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Abstract

The adjoint method is a powerful tool in geophysics that permits the computa-
tion of the exact first derivative of a physical observable or an associated objective
function with respect to its parameters. Typical observables are displacement fields
and flow patterns at the surface. Possible geophysical parameters are density, vis-
cosity or elastic coefficients. When the observable can be modelled by solving a
differential equation, the computation of the derivative only consists in solving the
forward problem and its adjoint problem. Therefore, the adjoint method is far more
efficient than any finite difference approximation. Here we present a mathematical
formalism that generalises the derivation of the adjoint problem. In order to con-
nect to work by Tarantola (1984, Geophysics, 49(8), 1259) we first give a derivation
of the adjoint equations for the scalar wave equation in two dimensions. As objec-
tive function we choose the time integral over the quadratic difference between the
modelled wave field and real data. In this case the adjoint problem coincides with
the original forward problem, the only difference being that the adjoint field satis-
fies terminal rather than initial conditions. A numerical example in two dimensions
demonstrates that the adjoint field focusses near the location of a parameter pertur-
bation at the same time when the original wavefront reaches that location. Based on
this simple example, we introduce a generalised formalism for the adjoint method.
It is independent of the existence of Green’s functions and their spatio-temporal
reciprocity relations. Moreover, the formalism applies to non-linear equations such
as the Navier-Stokes equations. This may become important in mantle flow recon-
structions. The source term of the adjoint equations depends only on the specific
objective function. Choosing the objective function to coincide with the observable
itself, allows us the computation of Jacobians, i.e., the derivative of the observable
with respect to the model parameters. To demonstrate the consistency of our for-
malism with earlier analyses, we consider the anisotropic elastic wave equation with
attenuation, which is of major interest in seismology.
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1 Introduction

Determination of the structure and dynamics of the Earth’s deep interior is
one of the principal objectives of geophysics. Efforts of imaging the Earth
on a global scale, early on lead to radial density and velocity models de-
duced primarily from global observations of the arrival times of seismic phases
(Dziewonski et al., 1975; Dziewonski & Anderson, 1981; Kennett & Engdahl,
1991; Kennett et al., 1995). These models are consistent with petrologic mantle
models and form the basis of three-dimensional global tomographic images of
the Earth’s interior. Following the pioneering work by Dziewonski (1977, 1984),
Masters et al. (1996) inverted for a shear-velocity model in the mantle com-
bining surface wave, free oscillation and traveltime data. Similar models were
obtained by Grand (1994) and Grand et al. (1997). Mégnin and Romanowicz
(2000) employed an asymptotic coupling theory for normal modes in order to
invert body, surface and higher-mode waveforms for shear heterogeneity in the
mantle. Body and Rayleigh waves as well as normal mode splitting functions
have been used by Ritsema and van Heijst (2000). Tomographic images of the
lowermost mantle have been obtained by Kárason and van der Hilst (2001)
by including differential traveltimes of core phases. Gorbatov and Kennett
(2003) and Kennett and Gorbatov (2004) jointly inverted the arrival-times of
P and S waves for bulk-sound and shear wavespeed anomalies in the mantle,
thus increasing the interpretability in terms of temperature and compositional
variations. These studies have greatly improved our understanding of three-
dimensional heterogeneity; and the large-scale mantle heterogeneity structure
is now well agreed upon (Becker & Boschi, 2002).
In a related effort geodynamicists have demonstrated a strong correlation be-
tween the history of subduction and large-scale seismic mantle heterogene-
ity structure (Richards & Engebretson, 1992; Lithgow-Bertelloni & Richards,
1998). This latter insight has led to the construction of so-called mantle cir-
culation models (Bunge et al., 1998, 2002). The dynamic processes of mantle
convection manifest themselves as lateral variations in density, temperature
and composition, which map into the visco-elastic structure of the mantle.
This means that temperature and density variations correspond to variations
in seismic velocities (Brown & Shankland, 1981; Duffy & Ahrens, 1992; Mat-
tern et al., 2005). Therefore, the analysis of seismic waves allows us to infer
flow patterns in the mantle (van der Hilst et al., 1997; Kárason & van der
Hilst, 2000)
It is indisputable, that the existing tomographic images of the mantle suc-
cessfully contributed to the understanding of the planet’s dynamics. Still, the
inversions are based on substantially simplified forward models, namely ray
theory and finite normal mode summations. Ray theory is only applicable
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to the arrival times of high frequency waves, therefore significantly reducing
the amount of exploitable information. Normal mode approximations rely on
smoothly varying structure and long period waveforms, resulting in a limita-
tion of resolution.
The fact that today’s computational power is sufficient to accurately solve the
wave equation in realistic Earth models (e.g. Igel et al., 1995; Komatitsch et
al., 2000) suggests that the next step in seismic inversion consists in replac-
ing the approximate forward models by the exact forward model. This may
allow us to invert for seismic waveforms with shorter periods. Intuitively, one
expects that the resulting increase of exploited information translates to an
increase of resolution especially in poorly sampled regions.
There exist different conceptions of what it means to solve an inverse prob-
lem. In probabilistic inverse theory (Tarantola, 1987) the solution of the inverse
problem is defined as a marginal probability density in the model space. Unless
the probability density is very simple, it can only be characterized by explor-
ing the model space, usually on the basis of Monte Carlo methods (e.g. Press,
1968). Though very general and elegant, this approach suffers from the large
number of forward problem evaluations necessary to perform the model space
exploration. Therefore the process of solving the inverse problem is in practice
often equated with the minimisation of the difference between observed and
synthetic data with respect to the model parameters. In the context of wave-
form inversion, the solution would thus be defined as the model pmin that
minimizes the difference between an observed waveform u0 and a synthetic
waveform u. This difference can be quantified through an objective function
E, which may additionally depend on the model parameters p and a priori
parameters p0.
In this context the total derivative of E with respect to p, denoted by DpE, be-
comes important. It may be used for an inversion based on a gradient method
and for sensitivity and resolution analyses. The major complication is that the
computation of DpE requires the computation of Dpu, i.e., the total derivative
of the wavefield u with respect to the model parameters. Due to the very large
size of the model space it is practically infeasible to obtain this quantity by
classical finite differencing techniques.
An elegant and physically insightful solution to this problem is the adjoint
method. It allows us to compute the derivative with respect to the parame-
ters by combining the synthetic forward wavefield and an adjoint wavefield
governed by a set of adjoint equations and adjoint subsidiary conditions. This
concept was introduced by Tarantola (1984, 1988) into the field of seismol-
ogy. It forms the basis of numerical studies by Gauthier et. al (1986) and
applications to the inversion for 1-D and 2-D structure from marine reflection
seismograms (Crase et al., 1990; Igel et al., 1996). Recently, the adjoint method
was used in the context of finite-frequency traveltime kernels (Tromp et al.,
2005). One of the principal characteristics of the adjoint problem in seismology
is time reversal, meaning that the adjoint problem consists of a propagation
of the observed waveform residuals backward in time and from the receiver to
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the source. Time reversals are relatively common in geophysics and in partic-
ular in the field of reverse-time migration (e.g. Baysal, 1983). This technique
however, focusses only on the imaging of structures that, for a given seismic
signal frequency, appear as a discontinuity. Moreover, reverse-time migration
suffers from two significant deficiencies: it applies the acoustic approximation
and unphysical variants of the wave equation; thus, for example, it neglects
radiation patterns of both the field emitted by the source and the secondary
field set off by a perturbation in density or elastic parameters. Adjoint prob-
lems have already been used in other branches of the earth sciences such as
meteorology (Talagrand & Courtier, 1987) and geodynamics (Bunge et al.,
2003). Even though the principal ideas are identical, the differences between
the physics of the Navier-Stokes equations and the wave equation renders a
one-to-one translation of methods from geodynamics to seismology impossi-
ble.
In the present paper we derive the adjoint problem for the case of a simple
two-dimensional scalar wave equation and a least squares objective function.
Based on this example we introduce a formalism that allows to generalise
the adjoint method to arbitrary differential operators and objective functions.
The derivatives of the objective functions are exact. Moreover, it becomes
clear that it is possible to extend the method to non-linear equations and to
compute wave field Jacobians by simply choosing specific objective functions.
As an application relevant for seismology, we consider the anisotropic wave
equation with attenuation. The resulting adjoint problem coincides with the
one found by Tarantola (1988), which demonstrates the consistency of our
approach.
The results presented in this paper form the basis of a second paper on the
adjoint method in seismology. The theory introduced in the following sections
will there be used in order to deduce expressions for waveform sensitivity ker-
nels and information about the physical meaning of the first derivative. A
waveform inversion procedure applicable on continental or global scales is the
long-term objective to which this study hopes to contribute.

