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OUTLINE

e Genetic Algorithm (GA)
* Flowchart, operations, preparatory steps
* Examples
» Characteristics, advice, common mistakes
 Hillclimbing and Simulated Annealing
» Genetic Programming (GP)
* |dea of automatic programming
* Flowchart, operations, preparatory steps
* Examples
« Automatically defined functions (ADFS)
« Architecture-altering operations based on
gene duplication and gene deletion
 Embryos and developmental GP
« Sources of additional information



"lask] not what mathematics can do for
biology, but what biology can do for
mathematics."”

— Stanidaw Ulam 1976
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".WHAT BIOLOGY CAN DO
FORCOMPUTER SCIENCE..."

9BIOLOGICAL IDEASUSED IN
GENETIC ALGORITHMS (GA) AND
GENETIC PROGRAMMING (GP)

 The Darwinian principle of survival of the
fittest

e asexual mutation operation

« sexual recombination (crossover) operation
* iInversion operation

e gene regulation

e gene duplication

* gene deletion

e embryos

» development of embryo into organism
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PROMISING GA/GP APPLICATION
AREAS

 Problem areas involving many variables
that are interrelated in highly non-linear
ways

 Problem areas involving many variables
whose inter-relationship is not well
understood

 Problem areas where a good approximate
solution is satisfactory (and no one Is

expecting a perfect solution)
 design
e control
o classification, pattern recognition, Iinage
processing
» forecasting
* model building and data mining
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PROMISING GA/GP APPLICATION
AREAS — CONTINUED

 Problem areas where discovery of the size
and shape of the solution is a major part of
the problem

 Problem areas where large computerized
databases are accumulating and
computerized techniques are needed to

analyze the data
e genome and protein seguences
o satellite data
e astronomy
e petroleum
« financial databases
e marketing databases
* World Wide Web
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PROMISING GA/GP APPLICATION
AREAS — CONTINUED

e Problem areas for which humans find it

very difficult to write good programs
« parallel computers
e cellular automata
e multi-agent strategies
o distributed Al
e FPGAS
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SEARCH METHODSIN GENERAL

 INITIAL STRUCTURE (E.G., A POINT
OR POINTS IN THE SEACH SPACE OF
THE PROBLEM)

 FITNESS MEASURE

« METHOD OF CREATING NEW
STRUCTURE

« PARAMETERS

« TERMINATION CRITERION AND

METHOD OF DESIGNATING THE
RESULT
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SEARCHING A SPACE WITH ONE
GLOBAL OPTIMUM POINT AND MANY
LOCAL OPTIMA

A

ooooooooo
HHHHHH
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ENUMERATIVE RANDOM OR BLIND
RANDOM SEARCH

05 T

NEITHER ENUMERATIVE RANDOM
NOR BLIND RANDOM SEARCH USES
ACQUIRED INFORMATION IN

DIRECTING THE SEARCH
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HILL CLIMBING

A

ooooooooo
HHHHHH
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HILL CLIMBING I CONTINUED

« HILL CLIMBING AND GRADIENT
DESCENT (ASCENT) USE ACQUIRED
INFORMATION IN DIRECTING THE
SEARCH

« HOWEVER, HILL CLIMBING AND
GRADIENT DESCENT (ASCENT) ARE
VERY PRONE TO GETTING TRAPPED
ON LOCAL OPTIMA AND THEREBY
MISSING THE GLOBAL OPTIMUM

o If problem can be solved by hill-climbing, it
IS probably trivial to begin with.

 One broad approach to problem-solving is
to recast original problem (e.g., “by changing
the representation”) so that it becomes
solvable by hill-climbing
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GIRAFFE

e Long neck

e Long tongue

» Vegetable-digesting enzymes in stomach
e Long legs

* Brown coloration

THE DESIGN

Neck Tongue Carnivorous |Leg length | Coloration
length length ?

15.11 feet |14 inches |No 9.96 feet |Brown

Numerical |Numerical |Boolean Numerical |Categorical

CHARACTERISTICS
« NUMERICAL VARIABLES - floating-
point (such as 15.11 and 9.96) and integer
(such as 14)
« BOOLEAN VARIABLES (two alternatives)
« CATEGORICAL VARIABLES (many
alternatives)
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NON-LINEARITY

 Taken one-by-one, the 5 design variables
 Long neck contributes negatively to fithess
(requires considerable material to build,
requires considerable energy to maintain,
prone to injury, etc.)
« Same for long tongue

» Taken in pairs, the 10 possible pairs
e Long neck and long tongue - doubly
detrimental

 But, all 5 taken together are "co-adapted

sets of alleles" and make a very fit animal for

the jungle environment
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THE FALLACY OF HILL CLIMBING

Freely-made Action

concession

Of course, we all|[Nonetheless, use hill
know that the/climbing

variables are all

Inter-related In a

highly non-linear way

Of course, we all
kKnow that hill
climbing gets stuck
on local optima (non-
global) optima

Nonetheless, use hill
climbing
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THE GENETIC ALGORITHM (GA)

 The genetic algorithm is a mathematical
algorithm that transforms a set (population)
of mathematical objects (typically fixed-
length binary character strings), each with an
associated fitness value, into a new set (new
generation of the population) of offspring
objects, using operations patterned after
naturally-occurring genetic operations and
the Darwinian principle of reproduction and
survival of the fittest.

EXAMPLE
Generation O Generation 1
Individuals Fitness Offspring
In Population Measure Population
011 $3 111
001 $1 —> 010
110 $6 110

010 $2 010
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GENETIC OPERATIONSUSED IN THE
BASIC GENETIC ALGORITHM

e Darwinian reproduction
» Crossover (sexual recombination)

e Mutation (very occasional)
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FLOWCHART FOR THE BASIC
GENETIC ALGORITHM
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PSEUDO-CODE FOR THE BASIC
GENETIC ALGORITHM

PROCEDURE GA:

BEGIN
t=0
Initialize population P(t)
REPEAT
t=t+1
Evaluate individuals in P(t-1) for

fitness
Select P(t) fromP(t-1) using FPR
Perform Crossover on P(t)
Performsmal | anmount of Mutation
UNTIL (TERMINATION CONDITION)

END
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PROBABILISTIC SELECTION

INDIVIDUALS ARE SELECTED FOR
REPRODUCTION TO PARTICIPATE IN
CROSSOVER AND MUTATION BASED

ON FITNESS

 Better individuals are usually chosen
* The best individual is not necessarily chosen
e The worst individual is not necessarily
excluded

e Thus, there is SOME greedy hill-climbing
 But, there Is considerable selection of
iIndividuals that are the INFERIOR nased on
the current evidence of the search
 Resembles simulated annealing

« A population is used (i.e., the search is not
merely point-to-point)
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"1 think It would be a most extraordinary
fact If no variation ever had occurred useful

to each being's own welfare ... . But If
variations useful to any organic being do
occur, assuredly Individuals thus

characterised will have the best chance of
being preserved in the struggle for life; and
from the strong principle of inheritance they
will tend to produce offspring similarly
characterised. Thisprincipleof preservation,
| have called, for the sake of brevity, Natural
Selection.”

--- Charles Darwin inOn the Origin of Species
by Means of Natural Selection (1859)
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CROSSOVER OPERATION

 THE predominant operation with GAs
*Two parental strings chosen based on fithess

 Pick interstitial point from 1 to L-1 (using a
uniform random distribution)

Parent 1 Parent 2
011 110

Two crossover fragments(if point 2 is chosen)
Crossover Crossover

fragment 1 fragment 2

01- 11—

Two remainders (if point 2 is chosen)
Remainder Remainder

1 2

-—-1 ——0
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Two offspring produced by crossover
Offspring Offspring 2

1

111 010
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MUTATION OPERATION

« VERY occasional — Maybe 1 bit per
generation

e One parental string chosen based on fithess.

* Pick point from 1 to L (using a uniform
random distribution)

Parent 1

010

One Offspring (Point 3 chosen and mutated)

Offspring

011
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EXAMPLE RUN OF THE GENETIC
ALGORITHM WITH A POPULATION OF
SIZE 4 BETWEEN GENERATION OAND 1

FOR SIMPLE 3-DIMENSIONAL
OPTIMIZATION PROBLEM

Gen O Mating |Gen 1
pool
1 (011/3 |.25 (0113 (2 |111 |7
2 0011 |.08 [{110/6 |2 |010 |2

3 |110/6 |.50 [110|6 |-- |110 |6

4 1010/12 |.17 |010|2 |-- |011 |3

Total |12 17 18
Worst |1 2 2
Aver 300 4.25 4.5

Best |6 6 I
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GENETIC ALGORITHMS ARE
PROBABILISTIC

e Creation of the initial random population
(generation 0) (uniform distribution)
 Probabilistic selection of operation
(uniform distribution)

* Probabilistic selection of participant(s) for
the operation (distribution based on fitness)

* Probabilistic selection of crossover or
mutation point (uniform distribution)

o (Often) probabilistic selection of fithess
cases (uniform distribution)
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FOUR MAJOR PREPARATORY STEPS
FOR THE GENETIC ALGORITHM

e Determining the representation scheme
 structure (e.g., fixed length string, variable
length string, data structure, etc.)

o If the structure is fixed length string, then
determine the alphabet si¥e and the string
lengthL

e mapping from points in search space of the
problem to the structure, and vice versa

» Determining the fithess measure
« May involve numerous fitness cases

* Determining the parameters
e population sizév/

* number of generatior(s
e other control parameters

 Determining the method for designating a

result (e.g., best-so-far) and the criterion for

terminating a run (e.g., maximum number of
generations to be run or achievement of some
satisfactory level of performance)
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10-MEMBER TRUSS PROBL EM
(GOLDBERG AND SAMTANI 1986)

30

30

A3

A2
Al

A4

A5

A9

A6
A10

A8

A7 30

* Find the 10 cross-sectional areasiAA2, ...,
A1o that minimize the total weight (dollar
cost) of the 10 members of the truss while
supporting the load (i.e., satisfying stress

constraints).

Goldberg, David E. and Samtani, M.P. Engineering
optimization via genetic algorithms. In Proceedings of the
Ninth Conference on Electronic Computation. 1986. Pages

471-482.
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10-MEMBER TRUSS PROBLEM —
CONTINUED

e The weight (dollar cost) of each member of
the truss is based on its volume.

e The volume of a member IS ItS cross-
sectional area, A times its length.

e The length are either 30 feet or 42.4 feet

e The volume i1s smaller for a member with
smaller cross-sectional area.

