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Abstract

A simple plane wave approach suggests that the local shear wave veloc-
ity cs is equal to the ratio of the ground acceleration u̇ and the rotation
∇ × u =: ω in symbols: |u̇|/|ω| = cs. Even though u̇ and ω may be
measured at one single point, the ratio of their respective absolute values
can in reality not be the shear velocity at that point because this would
require the wave field to change its properties very abruptly.

In what follows, I suggest a simple recipe that allows to determine the
region in which ||u̇||2/||ω||2 depends on the shear velocity structure. It
can indeed be shown that distant shear velocity perturbations have little
influence on the numerical value of ||u̇||2/||ω||2. Still, the shear velocity
measurement is not pointwise. This suggests that a regional shear velocity
tomography should be possible even with only one available station, i.e.,
one ring laser.

We will proceed as follows: (1) The general strategy will be outlined in
a brief introduction. (2) In order to understand (3) we will derive ex-
pressions for sensitivity densities corresponding to point measurements
of ||u̇||2 and ||ω||2. (3) The results from (2) will be applied in a sim-
ple but yet very informative example. (4) An outlook to possible future
applications will conclude this short collection of ideas.
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1 Introduction
In this introduction we will outline the principal ideas and concepts, as well a the necessary
mathematical symbolisms.

Let u(p;xr, t) denote a displacement field recorded over time t at the location x = xr and
depending on some model parameters p = (ρ, λ, µ, ...). The assumption that u(p;x, t) is a
plane shear wave, i.e.,

u(p;x, t) = A e−i(k·x−ωt) , A ⊥ k , (1)
immediately yields

|u̇(p;xr)|
|ω(p;xr)|

= cs =

r
µ

ρ
. (2)

[A similar relation can be found by dividing acceleration amplitudes and rotation rate ampli-
tudes. This may be more convenient in practice because rotation rates are the output of the
ring laser. However, as we shall see later, acceleration measurements lead to expressions in the
adjoint equations which involve the fourth (!!!) time derivative of the displacement field. This
is evidently a very undesirable quantity, at least when you’re dealing with discrete signals.]
The idea that |u̇(p;xr)|/|ω(p;xr)| indeed yields the local, i.e., pointwise, shear wave velocity
is tempting but unlikely to be correct. The assumed plane waves only exist in unbounded
and homogeneous media. So, even when we assumed local homogeneity, the measurement
would still be done at the surface of the Earth where the boundedness of the medium is most
evident.

It seems obvious and intuitively clear that the quantity |u̇(p;xr)|/|ω(p;xr)| must be affected
by the shear wave structure in a wider vicinity of the measurement point. But how much is it
affected and in which regions exactly? To answer these questions, I propose to compute the
sensitivity of the apparent shear wave speed

ca(p;xr) :=
||u̇(p;xr)||2
||ω(p;xr)||2

(3)

with respect to the true shear wave speed cs. If ca only depended on the very local shear
velocity structure then the derivative of ca with respect to cs should vanish almost everywhere.
If not, then non-zero values of this derivative should extend well into the medium around xr.

Denoting by D the functional derivative operator with respect to p and by q the differentiation
direction in the model parameter space, we find

Dca(p;xr)(q) =
D||u̇(p;xr)||2(q)

||ω(p;xr)||2
−

||u̇(p;xr)||2 D||ω(p;xr)||2(q)

||ω(p;xr)||22
, (4)

or the physically more reasonable expression

1

ca
Dca(p;xr)(q) =

D||u̇(p;xr)||2(q)

||u̇(p;xr)||2
−

D||ω(p;xr)||2(q)

||ω(p;xr)||2
. (5)

Equation (5) suggests a simple recipe for the computation of 1
ca

Dca(p;xr)(q): First, compute
the sensitivity of the velocity amplitude (more precisely: the L2 norm of the velocity) with
respect to cs. Then compute the sensitivity of the rotation amplitude with respect to cs.
Finally, subtract one from the other. Done!