2 Preliminaries

The adjoint method can be described most elegantly and most efficiently with
a modern mathematical notation which we will briefly introduce here (e.g.
Kantorowitsch & Akilow (1964)). Consider an operator P mapping an element
x of a space X to an element y of another space Y , i.e., P (x) = y. The operator
P may for example be an ordinary scalar function or a tensor of any order.
The elements x and y can be scalars, tensors or even other operators. A linear
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operator U satisfying the relation

lim
ε→0

1

ε
[P (x+ εx0)− P (x)] = U(x0) (1)

for all x0 ∈ X, is called the first derivative of P with respect to x in the
direction x0. Symbolically, we write U(x0) = DP (x)(x0). This derivative is
called the Gâteaux derivative or weak derivative. If it exists uniformly with
respect to the differentiation directions x0, it is termed the Fréchet derivative
or strong derivative. A justification for this notation, which is in contrast to
the commonly used dy/dx, is that a quotient of two elements y ∈ Y and x ∈ X
may not be defined. This is the case for example if x is a vector in Rn or a
distributed variable that vanishes at some point. Moreover, the generalised
derivative has always a direction x0 that has to be part of the notation. When
f is a function depending on a vector x ∈ R3, we may alternatively write
Df(x)(x0) = (x0 · ∇)f(x). One may extend the well-known chain rule to the
case of composed operators. Assuming that for an operator R the expression
R(x) is given by R(x) = P (Q(x)), i.e., the composition of the operators P
and Q, the generalised chain rule states that the derivative of R with respect
to x in the direction x0 is given by

DR(x)(x0) = DP (Q(x))(y0) with y0 = DQ(x)(x0). (2)

When P takes more than one variable, e.g. y = P (x1, x2), with x1 and x2

elements of the spaces X1 and X2, respectively, we define

lim
ε→0

1

ε
[P (x1 + εx′1, x2)− P (x1, x2)] =: U1(x

′
1) =: ∂x1P (x1, x2)(x

′
1) , (3)

where =: denotes equality by definition. If U1 exists and if it is linear with
respect to x′1, it is called the first partial derivative of P with respect to x1 in
the direction of x′1. The partial derivative ∂x2P (x1, x2)(x

′
2) is defined in anal-

ogy to equation (3).
When the function u is a physical observable (e.g. a seismic wavefield) de-
pending on a parameter set p (e.g. density and elastic moduli), then Taylor’s
theorem yields a physical interpretation of the direction of differentiation:
u(p + q) − u(p)

.
= Du(p)(q). Hence, the first derivative with respect to the

parameters p in the direction q is, correct to first order in ||q||, the difference
between u(p) and u(p+ q).

3 The adjoint method for the two-dimensional scalar wave equa-
tion and the least squares objective function

This section gives a simple example that demonstrates the principal idea of the
adjoint method. It proceeds in two steps. First, the definition of an objective
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function E that depends on the physical observable u. Second, the derivation
of the adjoint problem of the two-dimensional scalar wave equation and its
subsidiary conditions. The total derivative of E with respect to the parameter
set p, can then be expressed in terms of u and the solution of the adjoint
problem ψ. In our case, u is a scalar wavefield and p comprises the density
and a shear modulus distributions, i.e., p(x) = (ρ(x), µ(x)).
An objective function is a functional that acts on a physical observable. More
specifically, it can be used to quantify the difference between synthetic data u
and observed data u0. Due to its simplicity the least squares objective function
plays a central role in many physical applications. Let u0(ξ, t) be scalar data
observed at the point x = ξ ∈ G ⊂ R2 and in the time interval t ∈ [t0, t1]. G
is the region in which u is defined. Then the least squares objective function
is given by

E(u) =
1

2

t1∫
t=t0

[u(ξ, t)−u0(ξ, t)]
2 dt =

1

2

t1∫
t=t0

∫
G

[u(x, t)−u0(x, t)]
2δ(x−ξ) d2x dt ,

(4)
where u is a synthetic wavefield computed from the two-dimensional wave
equation with parameters p = (ρ, µ). We may write the integral (4) in the
condensed form

E(u) = 〈1, f(u)〉 with f(u) :=
1

2
[u(ξ, t)− u0(ξ, t)]

2δ(x− ξ) , (5)

which will be useful in section (4). We are interested in the total derivative
of E with respect to the parameters p in the direction of q = (ρ′, µ′). The
application of the chain rule yields

DpE(u)(q) = ∂uE(u)(Dpu(q)) = 〈1, ∂uf(u)(Dpu(q))〉 . (6)

The obvious problem is the presence of Dpu(q) in equation (6). Due to the size
of the parameter space (all possible distributions of µ and ρ), this quantity
can usually not be approximated through finite differencing. The objective of
the adjoint method is the elimination of Dpu(q) from equation (6).
Now consider the two-dimensional scalar wave equation in the domain G with
boundary ∂G, given by

ρ(x)∂2
t u(x, t)−∇ · (µ(x)∇u(x, t)) = g(x, t) (7a)

for x ∈ G ⊂ R2, t ∈ [t0, t1] and complemented by the set of subsidiary
conditions:

u(x, t)|x∈∂G1 = 0 , Cauchy condition (7b)

n · ∇u(x, t)|x∈∂G2 = 0 , Neumann condition (7c)

u(x, t)|t=t0 = ∂tu(x, t)|t=t0 = 0 , initial conditions (7d)
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with ∂G1 ∪ ∂G2 = ∂G. All vector quantities in these equations, including the
gradient operator, are two-dimensional. Noting that Dp = Dµ + Dρ, we can
differentiate equation (7a) with respect to the parameters p,

ρ′∂2
t u−∇ · (µ′∇u) + ρ∂2

t v −∇ · (µ∇v) = 0 , (8)

with v := Dpu(q). Equation (8) is homogeneous because the source term g
is independent of the parameters p = (ρ, µ). We now introduce an arbitrary,
but sufficiently nice test function ψ. Combining ψ and equation (8) by means
of the integral 〈. , .〉 yields

〈ψ, ρ′∂2
t u−∇ · (µ′∇u)〉+ 〈ψ, ρ∂2

t v −∇ · (µ∇v)〉 = 0 . (9)

The next task is to transform the second summand in equation (9) such that
ψ and v reverse their positions. In doing so we will have to subject the test
function ψ to various conditions. Finally, a complete set of conditions will lead
to a precise determination of ψ, therefore transforming it from the originally
arbitrary test function ψ into the well-defined adjoint wavefield. We start with
the term involving ∂2

t v. It can easily be transformed using a double integration
by parts.