« However, the members must be large
enough to support the loads (i.e., satisfy
stress constraints).

« Hence, competition between small cross-
sectional area and strength.
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FOUR MAJOR PREPARATORY STEPS
10-MEMBER TRUSS PROBL EM

1. REPRESENTATION SCHEME
40-BIT CHROMOSOME (GENOME)
Al A2 A3 A4 A5 A6 A7 A8 A9 Al10

0010/1110|0001|0011|1011|0011|1111|0011|0011|1010
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FOUR MAJOR PREPARATORY STEPS
10-MEMBER TRUSS PROBL EM

2. FITNESSMEASURE
 Decode the 40-bit chromosome into the 10
cross-sectional areas: A Az ..., Alwo.
 Compute the volume of each member of the
truss as Iits cross-sectional area times Its
length (30 feet or 302 = 42 feet)
 Compute cost of each member
o Compute the sum, over the 10 members, the
cost to get the total cost.
« The smaller the total cost the better. The
minimal cost is not known in advance.
 Penalize violations of stress constraints.
For example, a stress that is 10% above the
maximum set by the constraint for that
member might be penalized (e.g., 110%).
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FOUR MAJOR PREPARATORY STEPS
10-MEMBER TRUSS PROBL EM
— CONTINUED

3. MAJOR PARAMETERS
* Population sizeM = 200
 Maximum number of generations to be run,
G =50

4. TERMINATION
 The minimal cost is not known in advance.
The criterion for terminating a run (e.g.,
maximum number of generations to be run
or plateau Iin fithess of best-of-generation
iIndividuals
 Method for designating a result is "best-so-
far" individual
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GA TABLEAU FOR 10-MEMBER TRUSS

Objective:

Find the globally optimum
combination of cross-sectional
areas for the 10 members of
thetruss.

Representati
on scheme:

e structure = fixed length
string

 alphabet sizeK = 2 (binary)

e string length L = 40

e mapping = each 4-bit grouf
of the 40-bit string
corresponds to the cross-
sectional area (with
granularity of 16) of one of the
10 members of the truss.

A4

Fitness
cases:

Only one.
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Raw fithess: |Raw fitness = cost (weight) of
10 members with penalty for
constraint  violations  (uses
packaged evaluation
program).

Parameters. | Population sizeM = 200.

e Maximum number of
generations to be runG = 50.

Termination [The GA has run for G

criteria: generations.

Result The best-so-far individual in

designation:

the population.
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GA FOR PROTEIN TERTIARY
STRUCTURE PREDICTION
 Find the @ (phi) and Wi (psi) angles for each
amino acid residuei and the 0-8 additional
anglesyi, ..., Xis for each residud.
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GA FOR PROTEIN TERTIARY
STRUCTURE PREDICTION

The representation of the sequence of @ and
)i angles for each amino acid residue i and

the 0-8 additional angles ¥is, ..., Xis for each
residuel

<----RESIDUE #1

1

BINARY ENCODING

W1

X11

X12

P2

><----RESIDUE #2----

W2eee

101010110

011010110

110100101

001110101

101101101

001001010

<----RESIDUE #1

1

REAL-VALUED GENES

W1

X11

X12

$2

><----RESIDUE #2----

W2eee

+45.6

—22.7

+156.9

—5.2

+29.8

—122.71
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LE GRAND'SUSE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION

"AMBER" POTENTIAL ENERGY
FUNCTION

Approximates N-body problem with 2-body
teems by measuring all N2 pairwise
Interactions of N atoms

« VAN DER WAALS: Repulsion and
attraction inversely depends on 12th and 6th
powers of distance between each pair of non-
bonded atoms. (Important at short range;
Irrelevant at a distance).

« COULOMB: Electrostatic attraction and
repulsion inversely depends on distance
between each pair of non-bonded atoms.
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LE GRAND’s USE OF GA FOR Proten
Tertiary Structure Prediction

"AMBER" POTENTIAL ENERGY
FUNCTION

* Force (depending on square of deviation) to
hold each 2-ATOM BOND DISTANCE at a
constant equilibrium value.

* Force (depending on square of deviation) to
hold each 3-ATOM BOND ANGLE at a
constant equilibrium value.

* Force iIs Fourier series with frequency and
phase dependent on_4-ATOM DIHEDRAL
ANGLE.
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LE GRAND'SUSE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION

* Fitness is AMBER plus additional van der
Waals and Coulomb contributions for 1st
and 4th atoms of 4-dihedrally-bound atoms
AND additional van der Waals contribution
for polar hydrogens and non-bonded oxygen
and nitrogen.

« 3 kinds of crossover (single-point, two-
point, and uniform)

o Steady-state GA is used. (Tends to be
greedy).

* High (and changing) mutation rate.

o Child only replaces parent if it is better
than most similar existing individual in the
population (a variation of phenotypic
sharing)

« Population sizeM = 200.
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LE GRAND'SUSE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION

Objective:

Given the primary sequence of
a protein, the @ (phi) and
Yi (ps) angles for each amino
acid residue I and the 0-8
additional anglesis, ..., Xisfor
each residuel.

Representati
on scheme:

e Structure = fixed length
string (for a particular
protein)

 Alphabet of real-valued
genes

e String length L varies

« Mapping: See above.

Fitness
cases:

Only one (for a given protein).

Raw fithess:

Modified AMBER potential
energy function.
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Parameters:

« Population sizeM = 200.

e Maximum number of
generations to be runspecified
as 100,000 (200 x 50
iterations.

 Variation of phenotypic
sharing.

Termination
criteria:

100,000 (200 x 500) iteration
OR variance of population ig
less than 0.1 OR averag
distance between 20

randomly selected pairs is less

than 0.1.

Result
designation:

e Best-so-far individual

0)

1S
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LE GRAND'SUSE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION

* Tried on 4 proteins
* 46-residue crambin
» 26-residue melittin
« 36-residue avian pancreatic polypeptide
Inhibitor
e 106-residue cytochrome b562 (4 helix
bundle)

* Tried on 3 polypeptides
» Polyalanine A9 (Alanine — 9 times)
« AGAGAGAGA (9 amino acid residues)
» {Met}-enkephalin
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LE GRAND'SUSE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION

e Le Grand, Scott and Merz, Kenneth M., Jr.
1993. The application of the genetic
algorithm to the minimization of potential

energy functions.” Journal of Global

Optimization 3(1) 49-66.

 Le Grand, Scott. 1993.The Application of

the Genetic Algorithm to Protein Tertiary

Structure Prediction. PhD Dissertation.
Department of Biochemistry, The
Pennsylvania State University.
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SUN'SUSE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION
USING REDUCED REPRESENTATION

MODEL

e Sun, Shaojian. 1993. Reduced
representation model of protein structure
prediction: Statistical potential and genetic
algorithms. Protein Science. Volume 2. Pages
762-785.

* Reduced representation
* Only backbone atoms
* |deal fixed bond lengths and angles
 Single virtual united-atom as side chain

e Goal is to find the@ (phi) and @ (psi) angles
(2 per amino acid residue)
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SUN'SUSE OF GA FOR PROTEIN
TERTIARY STRUCTURE PREDICTION
USING REDUCED REPRESENTATION

MODEL

» Results in folded versions of
e 26-residue melittin — RMS error of 1.6 A
« 36-residue avian pancreatic polypeptide
iInhibitor (APPI)
e 18-residue apamin (with 2 disulfide bonds)
from bee venom
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SUN'SPROTEIN TERTIARY
STRUCTURE PREDICTION USING
REDUCED REPRESENTATION MODEL -
CONTINUED

e Fithess was a statistical Interatomic

potential function of his own design
 Based on 110 proteins (with less than 50%
identity)
 melittin and avian pancreatic polypeptide
iInhibitor (APPI) were in the 110

* Fitness - 2 components
* Local (NOTE: possible computer savings)
* Non-local

» Apparently floating-point gene values. 2 X
26 = 52 for melittin.  Values are integers
from —180 to +180. Equivalent to 52 x 9 =
468 bits.

* Population sizeM = 90
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GA TABLEAU FOR SUN'SPROTEIN
TERTIARY STRUCTURE PREDICTION
USING REDUCED REPRESENTATION

MODEL

Objective:

Given the primary sequence of
a proten, find the three
dimensional conformation of
the protein in the form of the
dihedral ¢ and { angles using
a reduced representation
model of proten.

Representati
on scheme:

e structure = fixed length
string (for a particular
protein)

 alphabet sizeK = 2 (in binary
equivalent)

e string length L = 468 (in
binary equivalent)

* mapping.

Fitness
cases:

Only one (for a given protein).
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—

Df

Raw fithess. |Statistical fitness function.
Parameters. | Population sizévl = 90.
e Maximum number of
generations to be rurs = ???.
« Special (???7) mutatior
operation at ??? frequency
Termination |??? (Reports convergence ¢
criteria: all 90!1).
Result Best-so-far individual

designation:
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SUN'SPROTEIN TERTIARY
STRUCTURE PREDICTION USING
REDUCED REPRESENTATION MODEL -
CONTINUED

 Reproduction NOT based on fithess.

Creates 2M individuals.

e Crossover NOT based on fitness. Creates
M individuals.

e Special mutation operation (sometimes
changing several values at once). Creates 2M
iIndividuals.

e Selects the best M out of 5M new
iIndividuals.

e On generation 0, initial energy of 90

iIndividual ranges from 1,440.08 to 15,746.34
units (with mean of 2912.00 and standard

deviation of 1,960.75)

e On generation X, mean of the 90 individuals

"converged" to 1,290.50 (with a standard

deviation of 0.31 -— i.e., one part in about
4,000).
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GA'SAND PROTEIN FOLDING WITH
SELF-AVOIDING GRAPHS

« Unger, Ron and Moult, John. Genetic
algorithms for protein folding simulations.

Journal of Molecular Biology 231 (1993): 75—
81.

« Unger, Ron and Moult, John. On the
applicability of genetic algorithms to protein

folding. Proceedings of the Twenty-Sixth

Annual Hawaii International Conference on

Systems Science 1993. In Mudge, Trevor N.,

Milutinovic, Veljko, and Hunter, Lawrence

(editors). Proceedings of the Twenty-Sixth

Annual Hawaii International Conference on

Systems Science 1993. Los Alamitos, CA:

IEEE Computer Society Press. 1993.
Volume |. Pages 715-725.

