (setm1 (– (setm1 M1) (setm3 (setm3
(% (– (I?) (R?)) (adf0 (H?)))))))) (setm3
(setm3 (% (– (+ (V?) M3) (setm2 (+ (– (*
(setm5 (orn (P?) (R?))) (setm5 (orn (P?)
(D?)))) (L?)) (setm3 (orn (Q?) (% M5
(V?))))))) (setm5 (orn M0 (L?)))))))
(setm3 (setm3 (% (– (F?) (R?))(adf0
(H?))))))) (E?))))))) (setm3 (setm3 (% (–
(F?) (R?))(adf0 (H?)))))))

 148

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

BEST-OF-RUN PROGRAM FROM
GENERATION 42 – CONTINUED

• Second iteration-performing branch,
IPB1:

(setm1 (– (setm1 M1) (setm3 (setm3 (% (–
(I?) (adf1 (* (setm0 (setm1 (orn (orn
(P?) (R?)) (– (setm1 M1) (setm3 (setm3
(ifgtz (setm4 (– (Y?) (R?))) (setm1 (Y?))
IPB0))))))) (setm0 (* (setm0 (orn (K?)
M0)) (setm1 (orn (setm4 (setm1 (setm4
(P?)))) (Q?)))))))) (adf0 (H?)))))))

• Result-producing branch returns the value
returned by the second iteration-performing
branch, IPB1.
• Automatically defined function, ADF0:
(adf1 (+ (setm0 (E?))(setm4
(Q?))))

• ADF1 merely returns its one argument.

 149

TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH

ITERATION CREATION

BEST-OF-RUN PROGRAM FROM
GENERATION 42 – CONTINUED

• Both possible avenues of communication
and cooperation are employed by this
program.

• First, two of the six settable variables (M0
and M1) are set in IPB0 and referenced by
IPB1 (as highlighted by bold-faced type in
IPB1).

• Second, IPB1 contains a reference to the
value returned by IPB0 (also highlighted by
bold-faced type in IPB1).

 150

COMPARISON OF EIGHT METHODS
FOR SOLVING TRANSMEMBRANE

SEGMENT IDENTIFICATION PROBLEM

Method Error
von Heijne 1992 2.8%
Engelman, Steitz, and Goldman
1986

2.7%

Kyte and Doolittle 1982 2.5%
Weiss, Cohen, and Indurkhya
1993

2.5%

GP + Set-creating ADFs 1.6%
GP + Arithmetic-performing
ADFs

1.6%

GP + ADFs + six architecture-
altering operations

1.6%

GP + ADFs + six architecture-
altering operations + restricted
iteration creation operation

1.6%

 151

AUTOMATICALLY DEFINED LOOP
(ADL)

• four distinct branches, namely
• a loop initialization branch, LIB,
• a loop condition branch, LCB,
• a loop body branch, LBB, and
• a loop update branch, LUB.

• Iterative for loop in the C programming
language:
for (i = 0; i < LEN; i++)

{

 M0 = M0 + V[i];

}

• Using the ADL terminology for LIB, LCB,
LBB, and LUB, a for loop in C would be
written as
for (LIB; LCB; LUB)

{

 LBB;

}

 152

AUTOMATICALLY DEFINED LOOP
(ADL)

SETM1

0

IFLTE

LEN M1 -73 +22

values

SETM0

M0

+

values

READV

M1

SETM1LIST
progn

%

M0 LEN

ADL0+

M1 1

defloop

progn

ADL0

400

410

411 412 413

414

415

416

417

420

440

450

460

470

• Initialization and iterative for loop in the
C programming language:
M0 = 0;

for (i = 0; i < LEN; i++)

{

 M0 = M0 + V[i];