〈ψ, ρ∂2
t v〉 =

∫
G
ρψ∂tv d

2x |t1t=t0
−

∫
G
ρv∂tψ d

2x |t1t=t0
+ 〈v, ρ∂2

t ψ〉. (10)

The homogeneous initial conditions for v = Dpu(q), which follow from the
differentiation of the initial conditions (7d) for u, imply that we can eliminate
the first two terms on the right-hand side of (10) by imposing the terminal
conditions ψ(x, t)|t=t1 = 0 and ∂tψ(x, t)|t=t1 = 0 upon ψ. Then we obtain

〈ψ, ρ∂2
t v〉 = 〈v, ρ∂2

t ψ〉. (11)

Similarly, the term 〈ψ,∇·(µ∇v)〉 can be transformed with the two-dimensional
version of Gauss’ theorem and the differentiated boundary conditions (7b) and
(7c). Using the identity

∇ · (µψ∇v)−∇ · (µv∇ψ) = ψ∇ · (µ∇v)− v∇ · (µ∇ψ) , (12)

we find

〈ψ,∇·(µ∇v)〉 =

t1∫
t=t0

∫
∂G1

(µψ∇v)·n ds dt−
t1∫

t=t0

∫
∂G2

(µv∇ψ)·n ds dt+〈v,∇·(µ∇ψ)〉 ,

(13)
where ds is a line element and n is the outward-pointing normal on the
curves ∂G1 and ∂G2, respectively. By imposing the two additional conditions
ψ(x, t)|x∈∂G1 = 0 and n · ∇ψ(x, t)|x∈∂G2 = 0 upon ψ, equation (13) reduces to

〈ψ,∇ · (µ∇v)〉 = 〈v,∇ · (µ∇ψ)〉 . (14)
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Without imposing any additional constraints on ψ, similar transformations
lead to

〈ψ, ρ′∂2
t u−∇ · (µ′∇u)〉 = −〈ρ′, ∂tψ ∂tu〉+ 〈µ′, (∇u) · (∇ψ)〉 . (15)

We may now rewrite equation (9) as

〈v, ρ∂2
t ψ −∇(µ∇ψ)〉 − 〈ρ′, ∂tψ ∂tu〉+ 〈µ′, (∇u) · (∇ψ)〉 = 0 . (16)

Remembering that v = Dpu(q) is the derivative that we wish to eliminate
from the derivative of E (see equation (6)), we add the homogeneous equation
(16) to equation (6),

DpE(u)(q) = 〈v, ∂uf+ρ∂2
t ψ−∇(µ∇ψ)〉−〈ρ′, ∂tψ ∂tu〉+〈µ′, (∇u)·(∇ψ)〉 . (17)

It is possible to eliminate v by imposing one last condition upon ψ, namely

ρ(x)∂2
t ψ(x, t)−∇ · (µ(x)ψ(x, t)) = −∂uf (18a)

At this point we can state our final result: Given that the function ψ satisfies
equation (18a) for x ∈ G ⊂ R2, t ∈ [t0, t1] and the set of subsidiary conditions:

ψ(x, t)|x∈∂G1 = 0 , Cauchy condition (18b)

n · ∇ψ(x, t)|x∈∂G2 = 0 , Neumann condition (18c)

ψ(x, t)|t=t1 = ∂tψ(x, t)|t=t1 = 0 , terminal conditions (18d)

then the total derivative of the objective function E with respect to the model
parameters p = (ρ, µ) in the direction of q = (ρ′, µ′) is given by

DpE(u)(q) = −〈ρ′, ∂tψ ∂tu〉+ 〈µ′, (∇u) · (∇ψ)〉 . (19)

The set of equations (18a) to (18d) is referred to as the adjoint problem of
equations (7a) to (7d). Combining u and the adjoint field ψ according to equa-
tion (19) gives the exact derivative of the objective function E. What makes
this method attractive is the fact that the adjoint problem is very similar to
the original problem, meaning that it also consists in solving a two-dimensional
wave equation subject to a set of subsidiary conditions. The spatial boundary
conditions translate one-to-one, whereas the temporal boundary conditions
translate from an initial condition in the original problem to a terminal condi-
tion in the adjoint problem. This unusual terminal condition can be interpreted
by considering the source term of the adjoint equations, namely

−∂uf = −[u(x, t)− u0(x, t)] δ(x− ξ) . (20)

The source acts at a single point and its time function consists in the negative
linear residuals, i.e., the linear difference between the synthetic and observed
data. Therefore, solving the adjoint problem can be interpreted as a propaga-
tion of the residuals backward in time, meaning from t = t1 to t = t0. As will
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become clear in the next section, the residuals will focus in the region where
they came from: a parameter perturbation of the assumed model parameters
p with respect to the true model parameters p0. Note that the source of the
forward wavefield is completely absent in the adjoint problem. It merely enters
implicitly via u.

The two-dimensional scalar wave equation is well suited for an illustration of
the physical meaning of wave equation adjoints in general because the prin-
cipal concept translates to more complex cases which include elasticity and
anisotropy.
The numerical examples in this section are based on a finite differences solu-
tion of equations (7a) to (7d). A free surface condition is implemented at the
top (z = 0km), whereas the bottom boundary (z = 150 km) is rigid. Periodic
boundary conditions are implemented on the left and right boundaries. The
parameter model p0 = (ρ0, µ0) used to generate the data u0 is homogeneous
in both density (ρ = 3.0 ·103 kgm−3) and shear modulus (µ = 75 ·109 Nm−2)
with the exception of one single cell located at (x, z) = (150, 70) km where the
density is increased to a value of ρ = 3.5 · 103 kgm−3. Therefore, the shear
velocity equals vs = 5km s−1 almost everywhere in the parameter model. The
reference model p is completely homogeneous. Hence, the observed residuals
arise merely from a single-cell perturbation of one model with respect to the
other. The two wavefields u(p) and u(p0) are both recorded at 150 evenly
spaced receivers on the free surface (z = 0). This relatively high number of
receivers will mostly be unrealistic in practical applications but it can well be
justified for the purpose of illustration. Note that due to linearity an objective
function consisting of a sum of time-integrated squared residuals,

E(u) =
1

2

N∑
i=1

∫ t1

t=t0
[u(p; ξi, t)− u(p0; ξi, t)]

2 dt , (21)

where ξi are the locations of the N receivers, simply translates to a superpo-
sition of adjoint sources and therefore to a superposition of adjoint wavefields.
Since the source of the forward wavefields does not explicitly enter the adjoint
equations, there are no restrictions whatsoever on that source. It may be a
spatially extended source, a point source or a number of point sources. Here,
for simplicity, we used a single point source located at (x, z) = (150, 1) km,
i.e., close to the free surface and directly above the density perturbation. The
source radiates a Ricker wavelet with a dominant frequency of 0.3Hz.