 Unger, Ron and Moult, John. A genetic
algorithm for 3D protein folding simulations.

Proceedings of the Fifth International

Conference on Genetic Algorithms. Ed.
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Stephanie Forrest. San Mateo, CA:
Morgan Kaufmann Publishers, 1993. 581-
588.
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UNGER AND MOULT'S SELF-AVOIDING
GRAPHS

* Individuals in the population are self-

avoiding point-labeled (2 colors) graphs
embedded in a 2-dimensional checkerboard
lattice

e That is, individual in the population are the

actual structures that the GA operates on

* Phenotype (the individual) = Genotype

e 2 psuedo-amino-acids:

 Black (Hydrophobic)

* White (Other)
 Fitness Is decremented by -1 for each
adjacent BLACK point along backbone that
IS not diagonally adjacent or adjacent along
backbone

* The 2 termini can contribute up to -3

* Ordinary points can contribute up to -2
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 There are 83,779,155 20-long self-avoiding
graphs of the sequence ----------- . Fitness
ranges from O to -9 (best) and there are only

4 9-scoring best conformations out of
83,779,155
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UNGER AND MOULT'S SELF-AVOIDING
GRAPHS

e Mutation operation
 Pick point
« Keep trying random rotations that create
self-avoiding graph as a result

e Crossover
 Pick point
« Keep trying random rotations that create
self-avoiding graph as a result
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UNGER AND MOULT'S SELF-AVOIDING
GRAPHS

* Population sizeM = 200

o |nitialization: All alike (flat = 180 degrees)

o Accept result of mutation with Metropolis
algorithm

» Accept result of crossover with Metropolis
algorithm

e Global minimum of -9 found in all 5 runs
after  8,800,000; 7,400,000; 3,200,000;
470,000; and 292,000 fithess evaluations.
That Is, between 9:1 and 284:1.
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PROTEIN FOLDING WITH
EXTENSIVELY MODIFIED GENETIC
ALGORITHM (PEDERSEN AND MOULT
1997)

Pedersen, Jan T. and Moult, John. 1997. Protein folding
simulations with gentic algorithms and a detailed molecular
description. Journal of Molecular Biology. 269: 240 — 259.

* Dihedral angle library: For each residue
type, a set of observed, Yy, and x angles was
compiled

« Conformations were not generated at
random, but, instead, were drawn from the
®, P, and x dihedral angle library. Angles
were randomized sequentially residue-by-
residue. If can det Walls overlap exceeds 0.5
A, rechoose. Bactrack to previous residue if
necessary. In practice, this is linear (while
worst case Is exponential for worst case)
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PROTEIN FOLDING WITH
EXTENSIVELY MODIFIED GENETIC
ALGORITHM (PEDERSEN AND MOULT
1997)

 |nitial random population for genetic
algorithm (GA) comes from 20,000-step
Monte Carlo (MC) (i.e., simulated annealing
(SA)) run (with Initial random conformation
as starting point for the SA run). A
population of Is created every 100-th point
toward the end of the SA run.

 No mutations in GA.

* 10% elitism. Typical run is 100 generations
and converges in 40 to 60 generations.
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PROTEIN FOLDING WITH
EXTENSIVELY MODIFIED GENETIC
ALGORITHM (PEDERSEN AND MOULT
1997)

o Crossover sites are not chosen with usual
uniform probabillity. Insteasd, choice of sites
IS based on conformational diversity.

« Crossover operation is extensively modified.
For both offspring of normal crossover, 50

[ Y pars are searched for sterically
acceptable outcome (half drawn from the
dihedral angle library and half from a
representation set of 7 residue conformtions).
For each trial, 100 rouns of Monte Carolo
simulation are made (based on small 5 degree
moves Iin angles). The lowest free energy
conformation is accepted using Metropolis
test.
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TERITIARY STRUCTURE PREDICTION

« Schulze-Kremer, Steffen. Genetic
algorithms for protein tertiary structure

prediction. Parallel Genetic Algorithms. Ed.
Joachim Stender. Amsterdam: |IOS Press,
1992. 129-149.

e Schulze-Kremer, Steffen. Genetic
algorithms for protein tertiary structure

prediction. Parallel Problem Solving from
Nature 2. Ed. Reinhard Maenner and
Manderick, Bernard. Amsterdam: North-

Holland, 1992. 391-400.

« Schulze-Kremer, Steffen. Genetic
algorithms for protein tertiary structure
prediction. Machine Learning: European
Conference on Machine Learning, Vienna,
Austria, April 5-7, 1993, Proceedings.Ed.
Pavel B. Brazdil. Berlin: Springer-Verlag,
1993. 262-279.
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SCHULZE-KREMER'STERITIARY
STRUCTURE PREDICTION

e Tried on 46-residue crambin - 1.86 A RMS
 Reduced representation model using the
¢ (phi) and g (psi)angles and 8 additional
anglesy, ..., Xs per each amino acid residue.

« Chromosome for GA consists of floating-
point numbers (i.e., 10 x 46 = 460 floating-
point numbers for crambin) (NOTE: If as
few as 10 bits were assigned to a floating
point number, that's 4,600 bits).

 Initial population was either to all-180-
degrees or used list of 10 most frequent
angles appearing in 129 proteins from PDB.
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SCHULZE-KREMER'STERITIARY
STRUCTURE PREDICTION —
FITNESS MEASURE

o Simplified version of CHARMM potential

energy function
e van der Waals, \@w
e Coulomb electrostatic,d
* bond-length potential,dond (CONSTANT)
* bond-angle potentialgs (CONSTANT)
e torsion-angle potential,i&e
e Improper torsion-angle potential, infgr
(CONSTANT)
 hydrogen bondsi: (EXCLUDED)
« solvent Interaction, & and Enhp
(CONSTANT)
e That is, E = Byaw + Ed + Etor
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SCHULZE-KREMER'STERITIARY
STRUCTURE PREDICTION —
PARAMETERS FOR RUN

* Population sizeM = 10.

e Maximum number of generationss =
1,000.

e Mutation changes an angle by plus or minus
1, 5, or 10 degress

e 20% mutation rate at start of run (with 10-
30-60 weighting among 1, 5, and 10 degree
changes) and 70% at end (with 80-20-0
weighting).

» Crossover 70% rate at start of run (with 90-
10 weighting between uniform and two-point)
and 10% at end of run (with 10-90
weighting).

» Selection 80% at beginning and 20% at end.
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SCHULZE-KREMER'STERITIARY
STRUCTURE PREDICTION

Objective:

Given the primary sequence of
a proten, find the three
dimensional conformation of
the protein in the form of the
¢ (phi) and ¢ (psi) angles and
8 additional angles X1, ..., Xs
per each amino acid residue.

Representati
on scheme:

e structure = fixed length
string
« alphabet of floating-point
genes

e string length L = 460

floating-point numbers for
crambin.

e mapping: There are 1(

angles for each amino aci

residue for a total of 46(

floating-point numbers for
crambin.

—

d

'
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Fitness One.

Cases.

Raw fithess: |CHARMM potential energy
function.

Parameters. | Population sizév = 10.
e Maximum number of
generations to be run G =
1,000.

Termination |G = 1,000 generations hav

criteria: been run.

Result Best-so-far individual

designation:

e
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GENETIC PROGRAMMING

How can computers learn to solve problems
without being explicitly programmed? In
other words, how can computers be made to
do what Is needed to be done, without being
told exactly how todo it?

---Attributed to Arthur Samuel - about 1959
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AUTOMATIC PROGRAMMING

WYWIWYG —"WHAT YOU WANT IS
WHAT YOU GET"

o Starts from a high-level statement of the
problem

* Produces an entity that runs on a computer

* Produces the size and shape of the solution
(l.e., user doesn't prespecify exact number of
primitive steps or exact arrangement of steps

« Can automatically identifies useful groups
of steps (i.e., subroutines) and then reuses
them (sometimes with different instantiations
of parameters)

« Can implement internal memory and data
structures such as single variables, vectors,
arrays, stacks, gueues, lists, and relational
memory
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A AUTOMATIC PROGRAMMING —
CONTINUED

« Can implement iterations and recursions

e Can automatically determine the number of

subroutines, the number of arguments that

they each possess, how the subroutines
hierarchically refer to one another, and

whether to employ internal memory,

iterations, and recursion

e Can automatically organize groups of steps
Into a hierarchy

« Can implement the full range of

programming constructs that human

computer  programmers  find  useful,

Including macros, libraries, typing, pointers,

conditional operations, logical functions,

Integer functions, floating-point functions,

complex-valued functions, multiple inputs,

multiple outputs, and machine code

Instructions
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AUTOMATIC PROGRAMMING —
CONTINUED

 Unmistakably distinguishes between what
the user must provide and what the system
delivers, is problem-independent, and
operates in a well-defined way that does not
rely on discretionary human intervention or
any hidden steps

e Can produces satisfactory solutions for a
wide variety of problems from many
different fields

o Scales well to larger versions of the same
problem

e Can produce results that are competitive
with human-produced results
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GENETIC PROGRAMMING (GP)

"Genetic programming IS automatic
programming. For the first time since the
Idea of automatic programming was first
discussed in the late 40's and early 50’s, we
have a set of non-trivial, non-tailored,
computer-generated programs that satisfy
Samuel’s exhortation: Tel the computer
what to do, not how todoit.” "

— John Holland, University of Michigan, 1997



/1

A ONE-INPUT, ONE-OUTPUT
PROGRAM IN C

Int foo (int tine)
{
Int tenpl, tenp2;
1f (tinme > 10)
tenpl = 3;
el se
templ = 4;
tenp2 = tenpl + 1 + 2;
return (tenp2),;
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RESULTS OF THE PROGRAM IN C

Independent | Dependent
variable variable
(input) (output)

TIME

0

OO INOOOTAWN|F

=
o

=
=

=
N

=
w

=
w

NNNNNO OO, OO OO OO

=
o1
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PROGRAM IN LISP = INDIVIDUAL
PROGRAM =

PARSE TREE = PROGRAM TREE =
DATA =LIST

(+ 12 (IF (> TIME 10) 3 4))

« ATOMS =1, 2, 10, 3, 4, TIME

« FUNCTIONS =+, IF, >
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PROGRAM IN LISP = INDIVIDUAL
PROGRAM =

PARSE TREE = PROGRAM TREE
DATA =LIST

(+ 12 (IF (> TIME 10) 3 4))
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FOUR RANDOM COMPUTER
PROGRAMSFOR THE INITIAL
RANDOM POPULATION OF A RUN
(GENERATION 0)

e Terminal setT ={X,Y, Z, ~}
e Function setF ={+, —, * , B IFLTE }

« The 4 programs are of different size and
shape

()
(+) (+)
@ @ €235 (D

Y +0.3147Z + X — 0.789 0.2347 Y




’f

(+)
02D (2

0.234Z

(+)
ONO
EDEO

Y +0.314Z
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EXAMPLE OF THE CREATION OF A
RANDOM PROGRAM TREE

 Terminal setT ={A, B, C}
e Function setF = {+,—,* , B IFLTE }

« Randomly choose a function or terminal
from the combined set §, —, *, % IFLTE , A,
B, C}. Suppose it the two-argument addition

(+) function.

