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I  The beginning of parallel computing in Europe

IT Technical challenges for wave propagation
The Grenoble valley benchmark exercise
Waves on unstructured grids

IIT Science with HPC
Understanding earthquake rupture
Prediction of strong ground motions
The seismic signature of mantle convection
Imaging with 3-D methods - adjoint method

IV  What is missing?




1990: Connection Machine CM-2




2007: Clusters and Supercomputers
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Spatial Scales and Memory

(back of the envelope)

Highest frequency: 1 Hz

Shortest wavelength: 2 km (crust)

Shortest wavelength: 5 km (mantle)

Grid points per wavelength: 5

Grid spacing: 200 m (crust)

Grid spacing: 500 m (mantle)

Required grid points: O(10%?)
Required memory:  O(100 TBytes)




Spatial Scales and Memory

(back of the envelope)

Highest frequency: 0.1 Hz
Shortest wavelength: 20 km (crust)
Shortest wavelength: 50 km (mantle)
Grid points per wavelength: 5

Grid spacing: 2000 m (crust)
Grid spacing: 5000 m (mantle)

Required grid points: O(10°)
Required memory:  O(100 GBytes)
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Seismology and Geodynamics

Courtesy: 6. Jahnke Courtesy: H.P. Bunge, B. Schuberth




Numerical simulation of seismic wave propagation I

Elastic wave equations

3D Model
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Numerical
methods

- Finite Differences (high order, optimal operators)

- Pseudospectral methods (Chebyshev, Fourier)

- Finite/spectral elements on hexahedral grids

. Unstructured grids (finite volumes/elements, natural
neighbours) or combinations

*  Parallelization using MPI (message passing interface)

-> for rupture problems special internal boundary conditions apply




3D numerical simulation of seismic wave propagation
in the Grenoble valley (M6 earthquake)




3D numerical simulation of seismic wave propagation
in the Grenoble valley (M6 earthquake)
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The Courant Criterion
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Smallest grid size
Largest velocity




Problems ...

.. grid generation is cumbersome with
hexahedra, trying to honor complex
geometries and material
heterogeneities ...

.. large variations in seismic velocities
(i.e. required grid size) lead to very
small time steps - overkill in a large
part of the model ...
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Arbir"rr'ar'ily high—orDER -

Discon’rinuous Galerkin

Combination of a discontinous Galerkin method
with ADER time integration

Piecewise polynomial approximation combined with
the fluxes across elements (finite volumes)

Time integration as accurate as space R
derivatives, applicable also to strongly irregular I R
meshes (not so usually for FD, FE, SE) | |

ST

Method developed in aero-acoustics and
computational fluid dynamics i

The scheme is entirely local, not large matrix
inversion -> efficient parallelization

Algorithms on tetrahedral grids slower than
spectral element schemes on hexahedra




ADER-DG in Geophysical Journal International a.o.

Kdser, M., and M. Dumbser (2006), An Arbitrary High Order Discontinuous Galerkin
Method for Elastic Waves on Unstructured Meshes I: The Two-Dimensional

Isotropic Case with External Source Terms, Geophysical Journal International,
166(2), 855-877.

Dumbser, M., and M. Kaser (2006), An Arbitrary High Order Discontinuous Galerkin
Method for Elastic Waves on Unstructured Meshes II: The Three-Dimensional
Isotropic Case, Geophysical Journal International, 16 (1), 319-336.

Kdser, M., M. Dumbser, J. de la Puente, and H. ]i?/el (2007), An Arbitrary High Order
Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes III:
Viscoelastic Attenuation, Geophysical Journal International, 168, 224-242.

De la Puente, J., M. Kdser, M. Dumbser, and H. Igel (2007), An Arbitrary High Order
Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes IV:
Anisotropy, Geophysical Journal International, in press.

Dumbser, M, M. Kdser, and E Toro (2007), An Arbitrary High Order Discontinuous
Galerkin Method for Elastic Waves on Unstructured Meshes V: Local Time Stepping
and p-Adaptivity, Geophys. J. Int., in press

Kdser, M., P. M. Mai, and M. Dumbser (2007), On the Accurate Treatment of Finite
Source Rupture Models Using ADER-DG on Tetrahedral Meshes, Bull. Seis. Soc. Am.,
in press.

Coming soon: poroelasticity, combined hexahedral and tetrahedral grids, dynamic rupture
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Arbitrarily shaped finite sources

Distance down dip (km)
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Slip map of an earthquake fault
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Mesh spacing is proportional to P-wave velocity

Kaser, Mai, Dumbser, 2007




Local precision
Use high precision (i.e., high-order
polynomials) only where necessary

High precision where cells are large
(high velocities)

Low precision where cells are small

(because of structural heterogeneities)

Hos

Hos

Kaser et al. (2006)
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Mesh Partitioning and Parallel Computing
the problem of load blancing

Same color means same processor I
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Grenoble Basin Simulation

Time: 0 sec




Mechanical properties

|
|
[

Alluvial basin, Vs = 300.0 + 19.0 * sqrt(D), Vp = 14500+ 1.2*D
p=2140.0 + 0.125 * D, Qs = 50, D = depth in meter