Figure (1) shows snapshots of the forward field u(p;x, t) (left) and the adjoint
field ψ(x, t) (right) at times t = (100, 185, 300, 400) s. The colour scales are
not uniform but individually adjusted in order to emphasise the geometries
of the wavefields at different times. Before t = 150 s the two wavefields over-
lap only weakly, therefore resulting in a small contribution to the derivative of
the objective function derivative, which is DpE(u)(ρ) = −〈ρ′, ∂tψ ∂tu〉. Around
t = 185 s the adjoint wavefield focusses near the location of the density per-
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Fig. 1. Snapshots of the forward wavefield u(p;x, t) (left) and the adjoint wavefield
ψ(x, t) (right). The major contribution to the derivative DpE(u)(q) arises from
a focussing of the adjoint field near the location of the density perturbation at
(x, z) = (150, 70) km (indicated by ’×’) and a simultaneous passage of the wavefront
of the forward field through that point. The two fields overlap only weakly before
and after the focussing, therefore leading to significantly smaller contributions. A
single point source indicated by ’o’ is at (x, z) = (150, 1) km.

Fig. 2. Total derivative of the least squares objective function E with respect
to density. A clearly visible peak is located near the density perturbation at
(x, z) = (150, 70) km. Additional non-zero contributions extend to the surface in
the form of narrow branches.

turbation, namely at (x, z) = (150, 70) km. At the same time the wavefront of
u passes through this point. Consequently, the product ∂tu ∂tψ becomes large,
resulting in a significant contribution to DpE(u)(q). Subsequently, the adjoint
field de-focusses and finally disappears, as required by the terminal conditions.

The resulting total derivative of E with respect to ρ is shown in figure 2.
Its mayor contribution is located near the density perturbation, as expected.
However, various additional branches extend up to the surface. Moreover, the
derivative peak is not restricted to the one grid cell where the density pertur-
bation is situated. This effect is related to the finite width of the signal.
It is straightforward to repeat the above example with a shear modulus per-
turbation rather than a density perturbation. Even though the equation for
the derivative with respect to µ is different, the fundamental effects remain
unchanged and the patterns of the derivative differ only in details.
The derivative DρE(u)(ρ′) provides information on the first-order changes in
density that we have to apply to our density model in order to obtain the per-
turbed model, which in practice is the Earth model that we wish to invert for.
However, a certain waveform residual caused by a pure density perturbation
may also by explained by a shear modulus perturbation. Mathematically this
phenomenon manifests itself by a mapping of a density perturbation into the
shear modulus derivative and vice versa.

4 A generalisation of the adjoint method

For various reasons it is desirable to obtain a generalisation of the adjoint
method, outlined in the previous section for the specific case of the two-
dimensional scalar wave equation and the least squares objective function.
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First of all, such a generalisation will provide deeper insight into the math-
ematical structure of the problem, therefore potentially leading to new ap-
plications. Also, a condensed notation will allow us to treat more complex
problems.

4.1 Generalised notation

First, it is necessary to introduce the condensed notation already mentioned: It
proves to be efficient to replace an explicit differential equation by an abstract
operator L. It maps a physical observable u = u(x, t) to a right-hand side
g(x, t). The operator L may itself depend on a set of parameters p as well as
on the spatial variable x and the time variable t. In symbols:

L(u;p,x, t) = g(x, t) . (22)

We use bold face symbols to indicate that they are (potentially) vector quan-
tities. The dependence of L on the parameters p implies a dependence of u
on p. Therefore, it is more precise to write u = u(p;x, t). As an example we
may once more consider the two-dimensional scalar wave equation. Its corre-
sponding operator is

L([ . ];p,x, t) = ρ∂2
t [ . ]−∇ · (µ∇[ . ]) , (23)

where [ . ] indicates the position of the function to which the operator can be
applied. The parameters p are µ and ρ. Using this notation, we can rewrite
the two-dimensional scalar wave equation in the form L(u;p,x, t) = g(x, t).
A special notation has already been introduced for the least squares objective
function. Now, we will consider an arbitrary objective function that in addition
to u also depends on the model parameters p, i.e., E = E(u,p). Moreover, we
assume that E can be expressed as

E(u,p) = 〈1, f(u,p)〉 , (24)

where f is an adequate scalar function and 〈 . , . 〉 a bilinear form, i.e., an
expression that is independently linear in both arguments. Equations (4) and
(5) define one possible bilinear form.

4.2 The adjoint method

We are interested in the total derivative of an objective function E(u,p) =
〈1, f(u,p)〉 with respect to the model parameters p in some direction q. In-
voking the chain rule gives

DpE(u,p)(q) = 〈1, ∂uf(u,p)(v)〉+ 〈1, ∂pf(u,p)(q)〉 , (25)
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with v := Dpu(p;x, t)(q). As already mentioned in the section on the two-
dimensional scalar wave equation, the presence of Dpu in equation (25) is
problematic. Due to time-consuming forward problem solvers and very large
model spaces it will often be unfeasible to approximate this derivative by
means of finite differencing. To eliminate Dpu from the expression for DpE we
first rewrite equation (25) as

DpE(u,p)(q) = 〈v, ∂uf(u,p)〉+ 〈q, ∂pf(u,p)〉 . (26)

This can be done because all derivatives are by definition linear with respect to
the differentiation direction and therefore the new expressions are still bilinear.
In order to avoid overnotation we did not indicate that the bilinear forms
〈 . , . 〉 in (26) are not identical to the one in (25). Differentiating the operator
equation (22) with respect to p yields

DpL(u;p)(q) = ∂uL(u;p)(v) + ∂pL(u;p)(q) = 0 . (27)

The dependence of L on x and t has been omitted in the notation. Now let ψ
be an arbitrary but sufficiently nice test function. Since 〈 . , . 〉 is independently
linear in both arguments we find

〈ψ, ∂uL(u;p)(v)〉+ 〈ψ, ∂pL(u;p)(q)〉 = 0 . (28)

Assuming that there exist two operators ∂uL
∗(u;p) and ∂pL

∗(u;p) satisfying
the relations

〈ψ, ∂uL(u;p)(v)〉 = 〈v, ∂uL
∗(u;p)(ψ)〉 and (29a)

〈ψ, ∂pL(u;p)(q)〉 = 〈q, ∂pL
∗(u;p)(ψ)〉 , (29b)

equation (28) can be rewritten as

〈v, ∂uL
∗(u;p)(ψ)〉+ 〈q, ∂pL

∗(u;p)(ψ)〉 = 0 . (30)

It is part of the problem to find the transposed operators ∂uL
∗(u;p) and

∂pL
∗(u;p). In the case of the two-dimensional scalar wave equation operator,

integration by parts and Gauss’ theorem lead to expressions for ∂uL
∗(u;p)

and ∂pL
∗(u;p). But still, their existence was bound to a number of condi-

tions on the test function ψ. This means that the transposes exist only for a
smaller class of test functions, namely those satisfying the adjoint subsidiary
conditions. Adding equation (26) to equation (30) leads to

DpE(u,p)(q) = 〈v, ∂uf(u,p)+∂uL
∗(u;p)(ψ)〉+〈q, ∂pf(u,p)+∂pL

∗(u;p)(ψ)〉 .
(31)

The term v = Dpu(p;x, t) may now be eliminated from (31) by imposing

∂uf(u,p) + ∂uL
∗(u;p)(ψ) = 0 . (32)

12



This is the adjoint equation. Together with the adjoint subsidiary conditions,
required for the existence of the transposed operators, it forms the adjoint
problem. Its solution ψ, if it exists, is the adjoint field. If the adjoint problem
can be solved, we can express DpE(u,p)(q) as

DpE(u,p)(q) = 〈q, ∂pf(u,p) + ∂pL
∗(u;p)(ψ)〉 . (33)

Equation (33) relates the total derivative of the objective function E to a bilin-
ear functional of the direction q and the adjoint field ψ. Therefore, to obtain
DpE(u,p)(q), it is sufficient to solve only once the original problem and the
adjoint problem.
At this point let us briefly summarise the assumptions that we made so far.
Firstly, we assumed that there exist two transposed operators. This may in-
deed be an obstacle. Depending on the operator L, it may not be possible to
find them. Secondly, we required an adjoint field ψ, satisfying both the adjoint
subsidiary conditions and the adjoint equation. However, the adjoint problem
may not have a solution, and if the solution exists, it may not be unique.
Fortunately, we can find and uniquely solve the adjoint problems for all linear
wave propagation phenomena, i.e., for all types of linear wave equation oper-
ators L complemented by adequate subsidiary conditions.