« Randomly choose another function or
terminal from {+, —, *, % IFLTE , A, B, C},
say the two-argument multiplication (*)
function.
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EXAMPLE OF THE CREATION OF A
RANDOM PROGRAM TREE —
CONTINUED

e Continue In this manner. Suppose that the

next 3 random choices from ¢, —, *, %
IFLTE , A, B, C}, say A, B, and C,
()
() ©
ONO

e The growth process ends when all paths end
In a terminal {A, B, C}.

* Force a choice from the terminal set (rather
than the combined set) if the preestablished
maximum size (measured in terms of number
of functions and terminals or Iin terms of
depth) Is being exceeded.
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CROSSOVER (SEXUAL
RECOMBINATION) OPERATION FOR
COMPUTER PROGRAMS (TREES)

o Select two parents probabilistically based
on fitness

« Randomly pick a number from 1 to
NUVBER- OF- PO NTS — independently for
each of the two parental programs

e |dentify the two subtrees rooted at the two
picked points
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CROSSOVER (SEXUAL
RECOMBINATION) OPERATION FOR
COMPUTER PROGRAMS (TREES)

0.234Z + X — 0.789 ZY(Y +0.3142)

Parent 1:
(+ (* 0.234 2) (- X 0.789))

Parent 2:
(* (* ZY) (+ Y (*¥ 0.314 2)))
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CROSSOVER FRAGMENTS(THE TWO
SUBTREESROOTED AT THE TWO
PICKED POINTYS)

(+) (+)
02D (2 ONO
EDEO

0.2347 Y +0.314Z

Crossover Fragment 1.
(+ (* 0.234 7) (- X 0.789))

Crossover Fragment 2:
(* (* Z2Y) (+Y (*¥ 0.314 2)))
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TWO REMAINDERS

e @ O
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TWO OFFSPRING
THE CROSSOVER OPERATION
PRODUCES TWO OFFSPRING

()
(+) (+)
@ @ €235 (D

Y +0.3147Z + X — 0.789 0.2347 Y

Offspring 1.
(+ (+ Y (* 0.314 2))
(- X 0.789))
Offspring 2

(* (* Z2Y) (* 0.234 2))
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THE CROSSOVER OPERATION
PRODUCES SYNTACTICALLY VALID,
EXECUTABLE COMPUTER PROGRAMS

|F SET OF FUNCTIONSAND
TERMINALSISCLOSED (I.E., ANY
FUNCTION CAN ACCEPT THE OUTPUT
PRODUCED BY ANY OTHER FUNCTION
OF TERMINAL

* Protected division % takes two arguments
and returns one when division by 0 is
attempted (including O divided by 0), and,
otherwise, returns the normal quotient
 Protected multiplication, addition, and
subtraction
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MUTATION OPERATION FOR
PROGRAM TREES

» Select one parent probabilistically based on
fithness
e Pick point from 1 to NUMBER- OF- PO NTS
(say the terminal D2 from among the 5 points
here)
(oR)
o)
(00) (o0
 Delete the entire subtree rooted at the

picked point (i.e., delete thd2)
« Grow new subtree at the mutation point in
the same way as used to generate trees for
Initial random population (generation 0)

(oR)
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FIVE MAJOR PREPARATORY STEPS
FOR GP

« determining the set of terminals
» determining the set of functions
» determining the fithess measure

« determining the parameters
e population size
* number of generations
e determining the method for designating a

result and the criterion for terminating a run
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REGRESSION PROBLEM OF UNKNOWN

FUNCTION
Independent variable | Dependent Variable Y

X
-1.0 0.0
-0.9 -0.1629
-0.8 -0.2624
-0.7 -0.3129
-0.6 -0.3264
-0.5 -0.3125
-0.4 -0.2784
-0.3 -0.2289
-0.2 -0.1664
-0.1 -0.0909

0 0.0
0.1 0.1111
0.2 0.2496
0.3 0.4251
04 0.6496
0.5 0.9375
0.6 1.3056
0.7 1.7731
0.8 2.3616
0.9 3.0951
1.0 4.0000
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REGRESSION PROBLEM OF UNKNOWN
FUNCTION

Also Called
« System Identification problem
 the "Black Box" problem
e Model building
« Empirical discovery
* Non-parametric regression
e Datamining
» Forecasting / Time-series prediction
* We seek
 Functional form of a good fit
 Numerical parameters
e Size and shape of the mathematical
expression
 Error is the fithess measure
e Sum, over fitness cases, of absolute error
e Sum, over fithess cases, of squared error
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TABLEAU FOR SYMBOLIC
REGRESSION OF UNKNOWN FUNCTION

Objective: |Find a function of one
iIndependent  variable, In
symbolic form, that fits a
given sample of 20 (x;, y;) data
points

Terminal x (the independent variable).

Set.

Function set: |+, -, *, % SIN,
CGS, EXP, RLOG

Fitness The given sample of 21 data

Cases: points (X, y;) wherethe x, come
from the interval [-1,+1].

Raw fitness: | The sum, taken over the 2

fitness cases, of the absolu
value of difference betwee
value of the dependen
variable produced by the
iIndividual program and the
target value vy of the

te

dependent variable.




o1

Standardize
d fithess:

Equalsraw fithess.

Hits:

Number of fithess cases (0 |—
21) for which the value of the
dependent variable producec
by the individual program
comes within 0.01 of the target
value yi of the dependen
variable.

| =4

| -

—r

Wrapper:

None.

Parameters:

Population sizeM = 500.
Maximum number of
generations to be runi = 51.

sSuccess
Predicate:

An individual program scores
21 hits.
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GENERATION 0 — SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN
FUNCTION

WORST-OF-GENERATION INDIVIDUAL
IN GENERATION O WITH RAW FITNESS
OF 10ss

(EXP (- (%X (- X (SIN X))
(RLOG (RLOG (* X X)))))

Equivalent to
ex/(X-sin x) - log log x*x
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GENERATION 0 — SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN
FUNCTION

MEDIAN INDIVIDUAL IN GENERATION
0 WITH RAW FITNESS OF 23.67

(COS (COS (+ (- (* X X) (%X
X)) X))

Equivalent to
Cos [Cos (x2 + x —1)]

4

3- X4+ X + X2+ X

T~

27 Cos [Cos (X +x -1)]

1—
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GENERATION 0 — SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN
FUNCTION

SECOND-BEST INDIVIDUAL IN
GENERATION 0 WITH RAW FITNESS OF
6.05

X + [RLog 2x+xX][Sin 2x+Sin x2]
-

3 X*+ X+ X2+ X

27 x+[RLog2x + X] * [Sin 2x + Sin x*]
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GENERATION 0 — SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN
FUNCTION

BEST-OF-GENERATION INDIVIDUAL IN

GENERATION 0 WITH RAW FITNESS OF
4.47

(%X X) (%X X))
RLOG (EXP (EXP X)))))

Equivalent to

Xex
A
. X+ X3+ X2+ X
31 \/
] xeX
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GENERATION 2 — SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN
FUNCTION

BEST-OF-GENERATION INDIVIDUAL IN
GENERATION 2 WITH RAW FITNESS OF
2.57

(* (+ X (* X(* X (%(%X

(+ (*
X) (+ XX)))))
(+ X (* X X))) X) X

Equivalent to...

4 3 2
X +15x +05x +x
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GENERATION 34 — SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN FUNCTION

BEST-OF-RUN INDIVIDUAL IN
GENERATION 34 WITH RAW FITNESS
OF 0.00 (100%-CORRECT)

(+ X (" (+ X (* (¥ (+ X (- (CO5
(- X X)) (- X X)) X) X)) X))
Equivalent to

4 3 2
X +X +X +X
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GENERATION 34 — SIMPLE SYMBOLIC
REGRESSION OF UNKNOWN FUNCTION
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OBSERVATIONS

e GP works on this problem
« The answer is algebraically correct (hence
no further cross validation is needed)
 It's not how a human programmer would
have written it

e Not parsimonious

e CosX-X
« The extraneous functions —SI N, EXP,
RLOG, and (effectively)RCCS are all absent in
the best individual of generation 34
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STRUCTURE ARISESFROM FITNESS

Generation 0:
Population of programs
composed of
.- % .0

X, B
Fitness measure A Fitness measure B
z |y‘—(x|5—2xl3+x‘)| Z |y|—(x‘5—2x|"+ X|2)|
i i

| X2 - 2x% + x; | | xS - 2x+ x? |
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INTER-TWINED SPIRALS
CLASSIFICATION PROBLEM
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GP TABLEAU — INTERTWINED SPIRALS

Objective: |Find a program to classify a
given point in the x-y plane to
the red or blue spiral.

Terminal X, Y, «, where ~ is the

set: ephemeral random floating-
point constant ranging
between —1.000 and +1.000.

Function set:|+, -, *, % |FLTE
SIN, CCs.

Fitness 194 points in thex-y plane.

cases:

Raw fitness: | The number of correctly
classified points (0 — 194)

Standardize |[The maximum raw fithess

d fitness: (,e., 194) minus the ray
fitness.

Hits: Equals raw fithess.

Wrapper: Maps any individual program

returning a positive value to
class +1 (red) and maps a

-

vV

other values to class —1 (blue).
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Parameterss M = 10,000 (with over-
selection). G =51.

