Cluster Design in the Earth Sciences - TETHYS

J. Oeser, H.-P. Bunge, M. Mohr

September 13, 2006

Department of Earth and Environmental Sciences Geophysics Ludwig-Maximilians-Universität München Theresienstr. 41/IV 80333 Munich

J. Oeser: Cluster Design in the Earth Sciences - TETHYS

TETHYS

High Performance Simulator

TEcTonic

TRIASSIC 200 million years ago

Break-up of Pangaea with the Tethys Ocean is an iconic tectonic event.

<u>Outline</u>

- Topical Compute Clusters?
- TERRA Mantle Convection
- Cluster Design and Hardware
- TERRA Performance Tests
- TERRA and SPECFEM3D
- Conclusions & Outlook

Topical Compute Clusters?

- scientific computing is increasingly important
 - models with 1000 1000 1000 grid points now feasible,
 implying scale-length resolution over 3 orders of magnitude
 - * storms in the atmosphere, crust in the earth, eruptive conduits in volcanoes
 - * model sensitivities now guide observations and experiments
- there is a growing need for **capacity** computing
 - * 2-4 million node hours, dedicated and permanent usage of 200-500 processors every year
- computing platforms perform best when optimised for key applications
- topical computers are best run by scientific communities

Key Applications

- three key applications
 - * TERRA mantle convection
 - * SPECFEM3D seismic wave propagation
 - * b3md rupture/hazard modelling

TERRA – Mantle Convection

- earth consists of nested regions: crust, mantle, core
- convection is driven by primordial and radioactive heat
- solid state convection (creep) overturns mantle \approx every 100 200 million years

convection drives large-scale geological activity (plate tectonics, continental drift)

Mathematical-Physical Model

As a flow process mantle convection can be described by the compressible Navier-Stokes equations in combination with an energy equation.

Fortunately this can be simplified:

- assume quasi-static flow field and drop time-dependency from momentum equations
- small flow velocities allow to drop non-linear convection terms from momentum equations
- inertial and coriolis forces can be neglected
- assume that material is basically incompressible and use Boussinesq approximation

Simplified PDE System

Conservation of mass:

$$\operatorname{div} u = 0$$

Conservation of momentum:

div
$$\left[\nu \left(\operatorname{grad} u + (\operatorname{grad} u)^T\right)\right] - \operatorname{grad} p + \varrho_0 \alpha \left(T - T_0\right) g = 0$$

Conservation of energy:

$$\varrho_0 c_p \left(\frac{\partial T}{\partial t} + u \cdot \operatorname{grad} T \right) - \operatorname{div} \left(\kappa \operatorname{grad} T \right) - \varrho_0 H = 0$$

u: velocity, *p*: pressure, *T*: temperature, α : coeff. of thermal expansion, c_p : specific heat at constant pressure, *H*: rate of internal heat production per unit volume, *g*: gravitational acceleration, κ : thermal diffusivity, ρ_0 : density, ν : kinematic viscosity

Algorithmic Core of TERRA

- time-dependent energy equation is integrated (forward) in time using a modified Euler scheme
- each time step requires two evaluations of the velocity field u via a generalised Stokes problem

div
$$\left[\nu \left(\operatorname{grad} u + (\operatorname{grad} u)^T\right)\right] - \operatorname{grad} p = \varrho_0 \alpha \left(T_0 - T(t_i)\right) g$$

div $u = 0$

• this is done with a pressure-correction type scheme employing a multigrid method for the inner iteration

Discretisation and Parallelisation

 a surface grid is generated by mapping an icosahedron onto the sphere and successively refining it → spherical triangles

- surface grid is radially extended down to the mantle-core boundary
- discretisation of PDE on the grid is performed with Finite Elements
- parallelisation via domain decomposition and explicit message passing

TETHYS – Design of Key Components

Topical computing allows us to choose the key components to best suit the applications under the consideration of price-performance. What are the key components?

- CPU
 - * dual better value than quad CPU nodes
 - * single better value than dual core CPU nodes
- network interconnect
 - * ethernet better value infiniband network connections
- memory requirements
 - * driven by the key applications (for us 128 GB)

TETHYS – Hardware Specifications

- 1 head node
 - * 1 INTEL XEON CPU (3.0 GHz, single core)
 - * 2 GB RAM
 - * 2 TB storage subsystem
 - * 10 GBit and 1 GBit ethernet ports
 - high availability design (redundant power supplies, hard drives and network ports)
- 64 compute nodes
 - * 2 AMD Opteron 250 CPUs (2.4 GHz, single core)
 - * 1 GB RAM per CPU
 - * 2 ethernet ports (1 GBit)
 - * 160 GB hard drive

TETHYS – Hardware Specifications (cont.)