}

 153

AUTOMATICALLY DEFINED
FUNCTIONS

EVOLUTIONARY SELECTION OF THE
ARCHITECTURE

POINT TYPING FOR STUCTURE-
PRESERVING CROSSOVER

Parent A with an argument map of {3, 2}

defun

ADF0 values(ARG0 ARG1 ARG2)

progn

defun

values(ARG0 ARG1)ADF1

NOR

ADF0

ARG0 ARG0ARG1

AND

ARG0ARG1

values

ADF1

D4

D1

ADF0

D0

D3D2

OR

OR

AND

ARG2 ARG0ARG0

NAND

ARG1

100

101

102 103

104

105 106

107

108

109 110 111

112

113 114

115

116 117

118 119 120

121 122

Parent B with an argument map of {{3, 2, 2}

defun

ADF0 values(ARG0 ARG1 ARG2)

AND

ARG0

NOR

ARG2 ARG1

OR

ARG1

defun

values(ARG0 ARG1)ADF1

NAND

ARG0 ARG1

OR ADF0

ARG0 ARG1 ARG1

defun

values(ARG0 ARG1)ADF2

OR

ADF0

ARG0ARG1

ARG0 ARG1

ANDARG0 ARG1

ADF1

values

D1

ADF0

D0 ADF1

D3D2

AND

D4

progn

200

201

202 203

204

205 206

207

208

209 210

211

212 213 214

215

216

217 218

219

220 221 222

223 224

225

226 227

228 229 230

231 232

 154

AUTOMATICALLY DEFINED
FUNCTIONS

EVOLUTIONARY SELECTION OF THE
ARCHITECTURE

POINT TYPING FOR STUCTURE-
PRESERVING CROSSOVER

Parent C with an argument map of {4, 2}
progn

defun

ADF0 values(ARG0 ARG1 ARG2 ARG3)

OR

ARG3

OR

ARG0

NAND

ARG1

ARG2 ARG1

NOR

defun

values(ARG0 ARG1)ADF1

NOR

ARG0 ARG1

NORADF0

ARG0 ARG0ARG1 OR

values

ADF1

D4 ADF0

D1 D0 ADF1

D1 D2D3

AND

D0

300

301

302

303 304

305

306

307 308

309

310

311

312 313

314

315

316 317

318

319 320

321 322

323 324

325 326

327 328

 155

GENE DUPLICATION

• Fly (midge)Chironomus tentans (Galli and
Wislander 1993)
• 3,959-bases of DNA with accession number
X70063 in GenBank
• One subsequence of 732 bases (called "C.
tentans Sp38–40.A gene") are in DNA
positions positions 918–1,649 and is
expressed as protein of length 244
• A second subsequence of 759 bases (called
"C. tentans Sp38–40.B gene") are in DNA
positions 2,513–3,271 and is expressed as
protein of length 253.
• Both proteins are secreted from the salivary
gland of the insect and form water-insoluble
fibers which are spun into one of two kinds of
tubes – one for larval protection and feeding
and one for pupation

 156

PROTEIN ALIGNMENT OF THE "A"
AND "B" PROTEINS

First.protein MRIKFLVVLA VICLFAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50
Second.protein MRIKFLVVLA VICLLAHYAS ASGMGGDKKP KDAPKPKDAP KPKEVKPVKA 50

First.protein ESSEYEIEVI KHQKEKTEKK EKEKKTHVET KKEVKKKEKK QIPCSEKLKD 100
Second.protein DSSEYEIEVI KHQKEKTEKK EKEKKAHVEI KKKIKNKEKK FVPCSEILKD 100

First.protein EKLDCETKGV PAGYKAIFKF TENEE-CDWT CDYEALPPPP GAKKDDKKEK 149
Second.protein EKLECEKNAT P-GYKALFEF KESESFCEWE CDYEAI---P GAKKDEKKEK 146

First.protein KTVKVVKPPK EKPPKKLRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 199
Second.protein KVVKVIKPPK EKPPKKPRKE CSGEKVIKFQ NCLVKIRGLI AFGDKTKNFD 196

First.protein KKFAKLVQGK QKKGAKKAKG GKKAAPKPGP KPGPK----Q ADKP------ 239
Second.protein KKFAKLVQGK QKKGAKKAKG GKKAEPKPGP KPAPKPGPKP APKPVPKPAD 246