Success An individual program scores

predicate: 194 hits.
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INTER-TWINED SPIRALS
FITNESS CURVES

Spiral — Best of Generation, Worst and Average
200 -

Worst of Gen.
\\\_\_

Average
9 18 27 36

100

| ¢4

Standardized Fitness

e —
T

o

Best of Gen.
Generation

o
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INTER-TWINED SPIRALS
HITSHISTOGRAMSFOR
GENERATIONSO, 7, 12, 27, AND 36

Frequency Frequency Frequency Frequency

Frequency

7500 T

Spiral — Generation O

5000

2500

0

7500 T

0 100 Hits 190
Spiral — Generation 7

5000

2500

O_

7500 T

I— |

0 100 Hits 190
Spiral — Generation 12

5000

2500

O_

7500 T

I—— |

0 100 Hits 190
Spiral — Generation 27

5000

2500

0

7500 T

0 100 Hits 190
Spiral — Generation 36

5000

2500

0
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10 FITNESS-CASES SHOWING THE
VALUE OF THE DEPENDENT
VARIABLE, D, ASSOCIATED WITH THE
VALUESOF THE SIX INDEPENDENT
VARIABLES, L,, W,, H,, L., W,, H,

Fitne |L. |W,|H,|L. (W, H. D

54

600

312

111

NI

—-18

-171

363

N O | b

10 -24

OONHCHOO-POOB\IOO
H@N@QQOO@@B«&
(0O [Olr N OA IO N

2
10
8
1
I
9
1
3
2
7

oo o|~|o|@ ok |w]|o

[N
o

0
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SOLUTION USING GENETIC

PROGRAMMING WITHOUT

AUTOMATICALLY DEFINED
FUNCTIONS (ADF’S)

(- (* (* W LO) HO)
(* (* W L1) H1))
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DIFFERENCE IN VOLUME OF TWO
BOXES

(- (* (* W LO) HO)
(* (* W L1) H1))

D = WO*LO*HO — W1*L1*H1

HO H1
LO / L

wo wi
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AUTOMATICALLY DEFINED
FUNCTIONS (SUBROUTINES-
PROCEDURES - SUBFUNCTIONS -
DEFUN'’S)

( progn

(defun vol ume(arg0 argl arg2)
(val ues

(* arg0 (* argl arg2))))

(val ues
(- (volune LO W HO)
(volume L1 W H1))))
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AUTOMATICALLY DEFINED
FUNCTIONS

TOP-DOWN VIEW OF THREE STEP
HEIRARCHICAL PROBLEM-SOLVING

PROCESS
Decompose Solve Solve original
subproblems problem

Oniai al/' Subproblenr—» Solution to subprobeml\‘ SImon

rigin ution to

probl el original probl
H\ Subproblen2—{ Solution to subprobM

Decompose a problem into subproblems

e Solve the subproblems

 Assemble the solutions of the subproblems
Into a solution for the overall problem
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AUTOMATICALLY DEFINED
FUNCTIONS

BOTTOM-UP VIEW OF THREE STEP
HEIRARCHICAL PROBLEM-SOLVING
PROCESS

Identify Change
regularities I epresentation Solve

Origina : ; New
representaten/' | First recoding rHe\‘ representatijon Solution t

of the of the ’ problem

problem \| Second recodingM problem
o |dentify regularities

« Change the representation

» Solve the overall problem
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AN OVERALL COMPUTER PROGRAM
CONSISTING OF ONE FUNCTION-
DEFINING BRANCH AND ONE RESULT-
PRODUCING BRANCH
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100%-CORRECT PROGRAM FOR THE
TWO-BOXES PROBLEM with ADFS

( progn
(defun volume (arg0 argl arg2)
(val ues

(* arg0 (* argl arg2))))

(values (- (volune LO W) HO)
(volume L1 W H1))))

(ARGO ARG1 ARG?)
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8 MAIN POINTS — GENETIC
PROGRAMMING |l BOOK

o ADFs work.

 ADFs do not solve problems in the style of
human programmers.

« ADFs reduce the computational effort
required to solve a problem.

 ADFs usually improve the parsimony of the
solutions to a problem.

o As the size of a problem is scaled up, the
size of solutions increases more slowly with
ADFs than without them.

» As the size of a problem is scaled up, the
computational effort required to solve a
problem increases more slowly with ADFs
than without them.

 The advantages In terms of computational
effort and parsimony conferred by ADFs
Increase as the size of the problem is scaled

up.
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8 MAIN POINTS — GENETIC
PROGRAMMING |l BOOK

« Genetic programming can evolve the
architecture of the solution to a problem at
the same time that it solves a problem.
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FOUR APPROACHESTO MEMORY AND

STATE
(A) (B) (C) (D)
1 @
= ©6 0
o @
" @ Y90
b @ @ @

« (A) Settable variables (Genetic
Programming) using terminals M) and ML
and functions( SETM) X) and ( SETML Y)

e (B) Indexed memory (Teller) using( READ
K) and( WRI TE X K)

e (C) Memory isomorphic to world (Andre)

« (D) Point-labeled, line-labeled directed
graph for relational memory (Brave)
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AUTOMATICALLY DEFINED
ITERATION (ADI)

» Uses an iteration-performing branchl PBO
e |teration is over a preestablished sequence,
vector, list, two-dimensional matrix, etc.
 protein or DNA seguence
 time sequence
 two-dimensional arrangement of pixels

. Overall program consisting of
automatically defined function(s), iteration-
performing branch(es), and a result-
producing branch.

looping-over-
known-finite-set

Body of ADFO Body of Iteration Body of Result-
Function Definitio Performing Branch ) { Producing Branch
IPBO RPBO
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AUTOMATICALLY DEFINED
ITERATION (ADI)
Corog> 200
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RESTRICTED ITERATION

1 (loop initially (progn (setf M) 0.0)
(setf.ML 0.0)
(setf M2 0.0)
(setf M3 0.0))
2 for residue-index fromoO
bel ow (I ength protein-segnent)
3 for residue =
(aref protein-segnment
resi due-i ndex)
4 do (eval | PBO)
5 finally (return
(wrapper (eval RPB))))
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

THE 446 RESIDUES OF D3DR_MOUSE

MAPLSQ SSH | NSTCGAENS TGVNRARPHA Y[YALSYCALI LAl | FGNGV
CAAVIJRERAL QTTTNYLWS LAVADLLVAT LVMPWA/YLE VTGGVWWNFSR
| CCOVEVTLD VMMVCTASI LN LCAI' S| DRYT AWMPVHYQH GTGQSSCRRV
[ALM TAVW/L AFAVSCPLLF GFNTTGDPSI CSI SNPDEVI_ YSSVWWSFYA

FGVTVLVYAR | YWLRQRRR KRI LTRONSQ Cl SI RPGFPQ QSSCLRLHPI
RQFSI RARFL SDATGQVEHI EDKPYPQKCQ DPLLSHLQPL SPGQTHGELK

RYYSI CQDTA LRHPNFEGGG GVBQVERTRN SLSPTMAPKL SLEVRKLSNG
RLSTSLKLGP LQPRGVPLRE KKATOWVIV LGAFI VOW.P FFLTHVLNTH
CQACHVSPEL YRATTW.GYV NSALNPVI YT TFN EFRKAF LKI LSC

50
100
150
200
250
300
350
400
446
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KYTE-DOOLITTLE HYDROPHOBICITY
VALUESFOR THE 20 AMINO ACID

RESIDUES

Category Kyte-Doolittle| One-letter Amino acid Three-letter

value code for code

amino acid

Hydrophobic |+4.5 | | soleucine lle
Hydrophobic |+4.2 \ Valine Val
Hydrophobic |+3.8 L Leucine Leu
Hydrophobic |+2.8 F Phenylalanine |Phe
Hydrophobic |+2.5 C Cysteine Cys
Hydrophobic |+1.9 M Methionine Met
Hydrophobic |+1.8 A Alanine Ala
Neutral -0.4 G Glycine Gly
Neutral -0.7 T Threonine Thr
Neutral -0.8 S Serine Ser
Neutral -0.9 wW Tryptophan Trp
Neutral -1.3 Y Tyrosine Tyr
Neutral -1.6 P Proline Pro
Hydrophilic [-3.2 H Histidine His
Hydrophilic |-3.5 Q Glutamine GIn
Hydrophilic |-3.5 N Asparagine Asn
Hydrophilic |-3.5 E Glutamic Acid | Glu
Hydrophilic |[-3.5 D Aspartic Acid | Asp
Hydrophilic  |-3.9 K Lysine Lys
Hydrophilic |-4.0 R Arginine Arg
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SOME OF THE 246 IN-SAMPLE FITNESS

CASES

Protein Length |Number |Length |Location |[Length |Chosen

of  TMjof chosen|of theof non-tTM

domains |TM chosen |chosen |area

domain |TM non-TM
domain |segment
3BH1 MOUSE |372 2 19 287-305| 19 330-348
3BH3_MOUSE |372 2 19 287-30% 19 330-348
5HT3_MOUSE |487 4 20 465-484 20 385-404
5HTE_MOUSE |366 7 25 24-48 | 25 235-25P9
A2AB_MOUSE (455 7 24 411-434 24 277-300
A4 _MOUSE 770 1 24 700-723 24 736-759
ACE_MOUSE 1312 1 17 1265- (17 625-641
1281

ACHB_MOUSE 501 4 19 277-295 22 391-412
ACHE_MOUSE 493 4 19 273-291 24 381-404
ACM1 _MOUSE 460 7 23 25-47 | 23 277-299
AG2S MOUSE |359 7 21 276-296 21 168-188
ANPA_MOUSE (1057 1 21 470-490 21 225-245
ATNC_MOUSE 290 1 28 40-67 | 28 7-34
AVRB_MOUSE |536 1 26 135-160 26 55-80
B2AR_MOUSE (418 7 23 107-129 24 363-386
B3AT _MOUSE (929 10 24 424-447 18 829-846
BASI MOUSE [273 1 24 210-233 24 242-265
CADE_MOUSE |884 1 24 710-733 24 798-821
CADP_MOUSE |822 1 23 648-670 23 736-758
CD11 _MOUSE |336 1 29 298-326 29 135-163
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4 OUTCOMES FOR THE
TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM

Nfc = th + Ntn + pr + an

CORRELATION

o 265k F)
Jz_j(sj IS (-F)

th Ntn - an pr

C=
'J(Ntn + an)(Ntn + prXth + an)(th + pr)

STANDARDIZED FITNESS

1-C
—




124

OVERALL PROGRAM FOR THE
TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM
CONSISTING OF AN AUTOMATICALLY
DEFINED FUNCTION, ADFO, AN
I TERATION-PERFORMING BRANCH,
| PBO, AND A RESUL T-PRODUCING
BRANCH, RPB

looping-over-
known-finite-set

Body of ADFO Body of Iteration Body of Result-
Function Definitio Performing Branch Producing Branch
IPBO RPB
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TABLEAU WITH ADFS

Objective:

Find a program to classify
whether or not a segment
of a protein sequence is a
transmembrane domain.