Bilinear operators: The theory outlined so far simplifies significantly if
the operator L is bilinear, i.e., if it satisfies the relation

L(αu+βv; γp+ εq) = αγL(u;p)+αεL(u;q)+βγL(v;p)+βεL(v;q) (34)

for all fields u,v,p,q and for all scalars α, β, γ, ε. Due to the bilinearity, the
total derivative of L(u;p) with respect to the parameters p is

DpL(u;p)(q) = ∂uL(u;p)(v) + ∂pL(u;p)(q) = L(v;p) + L(u;q) , (35)

where v(p) = Dpu(p)(q). Introducing the notation ∂uL
∗ = Lu and ∂pL

∗ = Lp,
equations (32) and (33) reduce to

Lu(ψ;p) + ∂uf = 0 , DpE(u;p)(q) = 〈q, ∂pf(u;p) + Lp(u;ψ)〉 . (36)

It is straightforward to verify that the scalar wave equation operator defined
in (23) is bilinear, i.e., independently linear in u and p = (ρ, µ). Moreover, in
this specific case, we find the identity

Lu(ψ;p) = ρ∂2
t ψ −∇ · (µ∇ψ) = L(ψ;p) . (37)

Therefore, the two-dimensional scalar wave equation is self-adjoint. This prop-
erty is closely related to energy conservation and spatial reciprocity. Note that
the adjoint equation is independent of the field u in the case of a bilinear op-
erator.

Non-linear operators: An important mathematical aspect of the adjoint

13



method is that we are strictly speaking not interested in the transpose of the
operator L but in the transposes of its two partial derivatives ∂uL and ∂pL.
Since the derivatives are by definition linear in the differentiation directions
we can hope to find transposes even if L itself is non-linear. As an example
we analyse the substantial derivative term

L(u(p)) = (u · ∇)u , (38)

which appears in the Navier-Stokes equations. It is assumed that u is defined
in a region G and that the condition u · dΓ = 0 holds for every boundary
element dΓ. Differentiating L with respect to u in the direction v yields

〈ψ, ∂uL(u)(v)〉 = 〈ψ, (u · ∇)v〉+ 〈ψ, (v · ∇)u〉 , (39)

where ψ is a test function. The bilinear form is defined as 〈 . , . 〉 =
∫
G( . , . )d3x.

The first summand in equation (39) can be transformed with Gauss’ theorem,

〈ψ, (u · ∇)v〉 = −〈v, (u · ∇)ψ〉 − 〈v,ψ(∇ · u)〉 . (40)

Combining equations (39) and (40) gives

〈ψ, ∂uL(u)(v)〉 = 〈v, (∇u) ·ψ −ψ(∇ · u)− (u · ∇)ψ〉 (41)

and therefore

∂uL
∗(u(p))(ψ) = (∇u) ·ψ −ψ(∇ · u)− (u · ∇)ψ . (42)

This result may become important in fluid dynamics inverse problems that go
beyond the Boussinesq approximation. Note that in this particular case the
adjoint equations for ψ depend on the original field u.

5 Objective functions

In this section we will consider some specific objective functions E and the
corresponding source terms ∂uf in the adjoint equations. The analysis will be
based on the bilinear form

〈α, β〉 :=

t1∫
t=t0

∫
G

α(x, t)β(x, t) dt dnx , (43)

for two arbitrary integrable functions α and β and G ⊂ Rn.

Jacobians: Let the objective function equal the ith component of the vector
field u at the point x = ξ and the time t = τ , i.e., E(u,p) = ei · u(ξ, τ) =:
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ui(ξ, τ). The relation E(u,p) = 〈1, f(u,p;x, t)〉 implies

f(u,p;x, t) = f(u;x, t) = ei · u(x, t) δ(x− ξ) δ(t− τ) . (44)

It follows that the source term of the adjoint equation is given by

∂uf = ei δ(x− ξ) δ(t− τ) . (45)

This means that the adjoint field ψ has its source acting on a point at the
observation time τ and the observation point ξ. Given that the model space
has a finite dimension m and basis vectors ek with k = 1, ...,m, the derivative
of E with respect to the parameters ek gives the Jacobian of u, i.e.,

DpE(u,p)(ek) = Dpui(p)(ek) =
∂

∂pk

ui(ξ, τ) . (46)

Generalised least squares: Let u0(ξ, τ) denote values of the observable u
measured over time t at the location x = ξ. When measurement and modelisa-
tion errors, as well as departures from the a priory model p0 can be modelled
with Gaussian distributions, the objective function E may be given by

E(u,p) =
1

2

∞∫
−∞

[u(ξ, t)− u0(ξ, t)] ·C−1
d (t) · [u(ξ, t)− u0(ξ, t)] dt

+
1

2

∫
G

[p(x)− p0(x)] ·C−1
p (x) · [p(x)− p0(x)] d3x . (47)

The symmetric second order tensor C−1
d describes measurement and modeli-

sation errors, while the symmetric second order tensor C−1
p contains all prior

information on the parameter space (e.g. Tarantola, 1987). The function f
corresponding to E is

f(u;x, t) =
1

2
[u(x, t)− u0(x, t)] ·C−1

d (t) · [u(x, t)− u0(x, t)] δ(x− ξ)

+
1

2
[p(x)− p0(x)] ·C−1

p (x) · [p(x)− p0(x)] δ(t) . (48)

This translates to the following source term of the adjoint problem:

∂uf = C−1
d (t) · [u(x, t)− u0(x, t)] δ(x− ξ) . (49)

A point source is located directly at the observation point x = ξ. Its source
time function and the amplitude of the source are specified by the development
of the residuals u− u0 over time, weighted by C−1

d .
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6 The anisotropic wave equation with attenuation

As an application of the theory outlined so far we analyse in this section the
adjoint problem for the anisotropic wave equation with attenuation. Similar
results have already been obtained by Tarantola (1988) who used an approach
based on the Born approximation and the existence of the Green’s function.
The linearised conservation of momentum is given by

ρ(x)∂2
t u(x, t)−∇ ·T(x, t) = g(x, t) , (50)

where ρ is the initial mass density distribution, u the incremental displace-
ment field, T the incremental stress tensor and g a body force density. The
incremental stress tensor T can be related to the displacement field u via the
constitutive relation

T(x, t) =
∫ ∞

−∞
Φ(x, t− τ) : ∇u(x, τ) dτ . (51)

The rate of relaxation function Φ is a fourth order tensor assumed to satisfy
the relations

