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Abstract

Will the advent of “petascale” computers be relevant to research in global seismic
tomography? We illustrate here in detail two possible consequences of the expected
leap in computing capability. First, being able to identify larger sets of differently
regularized/parameterized solutions in shorter times will allow to evaluate their
relative quality by more accurate statistical criteria than in the past. Second, it will
become possible to compile large databases of sensitivity kernels, and update them
efficiently in a non-linear inversion while iterating towards an optimal solution. We
quantify the expected computational cost of the above endeavors, as a function of
model resolution, and of the highest considered seismic-wave frequency.
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1 Introduction

In the past decade there have been a number of claims by tomographers that
lead to a re-consideration of certain aspects of the theory of the Earth. Those
claims have been justified by improvements in tomographic resolution. van
der Hilst et al. (1997), for example, inverted a very large database on an un-
precedentedly dense voxel grid, making use of an inversion algorithm that
exploited the inherent sparsity of the linear inverse problem. They found very
sharp images of fast, deep heterogeneities, that, because of their geographic
distribution, were explained in terms of subducted material, sinking into the
lower mantle. This finding, while subject of debate (is “resolution” really as
high as claimed?), has been a strong argument in favour of whole-mantle vs.
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layered convection. More recent examples are the work of Ishii and Dziewonski
(2003), who mapped an “innermost inner core” of only 300 km in radius, sug-
gesting that it be ”the oldest fossil left from the formation of Earth”, and the
controversial article of Montelli et al. (2004), who improved global resolution
by means of a more accurate approach to the calculation of sensitivity func-
tions, and found “clear evidence that a limited number of hotspots are fed by
plumes originating in the lower mantle”; this claim is clearly relevant to the
current debate on the nature of mantle plumes (e.g., Sleep, 2006), involving
all disciplines in the Earth sciences, and stirred a very animated debate.

The controversy originated by these publications, and, in general, the lack of
correlation at short spatial wavelengths between tomographic images derived
in different approaches (e.g., Becker and Boschi, 2002) indicate that the next
important challenge in global seismic tomography is that of finding effective
ways to improve the images’ resolution. We describe in the following the role
that high-performance computing might play, in reference to developments
in tomographic imaging and the subsequent interpretation of mapped Earth
structure.

2 Limiting factors of tomographic resolution

Tomographic resolution, or the smallest lateral extent of a velocity anomaly
that can be correctly mapped by an inversion algorithm, is limited by (i) the
geographic coverage of inverted seismic observations, (ii) the resolving power
of the selected parameterization, (iii) the accuracy of the theoretical formu-
lation, or the equation relating seismic data to the velocity field. The latter
problem has been explored, for example, in the recent works of Montelli et al.

(2004, 2006), Boschi et al. (2006), and Boschi (2006), and while differences
between ray-theory and finite-frequency models exist, they do not seem to
be as important as those caused, at this stage, by (i) or (ii). (i) has been a
major limiting factor in the past: the density of the parameterization is pro-
portional to the number of basis functions (i.e. number of model coefficients,
or ”free parameters”) used to describe the tomographic image, which in turn
defines the size of the inverse problem to be solved. Pioneers of global seis-
mic tomography like Dziewonski (1984) or Woodhouse and Dziewonski (1984),
even using what at the time were regarded as very powerful computers, could
only afford a model parameterization in terms of ∼ 102 free parameters. The
mid-90s breakthroughs of Grand (1994) and van der Hilst et al. (1997) con-
sisted in employing a voxel parameterization (as opposed to the harmonic one
of Dziewonski (1984) and Woodhouse and Dziewonski (1984)), resulting in a
sparse inverse problem, solvable by iterative algorithms–hence, lower RAM
and computation time requirements (e.g. Trefethen and Bau, 1997), allow-
ing to invert for ∼ 105 model coefficients. A decade later, this issue is not
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as relevant anymore. Owing to an adaptive-grid approach, Bijwaard et al.

(1998) have been able to make use of a parameterization locally as fine as
0.6◦, while keeping the total number of free parameters relatively low. More
recently, model vox1.5p of Boschi et al. (2007) (figure 1) based on an approx-
imately equal-volume grid, achieves instead a constant nominal resolution of
1.5◦. It consists of 366,640 free parameters, and yet one inversion requires only
minutes on a 1-CPU desktop computer.

We infer that at the current stage of global seismic tomography, the main
factor limiting resolution is data coverage, which, without a large network of
ocean-bottom receivers, will remain poor in regions underlying oceans. In the
absence of uniform station coverage, the main challenge for seismic tomogra-
phers is to establish appropriate parameterization/regularization criteria, to
damp instabilities caused by lack of data, without obscuring valuable infor-
mation.