Architecture of
the overall
program  with
ADFs:

One result-producing
branch, one iteration-
performing branch, and
three Zer o-ar gument
function-defining

branches, with no ADF
hierarchically referring to
any other ADF.

Parameters:

Branch typing for the
three ADFs.

Terminal set for
thel PB:

LEN, MO, ML, M2, M3, and
the random constants «— ..

realse=
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Function set for
thel PB:

ADFO, ADF1, ADF2,
SETM), SETML, SETM?,
SETMB, | FLTE, +, -, *,
and %

Terminal set for

LEN, M), ML, M2, M3, and

the result-therandom constants « ..
producing e

branch:

Function set for|l FLTE, +,-,*,and %

the result-

producing

branch:

Terminal set for | Twenty Zer o-ar gument
the function-|functions

defining (A?),(C?), ...,(Y?).

branches ADFO,
ADF1, and
ADF2:
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Function set for [Numerically valued two-
the  function-|argument logical
defining digunction function ORN.
branches ADFO,

ADF1, and

ADF2:
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GENERATION OOF RUN 1 FOR THE
SUBSET-CREATING VERSION OF THE
TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
ADFS

 in-sample correlation of 0.48

 a standardized fithess of 0.26

* 99 true positives

» 83 true negatives

» 40 false positives

» 24 false negatives

 out-of-sample correlation of 0.43

(progn (defun ADFO ()

(values (ORN (ORN (ORN (17?) (M?)) (ORN (V?) (C?)))
(ORN (ORN (W) (L?)) (ORN (Y?) (A?))))))

(defun ADF1 ()

(values (ORN (ORN (ORN (L?) (L?)) (ORN (R?) (K?)))
(ORN (ORN (1?7) (V?)) (ORN (R?) (Q?))))))
(defun ADF2 ()

(values (ORN (ORN (ORN (R?) (S?)) (ORN (F?) (Q?)))
(ORN (ORN (P?) (F?)) (ORN (Y?) (C?))))))

(progn (| oopi ng-over-residues
(SETMD (SETM3 (SETMD ( ADFO))))

(val ues (I FLTE (+ (- MB MD) (+ ML MB)) (% (I FLTE MD
M3 6.212 ML) (IFLTE M M2 ML L)) (* (%M M) (* MB
0.419)) (+ (%L M) (- M M)))))))
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GENERATION 50OF RUN 1 FOR THE
SUBSET-CREATING VERSION OF THE
TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
ADFS

 in-sample correlation of 0.764
» out-of-sample correlation of 0.784

(progn (defun ADFO ()

(values (ORN (ORN (1?) (A?)) (ORN (ORN
(L?) (G?)) (N?)))))

(defun ADF1 ()

(values (ORN (ORN (ORN (ORN (G?) (D?))
(ORN (E?) (V?))) (ORN (ORN (R?) (E?))
(ORN (T?) (P?)))) (ORN (N?) (5?)))))

(defun ADF2 ()

(values (ORN (ORN (ORN (L?) (R?)) (ORN
(V?) (P?))) (ORN (G?) (L?)))))

(progn (1 oopi ng-over-residues
(SETML (- (+ ML (ADFO)) (ADF1))))

(values (* (% (+ (%-9.997 M3) ML) 6.602)
(+ 6.738 (% (- M3 L) (+ M8 M2)))))))
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GENERATION 8 OF RUN 1 FOR THE
SUBSET-CREATING VERSION OF THE
TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
ADFS

 in-sample correlation of 0.92
 out-of-sample correlation of 0.89

(progn (defun ADFO ()

(values (ORN (ORN (ORN (1'?) (M?)) (ORN
(V?) (C?))) (ORN (ORN (L?) (G?)) (N?)))))

(defun ADF1 ()

(values (ORN (ORN (ORN (ORN (G?) (D?))
(ORN (E?) (V?))) (ORN (ORN (R?) (E?))
(ORN (T?) (P?)))) (ORN (N?) (5?)))))

(defun ADF2 ()

(values (ORN (ORN (ORN (L?) (R?)) (ORN
(V?) (P?))) (ORN (G?) (L?)))))
(progn (Il oopi ng-over-residues

(SETML (- (+ ML (ADFO)) (ADF1))))

(values (* (+ ML MB) (+ 6.738 (% (- MB L)
(+ M8 M)))))))
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GENERATION 11 OF RUN 1 FOR THE
SUBSET-CREATING VERSION OF THE
TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
ADFS
 in-sample correlation of 0.94
o standardized fitness of 0.03
 out-of-sample correlation of 0.96
e 122 true positived] ¢ 123 true negatives
o 2 false positived] ¢ 3 false negatives

» out-of-sample error rate 2.0%
(progn (defun ADFO ()

(values (ORN (ORN (ORN (I
(ORN (ORN (L?) (G?)) (N?)

(defun ADF1 ()
(val ues (ORN (ORN (ORN (ORN

?) (M) (ORN (V?) (C?)))
))))

( (D: :
(V2))) (ORN (ORN (R?) (E?)) (CRN (ORN (ORN (ORN (G?)
(D?)) (ORN (E?) (V?))) (ORN (ORN (R?) (K?)) (ORN (T?)
(P?)))) (ORN (N?) (S?))))) (ORN (N?) (S?)))))

(defun ADF2 ()

(val ues (ORN (ORN (ORN (L?) (Y?)) (ORN (V?) (P?)))
(ORN (G?) (L?)))))

(progn (| oopi ng-over-residues
(SETML (- (+ ML (ADFO)) (ADF1))))

(values (* (+ ML MB) (+ 6.738 (% (- MB L) (+ MB
M2)))))))
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COMPARISON OF VALUES OF | N-
SAMPLE AND OUT-OF-SAMPLE
CORRELATION FOR RUN 1FOR THE
SUBSET-CREATING VERSION OF THE
TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
ADFS

1.07

Correlation
o
(]

— InSample
~*  QOut of Sample

0.8 1
13 . 18
Generation
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GENERATION 20 OF RUN 3FOR THE
SUBSET-CREATING VERSION OF THE
TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
ADFS

 in-sample correlation of 0.976
 out-of-sample correlation of 0.968
 out-of-sample error rate 1.6%

(progn (defun ADFO ()

(values (ORN (ORN (ORN (1?) (H?)) (ORN (P?) (G?))
(ORN (ORN (ORN (Y?) (N?)) (ORN (T?) (Q?))) (ORN (A?)
(H?))))))

(defun ADF1 ()

(values (ORN (ORN (ORN (A?) (1?)) (ORN (L?) (Wr)))
(ORN (ORN (T?) (L?)) (ORN (T?) (WP))))))

(defun ADF2 ()

(values (ORN (ORN (ORN (ORN (ORN (D?) (E?)) (ORN (ORN
(ORN (D?) (E?)) (ORN (ORN (T?) (WP)) (ORN (Q?)
(D?)))) (ORN (K?) (P?)))) (ORN (K?) (P?))) (ORN (T?)
(W2))) (ORN (ORN (E?) (A?)) (ORN (N?) (R?))))))

(progn (I oop-over-residues
(SETMD (+ (- (ADF1) (ADF2)) (SETMB MD))))

(val ues (% (% M3 MD) (% (% (% (- L -0.53) (* M MD))
I(V-ID-)S/(;SA)I\/B MD) (% (+ MD MB) (% ML M2))) MR)) (% MB
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBELM WITH
I TERATION CREATION OPERATION

PREPARATORY STEPS

INITIAL FUNCTIONSAND TERMINALS
Tinia = {<, MD, ML, M2, M3, M4, Nb, LEN,
(A?),(C?), ....,(Y?)}

Finiia = {+, -, *, % | FGTZ, ORN, SETMD,
SETML, SETM2, SETM3, SETM4, SETNb}

POTENTIAL FUNCTIONSAND
TERMINALS
Tpotential = {l PBO, | PBl, | PB2, ARQD,
ARGL, ARG, ARG3}
The set of potential additional functions,
Fpotential, for this problem consists of
Fpotential = {ADFO, ADF1, ADF2, ADF3}



135
PARAMETERS

* Populaion sizeM = 64,000

« The percentage of operations on each
generation after generation 6:

» 85% crossovers

* 10% reproductions

* 0% mutations

» 1% restricted iteration creations
* 1% branch duplications

* 1% argument duplications

* 0.5% branch deletions

* 0.5% argument deletions

* 1% branch creations

* 0% argument creations
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PARAMETERS

« The percentage of operations on each
generation after generation 6:

* /0% crossovers

* 10% reproductions

* 0% mutations

* 6% restricted iteration creations
» 2% branch duplications

» 2% argument duplications

» 2% branch deletions

« 2% argument deletions

* 6% branch creations

* 0% argument creations
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

THE MYOPIC PERFORMANCE OF THE
BEST OF GENERATION 0
(CORRELATION OF 0.3108)

(setn?2 (* (setnb (setnD (orn
LEN MD))) (* (* (setnmd LEN)
(setmd (M?))) (% (setnml (WP))
(setmd (V?))))))