Bedrock (Depth = 0 - 3km) Vs = 3.2 km/s, Vp = 5.6 km/s, p = 2720 kg/m"3
Bedrock (Depth = 3 - 7km) Vs = 3.43 km/s, Vp = 5.92 km/s, p = 2720 kg/m"3

Receivers
Fault strong 1 B Fault strong 2



Seismogram
Comparison

— SEM1
ADER-DG
— SEM2
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To participate in the SPICE Code Validation {that is, calculate your solution for one or more defined models ‘ |
and compare it with solutions submitted by other participants), please follow these steps : 1

0. go to reqistration {do it only once for each method) 2 1

. choose and download a model description

perform a computation with your code

. convert your solution into a format appropriate for upload - see solution format
. upload your solution {your solution will be stored on the server)
viewicompare solutions £ ' % ik
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comments and suggestions to spice cvi@nuquake eu

Moczo et al., 2006 www.spice-rtn.org
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Software for wave propagation
problems

*  Training material - practicals

+  Access to benchmarking (global
tomography, kinematic source
inversion, wave propagation and
rupture)

-> 4th workshop in Cargese, Corsica,
May 13-19, 2007

www.spice-rtn.org
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.. more info on the SPICE stand ...



Conclusions - Technical Challenges

Strongly heterogeneous structures (or complex
surfaces) still pose problems particularly when
using hexahedral grids (e.g. oversampling,
instabilities)

Unstructured grids (triangles, tetrahedra) have
advantages concerning grid generation but
numerical operators often are less accurate, or
expensive

Efficient parallelization algorithms with
heterogeneous time steps, accuracy and grid

density requires substantial interaction with
software engineers.




Dynamic rupture

scientific objectives

Distance down dip (km)

28 20 14 18 5 [ 5
Distance along strike (km)

Understanding the earthquake process

Understanding the controlling mechanisms of earthquakes
(frictional properties, strength heterogeneities, material
interfaces, etc.)

Resolving power of seismic observations with respect to
(dynamic) source parameters

Regional conditions (intraplate, interplate, subduction
zones, hormal, strike, etc.)

‘ phenomenological studies




Rupture at a bi-material
interface
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Convergence tests with high-resolution models

+  Grid size 500x3200x3200
+12.5 cm grid spacing
+  High-order staggered-grid finite differences




Self-sustained pulse in 3D?

-~ ime = 0.475 g 1000m -

Brietzke, Cochard, Igel, GRL 2007, submitted



Earthquake scenarios

scientific objectives

Accurate forecasting of hazard and risk scenarios for
specific regions and time intervals

Incorporation of earthquake scenario simulations into
probabilistic hazard analysis

MB.9 Roermond 1992
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Example: Newport-Ingelwood
Fault, Los Angeles Basin

Depth (km)

Wang, Igel, Cochard, Ewald (2006)



s Functions

Numerical Green




Varying slip histories
M7 earthquakes

Final slip distributions
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Compatible with Attenuation
Relations?
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Global and regional seismology

scientific objectives

High resolution imaging (diffration fomography) of global
earth structure (geodynamics)

3D wave effects of structures like plumes, subduction
zones, D" -> geodynamic issues

Development of 3D reference models (e.g. European
reference model)




e, N

Bunge and Schuberth, 2007 : Isosurfaces at -0.75% and +1.2%




Spectral Element Simulations
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Model Uncertainties - Degrees of Freedom

Decreasing misfit

v

Increasing model complexity
Increasing number of degrees of freedom

after L. Boschi (2007)



Residuals

Synthetic

Real

Diffraction tomography -
Adjoint Methods

2D finite-difference waveform inversion on CM-5
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Adjoint methods - sensitivities

0.2] Velocity (mm/s)
01) T=9s,4=70°

P'P'

-0.1
-0.2

500 1000 _ 1500 2000 2500 /8

Quantification of e
sensitivities with
3D simulation T \ UM
technology e

Time (s)

Tromp (2007)

1000

1000y 1000,

L osood Lo s00d T it L 5004 g

1000 1000 1000

1000 1000 1000

Fichtner et al. (2007)



The kernel

Phenomenological studies
Earthquake scenarios Model space studies
Shaking hazard '

— Dynamic rupture
Source physics

Sensitivities
Experiment design

Imaging (source and structure)
Adjoint methods




What's missing?

.. easy access for data modellers to well
tested simulation tools ...

.. easy (e.g., hidden) access to HPC
infrastructure (GRIDs, EU-HPC)

.. community codes for wave propagation
problems

.. software engineering support



General conclusions

3D wave simulation technology is about to enter
routine seismic processing and inversion

High-Performance Computing and parallel
programming will remain an essential issue

Infrastructure is developing (GRIDs, EU-HPC) that
may revolutionize the way we process and
simulate data, the soft infrastructure is missing

Most Earth science institutions (and in part the whole
community) are/is ill-prepared for these
developments




Thank you for your attention! *

**...if you don't know what MPI stands for, you 're in trouble "
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