Φ(x, t)|t<0 = 0 and Φijkl = Φklij = Φjikl , (52)

i.e., causality and elastic symmetry. In the case of cartesian coordinates the
invariant notation Φ : ∇u is equivalent to Φijkl∂kul in index notation. Inserting
(51) into (50) allows us to express the wave equation operator L in terms of
the displacement field u and the medium parameters Φ and ρ,

L(u;Φ, ρ,x, t) = ρ(x)∂2
t u(x, t)−∇ ·

∫ t

−∞
Φ(x, t− τ) : ∇u(x, τ) dτ , (53)

for t ∈ [t0, t1]. In order to guarantee uniqueness, the equations have to be
complemented by a set of subsidiary conditions.

u(x, t)|t=t0 = g1(x) , (initial cond.) (54a)

∂tu(x, t)|t=t0
= g2(x) , (initial cond.) (54b)

u(x, t)|t<t0 = 0 , (quiescent past) (54c)

u(x, t)|x∈Γ1 = b1(x, t) , (Cauchy cond.) (54d)

n ·
∫ t

−∞
Φ(x, t− τ) : ∇u(x, τ) dτ

∣∣∣∣
x∈Γ2

= b2(x, t) , (Neumann cond.)

(54e)
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Again, we require ∂G = Γ1 ∪ Γ2. It is convenient to decompose L into L =
L1 + L2 with

L1(u; ρ,x, t) := ρ(x)∂2
t u(x, t) , (55)

L2(u;Φ,x, t) := −∇ ·
∫ t

−∞
Φ(x, t− τ) : ∇u(x, τ) dτ , (56)

and to analyse the two summands separately. Using the bilinear form

〈a,b〉 :=
∫

G

∫ t1

t0
a(x, t) · b(x, t) d3x dt , (57)

for any two integrable fields a and b, we find

〈ψ, DρL1(u; ρ)(ρ′)〉 =〈ψ, ∂ρL1(u; ρ)(ρ′)〉+ 〈ψ, ∂uL1(u; ρ)(v1)〉
=〈ψ, ρ′∂2

t u〉+ 〈ψ, ρ∂2
t v1〉

=〈ρ′,ψ · ∂2
t u〉+ 〈v1, ρ∂

2
tψ〉

=〈ρ′, ∂ρL
∗
1(u; ρ)(ψ)〉+ 〈v1, ∂uL

∗
1(u; ρ)(ψ)〉 = 0 , (58)

with v1(Φ, ρ;x, t) := Dρu(Φ, ρ;x, t)(ρ′). To obtain this equality, we repeat-
edly integrated by parts and imposed the homogeneous terminal conditions
ψ(x, t)|t=t1 = 0 and ∂tψ(x, t)|t=t1

= 0 onto the adjoint field. It remains to
consider the spatial derivative operator L2. Due to the bilinearity of L2 with
respect to Φ and u, its derivative with respect to Φ in the direction of Φ′ is

DΦL2(u;Φ,x, t)(Φ′) = ∂ΦL2(u;Φ,x, t)(Φ′) + ∂uL2(u;Φ,x, t)(v2)

= −∇ ·
∫ t

−∞
Φ(x, t− τ) : ∇v2(x, τ) dτ

−∇ ·
∫ t

−∞
Φ′(x, t− τ) : ∇u(x, τ) dτ , (59)

with v2(Φ, ρ;x, t) := DΦu(Φ, ρ;x, t)(Φ′). The perturbation or differentiation
direction Φ′ should satisfy the same symmetry relations as Φ and be causal.
In the appendix, we demonstrate that the complete adjoint problem is

Lu(ψ;Φ, ρ,x, t) = ρ(x)∂2
tψ(x, t)−∇ ·

∫ ∞

−∞
Φ(x, τ − t) : ∇ψ(x, τ) dτ = −∂uf ,

(60)
with subsidiary conditions

ψ(x, t)|t=t1 = 0 , (terminal condition) (61a)

∂tψ(x, t)|t=t1
= 0 , (terminal condition) (61b)

ψ(x, t)|t>t1 = 0 , (quiescent future) (61c)

ψ(x, t)|x∈Γ1 = 0 , (Cauchy condition) (61d)

n ·
∫ ∞

−∞
Φ(x, τ − t) : ∇ψ(x, τ) dτ

∣∣∣∣
x∈Γ2

= 0 . (Neumann condition) (61e)
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The explicit formula for the derivative of the objective function E is

D(Φ,ρ)E(u,Φ, ρ)((Φ′, ρ′)) = DρE(u,Φ, ρ)(ρ′) +DΦE(u,Φ, ρ)(Φ′)

=
∫

G

∫ t1

t=t0
ρ′(x)

[
∂ρf +ψ(x, t) · ∂2

t u(x, t)
]
dt d3x

+
∫

G

∫ t1−t0

t=0
Φ′(x, t) ::

∂Φf +

t1∫
τ=t0+t

∇ψ(x, τ)⊗∇u(x, τ − t) dτ

 dt d3x .

(62)

The symbol ⊗ denotes the tensor or dyadic product ((a⊗ b)ijkl = aijbkl) and
the symbol :: the quadruple scalar product (A :: B = AijklBijkl). In these
formulae we prefer the invariant tensor notation because it is better suited to
reveal the structure of an equation and moreover, it is valid in all coordinate
systems.
The most remarkable similarity between the adjoint problem and the original
problem is the structure of the equations themselves. They are linear and the
time derivative term translates one to one from the original to the adjoint
equation. The invariance of the time derivative term is due to the invariance
of a second derivative to a sign change. This symmetry is closely related to the
conservation of energy. It is therefore not surprising that the spatial derivative
term is different in the adjoint equations because it incorporates the loss of
elastic energy in the form of a time-dependent rheology. Interestingly, the sign
change in the temporal variable t provokes a transition from causality to anti-
causality. The time reversal in the governing equations also translates to a
time reversal in the respective subsidiary conditions, meaning that the adjoint
field ψ is required to have a quiescent future (instead of a quiescent past, as u)
and thus no future strains that could translate to present stresses. Also, note
that the spatial subsidiary conditions of the adjoint problem, i.e., the adjoint
Cauchy and Neumann conditions, are necessarily homogeneous, meaning that
the boundaries are either free (no stresses) or rigid (no displacements). The
terminal conditions are homogeneous as well, irrespective of possible non-zero
initial displacement or velocity distributions.
Equations (60) to (62) were obtained by Tarantola (1988). He founded his
derivation on the first-order Born approximation and the reciprocity relations
of Green’s functions. These equations are in a certain sense very optimistic. In
most applications it is not possible to specify spatial variations of anelasticity
or to determine complete rate of relaxation functions. Simplified equations for
perfectly elastic and isotropic media can in general be obtained by specifying
the rate of relaxation tensor Φ.
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7 Discussion