A MYOPIC ITERATION-PERFORMING
BRANCH FROM GENERATION 1
(CORRELATION OF 0.4702)
* classification of the entire protein segment
IS myopically done on the basis of just the last
residue from the protein segment
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AN ITERATION-PERFORMING BRANCH
THAT GLOBALLY INTEGRATES
INFORMATION

» Result-producing branch,RPB, is
(orn (I1PBO) (L7?))

e [teration-performing branch, | PBO, is
(% (setnB (orn (K?) M3)) (E?))
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

AN ITERATION-PERFORMING BRANCH
THAT COMPUTES A CONVENTIONAL
RUNNING SUM

 Result-producing branch of first pace-

setting program from generation 2

(correlation of 0.7224) is just( | PBO)

e [teration-performing branch, | PBO, is
(setnB (+ (* (H?) (E?)) (+ (V?)
M3)))

 +1 In contributed by each hydrophobicV

residue (+4.2 on the Kyte-Dolittle scale), +1 is

contributed by each residue that is neithelE

(—3.5 on the Kyte-Dolittle scale) noH (—3.2

on the Kyte-Dolittle scale), and -1 is

contributed by eitheranE or aH
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

EMERGENCE OF AUTOMATICALLY
DEFINED FUNCTIONS

 Pace-setting program from generation 6
contains both a one-argument automatically
defined function as well as an iteration-
performing branch

Emergence of Multiple Iteration-Performing

Branches

 First pace-setting program from generation
8 has multiple iteration-performing

branches. One of these iteration-performing
branches globally integrates information
over the entire protein segment.
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

EMERGENCE OF COOPERATIVITY
AMONG ITERATION-PERFORMING
BRANCHES

o First iteration-performing branch, | PBO, of
second pace-setting program from generation
11is
(setnB (+ (* (H?) (E?)) (+ (orn
(setn2 MD) (set2 (WP))) MB)))
e | PBO, computes a running sum,M3. An
Increment of +1 is contributed by W
(tryptophan); +1 Is contributed by each
residue that is neitherE nor H; and -1 is
contributed by either anE or a H (histidine).
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

EMERGENCE OF COOPERATIVITY
AMONG ITERATION-PERFORMING
BRANCHES

e Second iteration-performing branch,| PB1,
makes an additional contribution toM3 based
onH, E, andV (valine) as follows:
(setn8 (+ (* (H?) (E?)) (+

(V?) MB)))
» Result-producing branch is simply( | PB1) .
Its value Is the running sum to which +1 is
contributed by eachV; +1 is contributed by
each W; +2 is contributed by each residue
that is neither E nor H; and -2 is contributed
by either anE or aH.
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

EMERGENCE OF HIERARCHY AMONG
AUTOMATICALLY DEFINED
FUNCTIONS

* A pace-setting program from generation 24
has two automatically defined functions (a
one-argument ADF1 and a zero-argument

ADF3) such that ADF3 refers to ADF1 (and
alsoto | PB1).
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EMERGENCE OF MULTIPLE
AUTOMATICALLY DEFINED
FUNCTIONSAND MULTIPLE

I TERATION-PERFORMING BRANCHES

 The pace-setting program from generation
26 has three one-argument automatically
defined functions as well as two iteration-
performing branches.
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

BEST-OF-RUN PROGRAM FROM
GENERATION 42

» Best-of-generation program scores 122 true
positives, 122 true negatives, 1 false positive,
and 1 false negative and has an in-sample
correlation of 0.9938. It has an out-of-sample
error rate of 1.6%.

« This program has two one-argument
automatically defined functions ADFO and
ADF1) and two Iteration-performing
branches (PBO and [|PBl) that
cooperatively integrate global information.

* The result-producing branch is ( | PB1)
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

BEST-OF-RUN PROGRAM FROM
GENERATION 42

* ADFO Is

(adfl (+ (setnD (E?))(setmd
(Q?))))

Since ADF1 merely returns its one argument,
ADFO returns O if the current residue ISE or

Q (glutamine) and otherwise returns -2 (as
well as side-effecting the settable variables
MD and M4).
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

BEST-OF-RUN PROGRAM FROM
GENERATION 42 — CONTINUED

e First iteration-performing branch, | PBO:

(setml (- (— (setml (setml (— (setml M1)
(setm3 (setm3 (% (— (1?) (R?)) (adfO
(H?))))))) (setm3 (setm3 (% (- (+ (V?)
M3) (setm2 (+ (— (D?) (+ (V?) (setm3 (+
(orn (Y?) (* (E?) (setm5 (orn (P?)
(D?)))))(+ (setm5 (orn MO (L?))) M3)))))
(setm3 (R?))))) (adfO (% (setml (— (—
(setml (setml (— (setml M1) (setm3 (setm3
(% (= (1?) (R?)) (adf0 (H7?)))))))) (setm3
(setm3 (% (— (+ (V?) M3) (setm2 (+ (— (*
(setm5 (orn (P?) (R?))) (setm5 (orn (P?)
(D?)))) (L?)) (setm3 (orn (Q7?) (% M5
(V?))))))) (setm5 (orn MO (L?)))))))
(setm3 (setm3 (% (— (F?) (R?))(adf0
(H?)))))) (E?))))))) (setm3 (setm3 (% (-
(F?) (R?))(adf0 (H?)))))))
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

BEST-OF-RUN PROGRAM FROM
GENERATION 42 — CONTINUED

« Second iteration-performing branch,
| PB1.:

(setml (- (setml ML) (setm3 (setm3 (% (—
(1?) (adfl (* (setmO (setml (orn (orn

(P?) (R?)) (- (setml ML) (setm3 (setm3
(ifgtz (setm4 (— (Y?) (R?))) (setml (Y?))

| PB0))))))) (setmO (* (setmO (orn (K?)

MD)) (setml (orn (setm4 (setml (setm4

(P?)))) (Q?))))))) (adi0 (H?)))))))

e Result-producing branch returns the value

returned by the second iteration-performing

branch, | PB1.

o Automatically defined function, ADFO:
(adfl (+ (setnD (E?))(setmd
(Q?))))

 ADF1 merely returns its one argument.
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TRANSMEMBRANE SEGMENT
IDENTIFICATION PROBLEM WITH
I TERATION CREATION

BEST-OF-RUN PROGRAM FROM
GENERATION 42 — CONTINUED

 Both possible avenues of communication
and cooperation are employed by this
program.
o First, two of the six settable variabldgD(
and ML) are set inl PBO and referenced by

| PB1 (as highlighted by bold-faced type in
| PB1).

e Second,l PB1 contains a reference to the
value returned by PBO (also highlighted by
bold-faced type ih PB1).
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COMPARISON OF EIGHT METHODS
FOR SOLVING TRANSMEMBRANE
SEGMENT IDENTIFICATION PROBLEM

M ethod Error

von Heljne 1992 2.8%

Engelman, Steitz, and Goldman|2.7%
1986

Kyte and Doolittle 1982 2.5%

Weiss, Cohen, and Indurkhya|2.5%
1993

GP + Set-creating ADFs 1.6%

GP + Arithmetic-performing|1.6%
ADFs

GP + ADFs + six architecture-|1.6%
altering operations

GP + ADFs + six architecture-|1.6%
altering operations + restricted
Iteration creation operation
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AUTOMATICALLY DEFINED LOOP
(ADL)

e four distinct branches, namely
 a loop initialization branch,| B,
 a loop condition branch,CB,
 a loop body branch,BB, and
 a loop update branch|UB.
e |terative f or loop in the C programming

language:
for (i =0; i < LEN, i++)
{
MO =M + V[i];

}
e Using the ADL terminology for LI B, LCB,

LBB, and LUB, a for loop in C would be
written as

for (LIB; LCB; LUB)

{
LBB;
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AUTOMATICALLY DEFINED LOOP
(ADL)

e Initialization and iterative for loop in the
C programming language:
M) = O;
for (I = 0; I < LEN;, I++)
{
MO =M + V[i];
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AUTOMATICALLY DEFINED
FUNCTIONS

EVOLUTIONARY SELECTION OF THE
ARCHITECTURE

POINT TYPING FOR STUCTURE-
PRESERVING CROSSOVER

Parent A with an argument map of {3, 2}
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AUTOMATICALLY DEFINED
FUNCTIONS

EVOLUTIONARY SELECTION OF THE
ARCHITECTURE

POINT TYPING FOR STUCTURE-
PRESERVING CROSSOVER

Parent C with an argument map of {4, 2}
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GENE DUPLICATION

* Fly (midge)Chironomus tentans (Galli and
Wislander 1993)

» 3,959-bases of DNA with accession number
X70063 in GenBank

 One subsequence of 732 bases (called "C.
tentans Sp38-40.A gene") are in DNA
positions positions 918-1,649 and s
expressed as protein of length 244

* A second subseguence of 759 bases (called
"C. tentans Sp38-40.B gene") are in DNA
positions 2,513-3,271 and is expressed as
protein of length 253.

» Both proteins are secreted from the salivary
gland of the insect and form water-insoluble
fibers which are spun into one of two kinds of
tubes — one for larval protection and feeding
and one for pupation
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PROTEIN ALIGNMENT OF THE"A"
AND " B" PROTEINS

First.protein
Second. protein

First.protein
Second. protein

First.protein
Second. protein

First.protein
Second. protein

First.protein
Second. protein

First.protein
Second. protein

MRl KFLWLA VI CLHAHYAS
MRl KFLWLA VI CLHAHYAS

ASGVCEDKKP  KDAPKPKDAP  KPKEVKPVKA
ASGVCEDKKP KDAPKPKDAP  KPKEVKPVKA

m

SSEYEI EVI
ISSEYEI EVI

jwm]

KHQKEKTEKK
KHQKEKTEKK

EKEKK
EKEKK

HVHT
HVH

EKL
EKL

KGV [PAGYKA
NAT [Pr|GYKA

KEKK |0
| [KNKEKK [FMPCSE

PCSHEKLKD
LKO

m T

Lm mi
pd
Lm mi
é"ﬂ

CDYEALPPHP GAKKOOKKEK
CDYEA

- - -|P GAKKDHKKEK

KPPK EKPPKK

EKVKVVKPPK EKPPKK]

RKE
RKE

CSCEKVI KFQ NCLVKI RGLI
CSCEKVI KFQ NCLVKI RGLI

AFGDKTKNFD
AFGDKTKNFD

KKFAKLVQGK OKKGAKKAKG
KKFAKLVQGK QKKGAKKAKG

GKKA
GKKA

PKPGP KPR
PKPGP KPR

PRt --- QKA - - - - -
APKPPGPKP PKPAD

- -|KDAKK
KAKDAKK]

50
50

100
100

149
146

199
196

239
246

244
253
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NEW ARCHITECTURE-ALTERING
OPERATORS

SPECIALIZATION / REFINEMENT /
CASE SPLITTING
e Branch duplication
e Argument duplication
e Branch creation
e Argument creation

GENERALIZATION

* Branch deletion
« Argument deletion
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PROGRAM WITH 1 TWO-ARGUMENT
AUTOMATICALLY DEFINED FUNCTION
(ADFO) AND 1 RESULT-PRODUCING
BRANCH — ARGUMENT MAP OF {2}

490 491
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PROGRAM WITH ARGUMENT MAP OF
{2, 2} CREATED USING THE OPERATION
OF BRANCH DUPLICATION

(oRyso 53 54 (or) ® © (DY) (DR 587

@ (AND @@ 582 583 589
S G oL

590 591
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PROGRAM WITH ARGUMENT MAP OF
{3) CREATED USING THE OPERATION
OF ARGUMENT DUPLICATION

690 691 696 697
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PARALLELIZATION OF GA OR GP

By fithess cases
e Timing (Simulation time, Protein length)
« Matching between hardware and problem

By individuals
* Timing (Program size, Simulation time)

* By runs
 Assumes adequacy of population size of a
run

 Demes ("Island” model)
* No synchronization of islands
* Occasional small amounts of migration (low
band width requirement for communication)
* Emigrants go (fithess-based selection)
* Immigrants arrive and are absorbed (fithess-
based making of space)
 Fault-tolerant
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GP APPLIED TO MOLECULAR
BIOLOGY

 Handley, Simon. Automated learning of a
detector for a-helices in protein sequences via
genetic programming. Proceedings of the
Fifth International Conference on Genetic
Algorithms. Ed. Stephanie Forrest. San
Mateo, CA: Morgan Kaufmann Publishers,
1993. 271-278.