• 5 network switches

- * 1 HP ProCurve 6400cl (6 x 10 GBit ports) cluster core switch
- * 4 HP ProCurve 3400cl (24 x 1 GBit ports) cluster node switch
- operation system
 - * Debian GNU/Linux 3.1 Sarge (AMD64 port)
 - * FAI for installation of compute nodes
 - * 8 TB parallel filesystem PVFS2
 - * queueing system SGE or PBS Pro?

TETHYS – Cluster Topology

TERRA – Performance Tests

(MT = 64, 128, 256 \leftrightarrow resolution 100, 50, 25 km \leftrightarrow 1, 10, 85 mio. grid points)

for 500 time-steps we obtain a run-time of 2002 s (mt=128 case on 16 processes) and 2564 s (mt=256 case on 128 processes), which both lead to the same workload per process

TERRA

circulation in earth interior, temperature denoted by colour (cold=blue, red=hot), isosurface shows subducting plate beneath South America

J. Oeser: Cluster Design in the Earth Sciences - TETHYS

SPECFEM3D

synthetic seismic velocity structure predicted from mantle circulation modelling (blue=fast, red=slow)

Conclusions & Outlook

- large-scale geophysical modelling cluster is now feasible TETHYS
- departmental supercomputer can efficiently perform geosciences simulations
- calculations for global earth modelling studies
- aggregate system performance of 200 Gflops
- cost-efficient Beowulf clusters viable part of modelling infrastructure in geosciences

Acknowledgements

- German Ministry of Education and Research (BMBF)
- Free State of Bavaria
- Microstaxx GmbH
- High-Performance Group of Fujitsu-Siemens Computers

APPENDIX

J. Oeser: Cluster Design in the Earth Sciences - TETHYS

Space Discretisation I

(follows Baumgardner & Frederickson, 1985)

- a surface grid is generated by mapping an icosahedron onto the sphere
 → spherical triangles
- surface grid is successively refined \longrightarrow factor four in each step
- surface grid is radially extended down to the mantle-core boundary

J. Oeser: Cluster Design in the Earth Sciences - TETHYS

Space Discretisation II

⁽figure: Karpik et al. 1991)

- the grid generation process naturally leads to a nested grid hierarchy
- characteristics of surface grid:

# triangles	$20 n^2$
# nodes	$10 n^2 + 2$
# arcs	$30 n^2$

(with $n = 2^k$, k the level of refinement level)

• radial resolution typically used is n/2 layers

Space Discretisation III

pair-wise combination of two base-triangles leads to 10 diamonds with a logically rectangular grid

(figures: Stuhne et al. 1996)

Finite-Element Spaces

For discretisation we need Finite-Element spaces $V_0^h \subset H_0^1(\Omega) \text{ and } S_0^h \subset L_0^2(\Omega)$

- TERRA uses the same type of Ansatz-functions for both (scalar) velocity components $(u_x, u_y \text{ and } u_z)$ and the pressure p.
- Baumgardner & Frederickson (1986) generalised piecewise linear Finite Elements for spherical triangles
- Extension to 3D by cross-product with 1D piecewise linear Finite-Elements

Linear System

The mixed Finite-Element discretisation leads to a linear system

$$\begin{pmatrix} A & -G \\ -G^T & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$$

with

- the discrete viscous operator A
- the discrete gradient operator G
- the discrete right-hand side $f \approx \rho_0 \alpha \left(T_0 T\right) g$

 \longrightarrow saddle point problem

Schur Complement

consider a single block-GauSS step applied to the problem

$$\begin{pmatrix} A & -G \\ -G^{T} & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ 0 \end{pmatrix}$$
$$\downarrow$$
$$\begin{pmatrix} A & -G \\ 0 & -G^{T}A^{-1}G \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ G^{T}A^{-1}f \end{pmatrix}$$

for A s.p.d. the matrix $S := G^T A^{-1} G$ is (at least) s.p.s.d

Pressure-Correction Type Scheme

Basically this can be seen as CG applied to solve $Sp = -G^T A^{-1} f$ with some modifications:

Setup:

- Given initial guess $p^{(0)}$ solve $Au^{(0)} Gp^{(0)} = f$ for $u^{(0)}$ (momentum eqn.)
- Initial residual $r^{(0)} = G^T A^{-1} f + G^T A^{-1} G p^{(0)} = G^T u^{(0)}$

Loop:

- Given search direction $s^{(i)}$ solve $Av^{(i)} = Gs^{(i)}$ for $v^{(i)}$
- Use $v^{(i)}$
 - \ast as auxilliary vector in CG
 - $\ast\,$ to perform update $u^{(i)} = u^{(i-1)} + \alpha v^{(i)}$

Multigrid

We solve the problem $Av^{(i)} = Gs^{(i)}$ iteratively using multigrid.

Characteristics:

- V-cycle
- Jacobi-type radial-line smoothing
- Operator-dependent transfers for tensor-valued stencils (Yang & Baumgardner, 2000)
- Galerkin coarse grid approximation
- Coarse grid agglomeration (for parallel MG)