So, it seems that we have to take a closer look on sensitivities for different amplitude mea-
surements:

2 Sensitivity kernels
The computation of the sensitivities and the physically more interpretable volumetric densities
will be based on the adjoint method. Without going into too much detail, we shall accept
at this point that the derivative with respect to the model parameters p of a given objective
function E(u(p)) is

DE(u(p))(q) =

Z
t

Z
G
ψ(x, t) · ∂pL(u,p)(q) dt dG . (6)

The variable ψ denotes the adjoint field which is the solution of the adjoint problem. The
partial derivative with respect to p of the wave operator is symbolised by ∂pL. Sensitivity
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densities can be obtained by omitting the integration over the volume G is which the wave
field, i.e., the solution of the wave equation, is defined.

In general, the source term of the adjoint wave equation - and therefore the properties of the
adjoint field ψ - are determined by the particular choice of the objective function E. Evidently,
we are interested in the two cases E(u(p)) = ||u̇(p)||2 and E(u(p)) = ||ω(p)||2.

2.1 Velocity amplitude measurements
We first consider the case of E(u(p)) = ||u̇(p)||2, or more precisely

E(u(p)) = ||u̇(p)||2 =

0@ tbZ
ta

u̇2(p;xr, t) dt

1A1/2

. (7)

Differentiation with respect to the model parameters p in the direction q gives

D||u̇(p)||2(q) =
1

||u̇(p)||2

tbZ
t′=ta

u̇(p;xr, t′) · Du̇(p;xr, t′)(q) dt′ . (8)

One of the fundamental results of the adjoint method applied to the wave equation is (The
references are well-known.)

Du̇k(p;xr, t′)(q) = −
t1Z

t=t0

Z
G

∂

∂t′
g†k(xr, t′;x, t) · ∂pL(u,p)(q) dt dG , (9)

where g†k(xr, t′;x, t) is the adjoint Green’s function with its source acting in ek direction at
time t′ and location xr, i.e., at the receiver. Introducing (9) into (8) yields

D||u̇(p)||2(q) = −
1

||u̇(p)||2

tbZ
t′=ta

t1Z
t=t0

Z
G

u̇k(p;xr, t′)∂t′g
†
k(xr, t′;x, t)

· ∂pL(u,p)(q) dt′ dt dG . (10)

We now isolate the integration over t′ and define an adjoint field ψv in order to bring (10)
into the canonical form (6):

ψv(x, t) :=
1

||u̇(p)||2

tbZ
t′=ta

ük(p;xr, t′)g†k(xr, t′;x, t) dt′ . (11)

This simplifies (10) to

D||u̇(p)||2(q) =

t1Z
t=t0

Z
G

ψv(x, t) · ∂pL(u,p)(q) dt dG . (12)

Equation (11) suggests that the adjoint source corresponding to velocity amplitude measure-
ments in the L2 sense is simply a point source at the receiver xr that radiates the recorded
acceleration "backward in time" (I don’t like that populistic expression. It does not make
much sense but seems to have infiltrated the seismological vocabulary list.), i.e.,

f†v (x, t) = ü(xr, t) δ(x− xr) . (13)

2.2 Rotation measurements
In the case that our measurements are the rotation amplitudes

E(u(p)) = ||ω(p)||2 =

0@ tbZ
ta

[ω(p;xr, t)]2 dt

1A1/2

, (14)
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we proceed just as before. Differentiating (14) with respect to p in the direction q, gives

D||ω(p)||2(q) =
1

||ω(p)||2

tbZ
t=ta

ωi(p;xr, t′) Dωi(p;xr, t′)(q) dt′ . (15)

We already had the differentiated version of

Duk(p;xr, t′)(q) = −
t1Z

t=t0

Z
G

g†k(xr, t′;x, t) · ∂pL(u,p)(q) dt . (16)

From this we obtain the rotation as follows:

ωi(p;xr, t′) = εijk
∂

∂xr
j

uk(p;xr, t′) , (17)

and therefore

Dωi(p;xr, t′)(q) = −εijk
∂

∂xr
j

t1Z
t=t0

Z
G

g†k(xr, t′;x, t) · ∂pL(u,p)(q) dt dG . (18)

Introducing the last expression into equation (15) yields

Dωi(p;xr, t′)(q) = −
Z

t=t0

tbZ
t′=ta

Z
G

ωi(p;xr, t′) εijk
∂

∂xr
j

g†k(xr, t′;x, t)

· ∂pL(u,p)(q) dt dt′ dG . (19)

Again, we isolate the integration over t′ and define an adjoint field ψω that corresponds to
rotation amplitude measurements in the L2 sense:

ψω(x, t) := −
1

||ω(p)||2

tbZ
t′=ta

εijkωi(p;xr, t′)
∂

∂xr
j

g†k(xr, t′;x, t) dt′ . (20)

The derivative (15) can then also be written in canonical form

D||ω(p)||2(q) =

t1Z
t=t0

Z
G

ψω(x, t) · ∂pL(u,p)(q) dt dG . (21)

It follows that the adjoint source for ||ω(p)||2 is

f†ω(x, t) = −
ek

||ω(p)||2
εijk ωi(p;xr, t)

∂

∂xr
j

δ(x− xr) . (22)

A closer look at (22) reveals some interesting details: The adjoint source for rotation amplitude
measurements is an anti-symmetric moment tensor source. Even though such a source
would be nonsense in the real physical world (Would it?), it is still mathematically meaningful:
An anti-symmetric moment-tensorial source radiates only S waves and no P waves. This
makes sense, because otherwise the apparent S velocity ca would depend on the P velocity
structure. So, in a certain sense, one could even have expected that the adjoint source is an
anti-symmetric moment tensor source, i.e., the simplest possible source that only radiates S
waves. Explicit expressions for the cartesian components of fω are

f1
ω(x, t) =

1

||ω(p)||2

»
ω2(p;xr, t)

∂

∂x3
− ω3(p;xr, t)

∂

∂x2

–
δ(x− xr) , (23a)

f2
ω(x, t) =

1

||ω(p)||2

»
ω3(p;xr, t)

∂

∂x1
− ω1(p;xr, t)

∂

∂x3

–
δ(x− xr) , (23b)

f3
ω(x, t) =

1

||ω(p)||2

»
ω1(p;xr, t)

∂

∂x2
− ω2(p;xr, t)

∂

∂x1

–
δ(x− xr) . (23c)

So far the theory. It seems that we now need a simple example in order to see what equations
(1) to (23c) actually mean:
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3 An example
The example is deliberately simple and non-realistic, in order to illustrate as many interesting
aspects as possible in an understandable manner.

As medium we use PREM in a box of 500 km extension in each direction. A source in the
form of a single force pointing in y direction is located at a depth of 250 km. It radiates a
Ricker wavelet (first derivative of a Gaussian) with a dominant period of 20 s, i.e., with a
quite low frequency. The receiver is positioned at an epicentral distance of 300 km so that
S wave motion is recorded basically only in the y direction. Significant rotational motion is
recorded only in vertical direction. The translational and rotational seismograms are shown
in figures (1) and (2), respectively.

Figure 1: Displacement seismograms recorded at the surface at an epicentral distance of 300
km. Most of the translational motion is in y direction - by construction.

We now follow our recipe and construct adjoint sources. For the relative derivatives that we
are interested in (see equation (5)) our two adjoint sources are

f†v (x, t) =
ey

||u̇(p)||22
üy(p;xr, t) δ(x− xr) , (24a)

f†ω(x, t) = −
ex

||ω(p)||22
ωz(p;xr, t)

∂

∂y
δ(x− xr)

+
ey

||ω(p)||22
ωz(p;xr, t)

∂

∂x
δ(x− xr) . (24b)

The functions üy/||u̇||22 and ωz/||ω||22 are displayed in figures (3) and (4), respectively. Note
that they already bear some physical meaning: The amplitude of the adjoint source time func-
tion corresponding to the rotation measurements is roughly five orders of magnitude larger
than the amplitude of the source time function corresponding to the velocity measurements.
However, the adjoint source for the rotation measurement is a moment tensor source and
not a vectorial source. Hence, the amplitude of the adjoint field ψω will be proportional
to ω̇z/c3s. This will then be approximately the same order of magnitude that we can ex-
pect for the amplitude of adjoint field ψv , namely üy/c2s. One may therefore predict that
||u̇(p)||−1

2 D||u̇(p)||2(q) and ||ω(p)||−1
2 D||ω(p)||2(q) will reach the same maximum values.

In more simple words: Velocity amplitudes are about as sensitive to shear velocity
structure than rotation amplitudes.
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Figure 2: Rotation seismograms recorded at the surface at an epicentral distance of 300 km.
Most of the rotational motion is in vertical direction.