 Handley, S. 1994. Automated learning of a
detector for the cores of a-helices in protein
sequences via genetic programming.
Proceedings of the First IEEE Conference on
Evolutionary Computation. IEEE Press,
1994. 1:474-479.

« Handley, Simon. The prediction of the
degree of exposure to solvent of amino acid

residues via genetic programming.
Proceedings of the Second International
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Conference on Intelligent Systems for
Molecular Biology. Menlo Park, CA: AAAI
Press, 1994.
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GP BOOKSAND VIDEOTAPES

 Blickle, Tobias. 1997. Theory of
Evolutionary Algorithms and Application to
System Synthesis. TIK-Schriftenreihe Nr. 17.
Zurich, Switzerland: vdf Hochschul Verlag
AG and der ETH Zurich. ISBN 3-7281-2433-
8.

 Iba, Hitoshi. 1996. Genetic Programming.
Tokyo: Tokyo Denki University Press. In
Japanese.

« Jacob, Christian. 1997. Principia Evolvica:
Simulierte Evolution mit Mathematica.
Heldelberg, Germany:. dpunkt.verlag. In
German. English tranglation forthcoming.
 Koza, John R. Genetic Programming: On
Programming Computers by Means of Natural
Selection. Cambridge, MA: MIT Press 1992.
 Koza, John R. and Rice, James Fsenetic
Programming. The Movie. Cambridge, MA:
MIT Press 1992. (VHS NTSC, PAL,
SECAM)
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GP BOOKS — CONTINUED

« Koza, John R. Genetic Programming I1I:
Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press 1994.

 Koza, John R. Genetic Programming ||
Videotape: The Next Generation. Cambridge,
MA: MIT Press 1994. (VHS in NTSC, PAL,
SECAM)

e Koza, John R., Andre, David, Bennett llI,
Forrest H, and Keane, Martin A. 1998.
Genetic Programming IlIl.  San Francisco,
CA: Morgan Kaufmann.

« Langdon, William B. 1998. Genetic
Programming and Data Structures. Genetic
Programming + Data Structures = Automatic
Programming! Amsterdam: Kluwer.

* Nordin, Peter. 1997. Evolutionary Program
Induction of Binary Machine Code and its
Application. Munster, Germany:. Krehl
Verlag.
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GP CONFERENCE AND EURO-GP
WORKSHOP PROCEEDINGS

« Banzhaf, Wolfgang, Poli, Riccardo,
Schoenauer, Marc, and Fogarty, Terence C.
1998. Genetic Programming: First European
Workshop. EuroGP’98. Paris, France, April
1998 Proceedings. Paris, France. April [998.
Lecture Notes in Computer Science. Volume
1391. Berlin, Germany: Springer-Verlag.
 Koza, John R., Goldberg, David E., Fogel,
David B., and Riolo, Rick L. (editors).
Genetic Programming 1996: Proceedings of
the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA:
MIT Press.

« Koza, John R., Deb, Kalyanmoy, Dorigo,
Marco, Fogel, David B., Garzon, Max, Iba,
Hitoshi, and Riolo, Rick L. (editors). Genetic

Programming 1997. Proceedings of the
Second Annual Conference, July 13-16, 1997,
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Stanford University. San Francisco, CA:
Morgan Kaufmann.

« Koza, John R., Banzhaf, Wolfgang,
Chellapilla, Kumar, Deb, Kalyanmoym
Dorigo, Marco, Fogel, David B., Garzon,
Max H., Goldberg, David E., Iba, Hitoshi,

and Riolo, Rick. (editors). 1998.Genetic
Programming 1998: Proceedings of the Third
Annual Conference, July 22-25, 1998,

University of Wisconsin, Madison, Wisconsin.
San Francisco, CA: Morgan Kaufmann.
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ADVANCES IN GENETIC PROGRAMMING
SERIES (MIT PRESS)

« Angeline, Peter J. and Kinnear, Kenneth E.
Jr. (editors). 1996. Advances in Genetic

Programming 2. MIT Press.

e Kinnear, Kenneth E. Jr. (editor). Advances
In Genetic Programming. Cambridge, MA:

MIT Press 1994.

e Spector, Lee, Langdon, Willam B.,
O'Rellly, Una-May, and Angeline, Peter
(editors). 1999. Advances Iin Genetic

Programming 3. Cambridge, MA: The MIT

Press.
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KLUWER BOOK SERIES ON GENETIC
PROGRAMMING

« Langdon, William B. 1998. Genetic
Programming and Data Structures. Genetic
Programming + Data Structures = Automatic

Programming! Amsterdam: Kluwer.
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GENERAL BOOKSON GENETIC
ALGORITHMS

* Goldberg, David E. Genetic Algorithms in
Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley 1989.

» Holland, John H. Adaptation in Natural and
Artificial Systems, Ann Arbor, MI: University
of Michigan Press 1975. Now available as
2nd edition from The MIT Press 1992.

« Davis, Lawrence (editor). Genetic
Algorithms and Simulated Annealing
London: Pittman [987.

 Davis, Lawrence. Handbook of Genetic
Algorithms Van Nostrand Reinhold.1991.

« Michalewicz, Zbignlew. Genetic Algorithms
+ Data Structures = Evolution Programs.
Berlin: Springer-Verlag 1992.

e Mitchell, Melanie. 1996. An Introduction to
Genetic Algorithms. Cambridge, MA: The
MIT Press.
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SPECIFIC APPLICATION AREAS OF GA

» Albrecht, R. F., Reeves, C. R., and Steele, N.
C. 1993. Artificial Neural Nets and Genetic
Algorithms. Springer-Verlag.

e Bauer, Richard J., Jr. Genetic Algorithms
and I nvestment Strategies. John Wiley. 1994.

« Bhanu, Bir and Lee, Sungkee. 1994,
Genetic Learning for Adaptive |mage
Segmentation.  Boston: Kluwer Academic
Publishers.

 Buckles Bill P. and Petry, Frederick E.
Genetic Algorithms. Los Alamitos, CA: The
IEEE Computer Society Press. 1992.

e Chambers, Lance D. 1995. Practical
Handbook of Genetic Algorithms - Volume 1.
Boca Raton, FL: CRC Press.

 Davidor, Yuval. Genetic Algorithms and
Robotics. Singapore: World Scientific 1990.
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SPECIFIC APPLICATION AREAS OF GA

 Pal, Sankar K. andWang, Paul GP. Wang.
1996. Genetic Algorithms and Pattern
Recognition. Boca Raton, FL: CRC Press.

o Stender, J. (editor). 1993.Parallel Genetic
Algorithms. 10S Publishing.

o Stender, J., Hillebrand, and Kingdon, J.
(editors). 1994. Genetic Algorithms in
Optimization, Simulation, and Modeling.
Amsterdam: 10S Publishing.
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GP E-MAIL LISTS

GENETIC PROGRAMMING (GP) LIST

* To subscribe, send e-mail message to:
Genet i c- Progranm ng-

Request @S. St anf ord. Edu

e Be sure to send to exactly this address,

(which includes the word "Reqguest)!
« The BODY of your message must consist of

exactly the words:
subscri be geneti c-progranm ng
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VARIOUSE-MAIL LISTS

GENETIC ALGORITHM (GA) LIST
GA- Li st - Request @Al C. NRL. NAVY. M L

INDUCTIVE LOGIC PROGRAMMING
(ILP)

To subscribe, send e-mail message to:
pnet@ijs.si

with a SUBJECT heading of:

SUBSCRIBE ILPNEWS

MACHINE LEARNING LIST
ML -Request@! CS.UCI.EDU
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GPFTPSITE
An on-line public repository and FTP gite
and WWW sdite containing computer code,
papers on genetic programming, and
frequently asked questions (FAQs) may be
accessed by electronic mail by anonymous
FTP from the
pub/ geneti c- progranm ng
directory from the site
ftp.10.com
The URL of the WWW sditeis
ftp://ftp.10.conl pub/genetic-
progr anm ng
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GA ARCHIVE — FTP AND WWW SITE

« An FTP and WWW site for the "GA
archive" can be accessed through anonymous
ftp at ftp.aic.nrl.navy. ml
[192.26.18.68] Iin/ pub/ gal i st. The URL

for the WWW pages is

http://wwv. aic.nrl.navy. ml/gali
st/

Contains genetic algorithm code, conference
announcements for the GA field, back issues
of the Genetic Algorithms Digest e-mall
newsletter
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WWW SITE FOR GENETIC

PROGRAMMING CONFERENCESINC
WWW. genet i c- progranm ng. org

JOHN KOZA'SHOME PAGE

http://ww. sm . stanford. edu/ peop
| e/ koza

Contains
 Information on GP-96, GP-97, GP-98
conferences
e Links to people doing GP research
e List of PhD theses in progress
e Links to many other GP resources
» Abstracts of JK's publications
e Links to other GP WWW pages
« Links to Langdon's complete GP
bibliography