The first derivative of a physical observable with respect to the parameters de-
termining its properties is of major interest in all quantitative sciences. Large
parameter spaces as those of modern Earth models usually render a direct
approximation of that derivative by means of finite differencing impossible.
An elegant and efficient solution for this problem is the adjoint method in-
troduced into the field of seismology by Tarantola (1984, 1988). The adjoint
method allows us to compute the derivative of an objective function with re-
spect to the model parameters by simply solving the original problem and the
adjoint problem only once.
In this paper we first analysed the adjoint problem for the two-dimensional
scalar wave equation and the least squares objective function. This simple
example served to illustrate both the methodology and the physical meaning
of the adjoint wavefield. In principle, the adjoint method is a mathematical
technique that allows us to eliminate the unknown derivative of the observed
wavefield from the derivative of the objective function by introducing a new
variable ψ.
The two-dimensional scalar wave equation coincides with its adjoint equation.
Also the boundary conditions translate one-to-one from the original to the ad-
joint problem, whereas the initial conditions translate to terminal conditions.
This property of the adjoint problem forces us to solve it by stepping back-
wards in time. For the computation of the drivativeDpE, the forward wavefield
and the adjoint wavefield have to be known at the same point in time. When
the forward problem is not dissipative, DpE can be computed very efficiently
without storing the forward wavefield u. This is because u can in principle
be propagated backward in time, i.e., from t1 to t0, starting with its known
final state u(x, t1). The adjoint field ψ is then being computed simultaneously
and also from t1 to t0. In the case of a dissipative forward problem it becomes
technically infeasible to propagate the forward field backward in time because
lost information can hardly be recovered. Hence, the forward field must be
stored, at least for a certain number of time steps. In this context dissipation
must be seen in a broader sense. It includes physical and numerical dissipa-
tion but also absorbing boundary conditions implemented through damping
regions (e.g. Cerjan et al., 1985).
The source term of the adjoint equation only depends on the objective func-
tion. It is in particular independent of the sources of the forward wavefield.
This offers the possibility to define the forward wavefield as a superposition
of wavefields corresponding to different sources acting at conveniently chosen
points in time. In the case of the least squares objective function the adjoint
source is restricted to the receiver locations and its source time function is de-
termined by the time evolution of the linear residuals. In a simple numerical
example we demonstrated that the adjoint wavefield focusses at the location
of a parameter perturbation. Such a perturbation may for example be a dif-

19



ference between the true Earth model and the numerical model. When this
focussing occurs the wavefront of the original field also reaches the location
of the parameter perturbation. This coincidence leads to a contribution to
the derivative DpE. An implicaton for any gradient-method based waveform
inversion is that one has to account for the anisotropic structure of the Earth.
Neglecting anisotropy would lead to significant problems because the adjoint
field may focus in the wrong positions or it may not focus at all.
Using a condensed notation we found an elegant generalisation of the adjoint
method. The employed terminology is certainly not common in the geophysi-
cal literature; it is however modern mathematical standard and therefore also
widely used in theoretical physics. We saw that the adjoint method relies on
the existence of transposes of the partial derivatives of an operator. Since a
derivative is by definition linear in the differentiation direction, the adjoint
method becomes applicable to non-linear equations such as the Navier-Stokes
equations. In the presence of non-linearity the adjoint field depends directly on
the forward field. For example, the adjoint of the substantial derivative term
involves products of the forward velocity field and the adjoint field. Moreover,
the resulting adjoint equation will not be similar to the orginal equation in-
volving the substantial derivative term. The numerical effort needed to solve
the adjoint problem is therefore significantly increased. Sill, the non-linear
adjoints may become important in future geodynamic applications that go
beyond the usual linearisations.
As our final application we considered the elastic wave equation with atten-
uation and anisotropy. This forward problem is certainly to general for most
seismological applications. However, it provides interesting insight into the
physics of the problem. Also, the resulting equations can easily be simplified.
The wave equation operator looses its symmetry due to the presence of anelas-
ticity. Hence, the adjoint problem differs from the original problem.

8 Conclusions

The adjoint method is an elegant and efficient tool for the computation of
the first derivative of an objective function with respect to model parameters.
Using modern mathematical terminology one finds that the adjoint method
produces exact derivatives and that it does not rely on the existence of Green’s
functions or transposes of a differential operator. Only the transposes of its
partial derivatives are of interest. The method can be applied to non-linear
operators such as the one corresponding to the Navier-Stokes equations. In the
case of the wave equation and the least squares objective function the adjoint
field focusses at the locations of parameter perturbations. The simultaneous
passage of the original wavefront leads to a gradient contribution. This im-

20



plies that gradient-based waveform inversion procedures should account for
anisotropy.
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A The adjoint equations for the anelastic wave equation with at-
tenuation

a) Subsidiary conditions

Subsidiary conditions for the field DΦu(x, t)(Φ′) =: v2(x, t) can be found
through a simple application of the operator DΦ to equations (54a) to (54e):
v2(x, t)|t=t0 = 0, ∂2

t v2(x, t)|t=t0
= 0, v2(x, t)|t<t0 = 0, v2(x, t)|x∈Γ1 = 0 and

n ·

 ∞∫
−∞

Φ(x, t− τ) : ∇v2(x, τ) dτ +

∞∫
−∞

Φ′(x, t− τ) : ∇u(x, τ) dτ

∣∣∣∣∣∣
x∈Γ2

= 0 .

b) Displacement transpose

We already found

DΦL2(u;Φ, x, t)(Φ′) = ∂ΦL2(u;Φ, x, t)(Φ′) + ∂uL2(u;Φ,x, t)(v2) , (A.1)
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with

∂ΦL2(u;Φ, x, t)(Φ′) = −∇ ·
t∫

−∞

Φ′(x, t− τ) : ∇u(x, τ) dτ (A.2)

and

∂uL2(u;Φ,x, t)(v2) = −∇ ·
t∫

−∞

Φ(x, t− τ) : ∇v2(x, τ) dτ . (A.3)

First, we consider the difference

J1 = −
∫
G

t1∫
t=t0

ψ(x, t) ·

∇ ·
∞∫

τ=−∞

Φ(x, t− τ) : ∇v2(x, τ) dτ

 d3x dt

+
∫
G

t1∫
t=t0

v2(x, t) ·

∇ ·
∞∫

τ=−∞

Φ(x, τ − t) : ∇ψ(x, τ) dτ

 d3x dt , (A.4)

for a sufficiently nice vector function ψ. An application of Gauss’ integral
theorem directly yields J1 = J11 + J12, with

J11 :=−
∫
G

t1∫
t=t0

∇ ·

ψ(x, t) ·
∞∫

τ=−∞

Φ(x, t− τ) : ∇v2(x, τ) dτ

 d3x dt

+
∫
G

t1∫
t=t0

∇ ·

v2(x, t) ·
∞∫

τ=−∞

Φ(x, τ − t) : ∇ψ(x, τ) dτ

 d3x dt

=−
∫

∂G

t1∫
t=t0

ψ(x, t) ·
∞∫

τ=−∞

Φ(x, t− τ) : ∇v2(x, τ) dτ

 · dΓ dt
+

∫
∂G

t1∫
t=t0

v2(x, t) ·
∞∫

τ=−∞

Φ(x, τ − t) : ∇ψ(x, τ) dτ

 · dΓ dt (A.5)

and

J12 :=
∫
G

t1∫
t=t0

[∇ψ(x, t)] :

 ∞∫
τ=−∞

Φ(x, t− τ) : ∇v2(x, τ) dτ

 d3x dt

−
∫
G

t1∫
t=t0

[∇v2(x, t)] :

 ∞∫
τ=−∞

Φ(x, τ − t) : ∇ψ(x, τ) dτ

 d3x dt . (A.6)
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The causality property of Φ, i.e., the requirement that Φ(t) = 0 for t < 0,
implies