First.protein --KDAKK 244
Second.protein KPKDAKK 253

 157

NEW ARCHITECTURE-ALTERING
OPERATORS

SPECIALIZATION / REFINEMENT /
CASE SPLITTING

• Branch duplication
• Argument duplication
• Branch creation
• Argument creation

GENERALIZATION

• Branch deletion
• Argument deletion

 158

PROGRAM WITH 1 TWO-ARGUMENT
AUTOMATICALLY DEFINED FUNCTION

(ADF0) AND 1 RESULT-PRODUCING
BRANCH – ARGUMENT MAP OF {2}

progn
400

defun

ADF0 values

OR

ARG1

ARG0ARG1

AND

LIST

410

411

412 419

ARG1ARG0
413 414 420

421
422

423 424

values

AND

D1 D2 D0

D3

D4 D0

ADF0 NAND

ADF0

NOR

470

481

482 483 486

480

485

487

489

490

488

491

 159

PROGRAM WITH ARGUMENT MAP OF
{2, 2} CREATED USING THE OPERATION

OF BRANCH DUPLICATION

progn

defun

ADF0 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

541

520

values

AND

D1 D2 D0

D3

D4 D0

ADF1 NAND

ADF0

NOR

defun

ADF1 LIST

ARG1ARG0

values

OR

ARG1

ARG0ARG1

AND

550

549

500

510

511

540 570

581

582 583

588

587

589

590 591

519

543 544

542

 160

PROGRAM WITH ARGUMENT MAP OF
{3) CREATED USING THE OPERATION

OF ARGUMENT DUPLICATION

progn

defun

ADF0 values

OR

ARG2 AND

LIST

610

611 612 619

ARG0

613

ARG1

614 620

621
622

623

ARG1

624

ARG2
615

ARG0

values

AND

D1 D2 D0

D3

ADF0 NAND

ADF0

D4 D0

NOR

670

681

682 683

687

690

688

691

D2

684

D4 D0

NOR
689 695

696 697

600

 161

PARALLELIZATION OF GA OR GP

• By fitness cases
• Timing (Simulation time, Protein length)
• Matching between hardware and problem

• By individuals
• Timing (Program size, Simulation time)

• By runs
• Assumes adequacy of population size of a
run

• Demes ("Island" model)
• No synchronization of islands
• Occasional small amounts of migration (low
band width requirement for communication)
• Emigrants go (fitness-based selection)
• Immigrants arrive and are absorbed (fitness-
based making of space)
• Fault-tolerant

 162

GP APPLIED TO MOLECULAR
BIOLOGY

• Handley, Simon. Automated learning of a
detector for a-helices in protein sequences via
genetic programming. Proceedings of the
Fifth International Conference on Genetic
Algorithms. Ed. Stephanie Forrest. San
Mateo, CA: Morgan Kaufmann Publishers,
1993. 271-278.

• Handley, S. 1994. Automated learning of a
detector for the cores of a-helices in protein
sequences via genetic programming.
Proceedings of the First IEEE Conference on
Evolutionary Computation. IEEE Press,
1994. 1: 474–479.

• Handley, Simon. The prediction of the
degree of exposure to solvent of amino acid
residues via genetic programming.
Proceedings of the Second International

 163
Conference on Intelligent Systems for
Molecular Biology. Menlo Park, CA: AAAI
Press, 1994.

 164

GP BOOKS AND VIDEOTAPES

• Blickle, Tobias. 1997. Theory of
Evolutionary Algorithms and Application to
System Synthesis. TIK-Schriftenreihe Nr. 17.
Zurich, Switzerland: vdf Hochschul Verlag
AG and der ETH Zurich. ISBN 3-7281-2433-
8.
• Iba, Hitoshi. 1996. Genetic Programming.
Tokyo: Tokyo Denki University Press. In
Japanese.
• Jacob, Christian. 1997. Principia Evolvica:
Simulierte Evolution mit Mathematica.
Heidelberg, Germany: dpunkt.verlag. In
German. English translation forthcoming.
• Koza, John R. Genetic Programming: On
Programming Computers by Means of Natural
Selection. Cambridge, MA: MIT Press 1992.
• Koza, John R. and Rice, James P. Genetic
Programming: The Movie. Cambridge, MA:
MIT Press 1992. (VHS NTSC, PAL,
SECAM)