Figure 3: Source-time function in reversed time for the velocity amplitude measurement.
The function is proportional to üy and inversely proportional to ||u̇||22.

Our qualified guess is confirmed by figures (5) and (6) which show the volumetric densities
of the relative derivatives ||u̇(p)||−1

2 D||u̇(p)||2(q) and ||ω(p)||−1
2 D||ω(p)||2(q), respectively.

The first impression is indeed that both kernels (= volumetric sensitivity densities) look very
similar. This is not surprising because the radiation patterns of the corresponding adjoint
sources are very similar also - at least far from the receiver. In the vicinity of the receiver,
which is the adjoint source location, the two adjoint fields differ in slightly in the radiation
patterns and in the contributions of various near and intermediate field terms. In the far
field, however, they become more and more indistinguishable. One can easily show that using
the Green’s functions for a homogeneous medium. What seems to be at this point a rather
unimportant statement turns out to physically quite profound! That the adjoint fields
corresponding to two different physical quantities become indistinguishable in
the far field implies that the ratio of the two quantities in independent of the
structure near the source!!!

To see whether this is indeed true for our example, we simply subtract ||ω(p)||−1
2 D||ω(p)||2(q)

from ||u̇(p)||−1
2 D||u̇(p)||2(q) to get c−1

a Dca(p)(q). The result can be seen in figure (7). ((fig
5) − (fig 6) = (fig 7) = sensitivity of the apparent shear velocity with respect to the true shear
velocity.) As expected, the apparent shear velocity ca = ||u̇||2/||ω||2 measured at xr

is sensitive mostly to true shear velocity structure near the receiver. The contribu-
tions near the source are due to (1) numerical errors related to the improper implementation
of a point source and (2) to the small distance between source and receiver compared to the
dominant wavelength. In other words, the source is still within a distance from the receiver
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Figure 4: Source-time function in reversed time for the rotation amplitude measurement.
The function is proportional to ωz and inversely proportional to ||ω̇||22.

where the radiation patterns of the adjoint fields ψv and ψω are distinguishable. For tele-
seismic events, there will be no contribution at all near the source.

It seems at this point evident that the size of the region in which ca is significantly sensitive
to cs depends on the frequency of the incoming waves and on the width of the window that
one considers. In general, higher frequencies and smaller windows will reduce the size of the
region of significant sensitivity. The opposite effect will result from lower frequencies and
larger windows.

Figure 5: Volumetric sensitivity density of ||u̇||2 divided by ||u̇||2 (relative sensitivity) with
respect to the shear velocity cs. Slice in the y plane through the source and receiver locations.
The unit is s · m−1.
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Figure 6: Volumetric sensitivity density of ||ω̇||2 divided by ||ω̇||2 (relative sensitivity) with
respect to the shear velocity cs. Slice in the y plane through the source and receiver locations.
The unit is s · m−1.

4 Outlook
So, inversion?!? At least the theoretical foundation of a local shear velocity inversion based
on the measurement of

ca(p) =
||u̇(p)||2
||ω(p)||2

(25)

seems to be solid. This would be an attractive technique mainly because (in the case of dis-
tant events) the measurement and therefore the sensitivities are independent of many weakly
constrained parameters such as source location, source time, source time function, moment
tensor, structure in the deep Earth, structure near the source, ... . Another advantage seems
to be that the modelling can be done locally because there is no sensitivity at great distances
from the receiver. The inversion would be simple in the sense that only one parameter is
involved, namely the shear wave speed.

The fact that the depth extension of the sensitivity density is frequency-dependent (and by
means of the above theory easily quantifiable) suggests that one could successively invert for
shallower (or deeper) structures by increasing (or decreasing) the frequency. This, however,
is nothing new in seismic tomography.

A significant problem is - as always - the forward modelling. A multi-scale approach seems
to be the most reasonable solution. Global modelling could be used to generate a teleseismic
wave in a local model which is then used to solve the inverse problem.

What remains to be done? Certainly, one should go through more examples in order to get
some intuition for what the sensitivity kernels really mean. It would also be interesting to see
whether anisotropic structure can affect the measurements of the apparent shear velocity ca.
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Figure 7: Volumetric sensitivity density of the apparent shear velocity ca divided by itself
(relative sensitivity) with respect to the true shear velocity cs. Slice in the y plane through
the source and receiver locations. The unit is s · m−1.
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