J12 =
∫
G

t1∫
t=t0

[∇ψ(x, t)] :

 t0∫
τ=−∞

+

t1∫
τ=t0

 Φ(x, t− τ) : ∇v2(x, τ) dτ

 d3x dt

−
∫
G

t1∫
t=t0

[∇v2(x, t)] :

 t1∫
τ=t0

+

∞∫
τ=t1

 Φ(x, τ − t) : ∇ψ(x, τ) dτ

 d3x dt

=
∫
G

t1∫
t=t0

t0∫
τ=−∞

[∇ψ(x, t)] : [Φ(x, t− τ) : ∇v2(x, τ)] d
3x dτ dt

−
∫
G

t1∫
t=t0

∞∫
τ=t1

[∇v2(x, t)] : [Φ(x, τ − t) : ∇Ψ(x, τ)] d3x dτ dt

+
∫
G

t1∫
t=t0

t1∫
τ=t0

[∇ψ(x, t)] : [Φ(x, t− τ) : ∇v2(x, τ)] d
3x dτ dt

−
∫
G

t1∫
t=t0

t1∫
τ=t0

[∇v2(x, t)] : [Φ(x, τ − t) : ∇ψ(x, τ)] d3x dτ dt . (A.7)

Due to the symmetry of Φ, the last two summands of equation (A.7) cancel,
and J1 reduces to

J1 =−
∫

∂G

t1∫
t=t0

ψ(x, t) ·
∞∫

τ=−∞

Φ(x, t− τ) : ∇v2(x, τ) dτ

 · dΓ dt
+

∫
∂G

t1∫
t=t0

v2(x, t) ·
∞∫

τ=−∞

Φ(x, τ − t) : ∇ψ(x, τ) dτ

 · dΓ dt
+

∫
G

t1∫
t=t0

t0∫
τ=−∞

[∇ψ(x, t)] : [Φ(x, t− τ) : ∇v2(x, τ)] d
3x dτ dt

−
∫
G

t1∫
t=t0

∞∫
τ=t1

[∇v2(x, t)] : [Φ(x, τ − t) : ∇ψ(x, τ)] d3x dτ dt . (A.8)

c) Rate of relaxation transpose

We are now interested in transforming the expression

J2 + I2 = −
∫
G

t1∫
t=t0

ψ(x, t) ·

 ∞∫
τ=−∞

Φ′(x, t− τ) : ∇u(x, τ) dτ

 dt d3x , (A.9)
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Fig. A.1. The shaded area corresponds to the temporal integration domain ΩT .

with

J2 := −
∫
G

t1∫
t=t0

∇ ·

ψ(x, t) ·
∞∫

τ=−∞

Φ′(x, t− τ) : ∇u(x, τ) dτ

 dt d3x (A.10)

and

I2 :=
∫
G

t1∫
t=t0

[∇ψ(x, t)] :

 ∞∫
−∞

Φ′(x, t− τ) : ∇u(x, τ) dτ

 dt d3x . (A.11)

The term J2 allows us the application of Gauss’ integral theorem.

J2 = −
∫

∂G

t1∫
t=t0

ψ(x, t) ·
∞∫

τ=−∞

Φ′(x, t− τ) : ∇u(x, τ) dτ

 · dΓ dt . (A.12)

Substituting t′ = t− τ in the inner integral of I2 results in

I2 =
∫
G

t1∫
t=t0

∇ψ(x, t) :

∞∫
t′=−∞

Φ(x, t′) : ∇u(x, t− t′) dt′

 dt d3x . (A.13)

Taking into account that Φ′ is causal and that u = 0 for t < t0, the temporal
integration domain ΩT can be identified as (see figure A.1)

ΩT = {(t, t′) ∈ R2 ; t0 ≤ t ≤ t1 , 0 ≤ t′ ≤ t− t0}
= {(t, t′) ∈ R2 ; 0 ≤ t′ ≤ t1 − t0 , t

′ + t0 ≤ t ≤ t1} . (A.14)

This permits to interchange the temporal integrals as follows:

I2 =
∫
G

t1−t0∫
t′=0

 t1∫
t=t0+t′

∇ψ(x, t) : Φ′(x, t′) : ∇u(x, t− t′) dt

 dt′ d3x

=
∫
G

t1−t0∫
t=0

Φ′(x, t) ::

 t1∫
τ=t0+t

∇ψ(x, τ)⊗∇u(x, τ − t) dτ

 dt d3x . (A.15)

In order to obtain the last identity, I simply set t′ → t and t → τ . Now, I2
may be identified with the bilinear form 〈Φ′, ∂ΦL∗2(ψ)〉P2 , i. e.,

I2 = 〈Φ′, ∂ΦL∗2(ψ)〉P2 . (A.16)

d) Assembling the terms
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Finally, we arrive at

〈ψ, ∂uL2(v2)〉U + 〈ψ, ∂ΦL2(Φ
′)〉U (A.17)

=〈v2, ∂uL
∗
2(ψ)〉U + 〈Φ′, ∂∗Φ(ψ)〉P2 + J1 + J2 .

Inserting the subsidiary conditions for v2, we find

J1 + J2

= −
∫
Γ1

t1∫
t=t0

ψ(x, t) ·
∞∫

τ=−∞

[Φ′(x, t− τ) : ∇u(x, τ)

−Φ(x, t− τ) : ∇v2(x, τ)] · dΓ dt

+
∫
Γ2

t1∫
t=t0

v2(x, t) ·
∞∫

τ=−∞

Φ(x, τ − t) : ∇ψ(x, τ) dτ

 · dΓ dt
−

∫
G

t1∫
t=t0

∞∫
τ=t1

[∇v2(x, t)] : [Φ(x, τ − t) : ∇ψ(x, τ)] d3x dτ dt . (A.18)

Obviously, we can force J1 + J2 to zero, if we require that the conditions

ψ(x, t)|t>t1 = 0 , (quiescent future) (A.19)

ψ(x, t)|x∈Γ1 = 0 , (Cauchy condition) (A.20)

n ·

 ∞∫
−∞

Φ(x, τ − t) : ∇ψ(x, τ) dτ

∣∣∣∣∣∣
x∈Γ2

= 0 , (Neumann condition)

(A.21)

hold. This must be complemented by the already known terminal conditions

ψ(x, t)|t=t1 = 0 and
∂

∂t
ψ(x, t)

∣∣∣∣∣
t=t1

= 0 . (A.22)

Collecting all terms, we arrive at

〈ψ, ∂ρL1(ρ
′)〉U + 〈ψ, ∂uL1(v2)〉U + 〈ψ, ∂uL2(v2)〉U + 〈ψ, ∂ΦL2(Φ

′)〉U
=〈ρ′, ∂ρL

∗
1(ψ)〉P1 + 〈v2, ∂uL

∗
1(ψ)〉U + 〈v2, ∂uL

∗
2(ψ)〉U + 〈Φ′, ∂∗ΦL2(ψ)〉P2

=
∫
G

t1∫
t=t0

ρ′(x)ψ(x, t) · ∂
2

∂t2
u(x, t) dt d3x +

∫
G

t1∫
t=t0

ρ(x)v2(x, t) ·
∂2

∂t2
ψ(x, t) dt d3x

−
∫
G

t1∫
t=t0

v2(x, t) ·

∇ ·
∞∫

τ=−∞

Φ(x, τ − t) : ∇ψ(x, τ) dτ

 d3x dt

∫
G

t1−t0∫
t=0

Φ′(x, t) ::

 t1∫
τ=t0+t

∇ψ(x, τ)⊗∇u(x, τ − t) dτ

 dt d3x . (A.23)
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This proves the relations given in section 6.
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