 165

GP BOOKS – CONTINUED

• Koza, John R. Genetic Programming II:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press 1994.
• Koza, John R. Genetic Programming II
Videotape: The Next Generation. Cambridge,
MA: MIT Press 1994. (VHS in NTSC, PAL,
SECAM)
• Koza, John R., Andre, David, Bennett III,
Forrest H, and Keane, Martin A. 1998.
Genetic Programming III. San Francisco,
CA: Morgan Kaufmann.
• Langdon, William B. 1998. Genetic
Programming and Data Structures: Genetic
Programming + Data Structures = Automatic
Programming! Amsterdam: Kluwer.
• Nordin, Peter. 1997. Evolutionary Program
Induction of Binary Machine Code and its
Application. Munster, Germany: Krehl
Verlag.

 166

GP CONFERENCE AND EURO-GP
WORKSHOP PROCEEDINGS

• Banzhaf, Wolfgang, Poli, Riccardo,
Schoenauer, Marc, and Fogarty, Terence C.
1998. Genetic Programming: First European
Workshop. EuroGP’98. Paris, France, April
1998 Proceedings. Paris, France. April l998.
Lecture Notes in Computer Science. Volume
1391. Berlin, Germany: Springer-Verlag.
• Koza, John R., Goldberg, David E., Fogel,
David B., and Riolo, Rick L. (editors).
Genetic Programming 1996: Proceedings of
the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA:
MIT Press.
• Koza, John R., Deb, Kalyanmoy, Dorigo,
Marco, Fogel, David B., Garzon, Max, Iba,
Hitoshi, and Riolo, Rick L. (editors). Genetic
Programming 1997: Proceedings of the
Second Annual Conference, July 13–16, 1997,

 167

Stanford University. San Francisco, CA:
Morgan Kaufmann.
• Koza, John R., Banzhaf, Wolfgang,
Chellapilla, Kumar, Deb, Kalyanmoym
Dorigo, Marco, Fogel, David B., Garzon,
Max H., Goldberg, David E., Iba, Hitoshi,
and Riolo, Rick. (editors). 1998. Genetic
Programming 1998: Proceedings of the Third
Annual Conference, July 22-25, 1998,
University of Wisconsin, Madison, Wisconsin.
San Francisco, CA: Morgan Kaufmann.

 168
ADVANCES IN GENETIC PROGRAMMING

SERIES (MIT PRESS)

• Angeline, Peter J. and Kinnear, Kenneth E.
Jr. (editors). 1996. Advances in Genetic
Programming 2. MIT Press.
• Kinnear, Kenneth E. Jr. (editor). Advances
in Genetic Programming. Cambridge, MA:
MIT Press 1994.
• Spector, Lee, Langdon, William B.,
O'Reilly, Una-May, and Angeline, Peter
(editors). 1999. Advances in Genetic
Programming 3. Cambridge, MA: The MIT
Press.

 169

KLUWER BOOK SERIES ON GENETIC
PROGRAMMING

• Langdon, William B. 1998. Genetic
Programming and Data Structures: Genetic
Programming + Data Structures = Automatic
Programming! Amsterdam: Kluwer.

 170

GENERAL BOOKS ON GENETIC
ALGORITHMS

• Goldberg, David E. Genetic Algorithms in
Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley l989.
• Holland, John H. Adaptation in Natural and
Artificial Systems, Ann Arbor, MI: University
of Michigan Press 1975. Now available as
2nd edition from The MIT Press 1992.
• Davis, Lawrence (editor). Genetic
Algorithms and Simulated Annealing
London: Pittman l987.
• Davis, Lawrence. Handbook of Genetic
Algorithms Van Nostrand Reinhold.1991.
• Michalewicz, Zbignlew. Genetic Algorithms
+ Data Structures = Evolution Programs.
Berlin: Springer-Verlag 1992.
• Mitchell, Melanie. 1996. An Introduction to
Genetic Algorithms. Cambridge, MA: The
MIT Press.

 171

SPECIFIC APPLICATION AREAS OF GA

• Albrecht, R. F., Reeves, C. R., and Steele, N.
C. 1993. Artificial Neural Nets and Genetic
Algorithms. Springer-Verlag.
• Bauer, Richard J., Jr. Genetic Algorithms
and Investment Strategies. John Wiley. 1994.
• Bhanu, Bir and Lee, Sungkee. 1994.
Genetic Learning for Adaptive Image
Segmentation. Boston: Kluwer Academic
Publishers.
• Buckles Bill P. and Petry, Frederick E.
Genetic Algorithms. Los Alamitos, CA: The
IEEE Computer Society Press. 1992.
• Chambers, Lance D. 1995. Practical
Handbook of Genetic Algorithms - Volume 1.
Boca Raton, FL: CRC Press.
• Davidor, Yuval. Genetic Algorithms and
Robotics. Singapore: World Scientific 1990.

 172

SPECIFIC APPLICATION AREAS OF GA

• Pal, Sankar K. andWang, Paul GP. Wang.
1996. Genetic Algorithms and Pattern
Recognition. Boca Raton, FL: CRC Press.
• Stender, J. (editor). 1993. Parallel Genetic
Algorithms. IOS Publishing.
• Stender, J., Hillebrand, and Kingdon, J.
(editors). 1994. Genetic Algorithms in
Optimization, Simulation, and Modeling.
Amsterdam: IOS Publishing.

 173

GP E-MAIL LISTS

GENETIC PROGRAMMING (GP) LIST
• To subscribe, send e-mail message to:
Genetic-Programming-
Request@CS.Stanford.Edu
• Be sure to send to exactly this address,
(which includes the word "Request")!
• The BODY of your message must consist of
exactly the words:
subscribe genetic-programming

 174

VARIOUS E-MAIL LISTS

GENETIC ALGORITHM (GA) LIST
GA-List-Request@AIC.NRL.NAVY.MIL

INDUCTIVE LOGIC PROGRAMMING
(ILP)
To subscribe, send e-mail message to:
ilpnet@ijs.si
with a SUBJECT heading of:
SUBSCRIBE ILPNEWS

MACHINE LEARNING LIST
ML-Request@ICS.UCI.EDU

 175

GP FTP SITE
An on-line public repository and FTP site
and WWW site containing computer code,
papers on genetic programming, and
frequently asked questions (FAQs) may be
accessed by electronic mail by anonymous
FTP from the
pub/genetic-programming
directory from the site
ftp.io.com
The URL of the WWW site is
ftp://ftp.io.com/pub/genetic-
programming

 176

GA ARCHIVE – FTP AND WWW SITE

• An FTP and WWW site for the "GA
archive" can be accessed through anonymous
ftp at ftp.aic.nrl.navy.mil
[192.26.18.68] in /pub/galist. The URL
for the WWW pages is
http://www.aic.nrl.navy.mil/gali
st/
Contains genetic algorithm code, conference
announcements for the GA field, back issues
of the Genetic Algorithms Digest e-mail
newsletter

 177

WWW SITE FOR GENETIC
PROGRAMMING CONFERENCES INC

www.genetic-programming.org

JOHN KOZA’S HOME PAGE

http://www.smi.stanford.edu/peop
le/koza

Contains
• Information on GP-96, GP-97, GP-98
conferences
• Links to people doing GP research
• List of PhD theses in progress
• Links to many other GP resources
• Abstracts of JK's publications
• Links to other GP WWW pages
• Links to Langdon's complete GP
bibliography