3 Statistically sound, linearized ray-theory tomography

Establishing a criterion to identify the highest-likelihood model in a family of
solutions that would intuitively be considered “acceptable” has been a major
problem–and limiting factor for resolution–in global seismic tomography, with
the choice of a “best” model left to the author’s subjective consideration.

Since the seminal work of Akaike (1974), rigorous “information criteria” have
been derived (e.g., Burnham and Anderson, 2002; Hurvich and Tsai, 1989;
Leonard and Tsu, 1999) to determine the actual number of free parameters
needed to explain a given seismic database; they have not been applied often to
global seismic tomography, probably because of their high computational cost.
They require that many inversions be performed on grids of various density
(nominal resolution); the “number of degrees of freedom” associated with each
inversion must also be found, evaluating the model resolution matrix R and
its trace (Boschi et al., 2006). This is the most time-consuming step, but can
be perfectly parallelized as explained e.g. by Soldati et al. (2007).

We have experimented with Antolik et al.’s (2001) database of P -wave travel-
time observations, inverting them for isotropic, 3-D structure in mantle P -
velocity. The CPU-time needed to conduct a family of such inversions, span-
ning a broad range of solution-model complexity values, is shown in figure 2
as a function of parameterization density. The CPU-time for one inversion at
the highest resolution considered here (∼ 105 voxels of 1.5◦ horizontal extent)
is ∼ 102s in the “acceptable”-solution region, and to find R we must com-
plete ∼ 105 such inversions, resulting in a total single-CPU time of ∼ 107s, or,
from our benchmark of the CPU on which the exercise was conducted (speed

4



Fig. 2. At each parameterization level (horizontal axis, from 15◦ to 1.5◦ nominal
resolution; 15 layers) we conduct 27 LSQR inversions, each with a different regular-
ization parameter. The time needed to complete this exercise is plotted on the ver-
tical axis. We find 27 solutions of variable roughness, ranging between the strongly
underdamped and strongly overdamped regions.

∼ 1 × 109 Flop per second), ∼ 10Petaflop. Two such computations will need
to be performed.

We applied AICC, or Akaike corrected information criterion (Hurvich and
Tsai, 1989; Dal Forno et al., 2005) to the mentioned, global mantle P -velocity
inverse problem. The densest grid we employed has 3.75◦ horizontal spac-
ing, while the vertical parameterization remains constant (15, ∼ 200km-thick
layers). Calculations of R were conducted on a 20-CPU Linux cluster. Re-
sults shown in figure 3 indicate that the information content of both weakly
and strongly regularized solutions continues to grow with growing number of
degrees of freedom. To find the curve’s maximum, the exercise needs to be it-
erated on even denser grids, requiring in practice (as one could estimate from
figure 2) petascale capacities.

AICC is a subjective choice, and we plan to explore other information criteria,
the most popular alternative to AICC being perhaps the Bayesian information
criterion, employed for example by Oda and Shibuya (1996), or Sambridge
(2006).
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Fig. 3. Corrected Akaike-criterion likelihood as a function of the trace of the reso-
lution matrix. The latter is a measure of the number of degrees of freedom of the
solution. We change it by leaving the regularization constraints fixed, but varying
the parameterization density (15 vertical layers with decreasing 15◦, 10◦, 7.5◦, 6◦,
5◦ and 3.75◦ horizontal gridsize). The solid line corresponds to strongly damped,
but acceptable solutions; the dashed to weakly damped but acceptable.

4 Numerical finite-frequency tomography

An increasing number of authors in global seismology are beginning to use
finite-frequency sensitivity kernels rather than simple ray theory to develop
higher-resolution tomographic images of the Earth’s mantle, inverting seismic
observations made at relatively long periods, where finite-frequency effects
might be more relevant and affect tomographic resolution strongly (Boschi
(2006) for a list of more or less recent works in global finite-frequency to-
mography). High-performance computers allow to compute sensitivity kernels
numerically, by means of the adjoint method (Tromp et al., 2005; Peter et al.,
2007) and/or the scattering integral method (Chen et al., 2006). As opposed
to the analytical approach (e.g. Dahlen et al., 2000), numerical methods are
more flexible with respect to changes in the reference model, whose lateral
heterogeneities will be properly accounted for.

An example of the effects of lateral heterogeneities on sensitivity kernels is
shown in figure 4, where the finite-element “membrane wave” approach (Tan-
imoto, 1990; Tape, 2003; Peter et al., 2007; Tape et al., 2007) is used to
compute the sensitivity of Love-wave phase anomalies to phase velocity at
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a period of 150s. Differences between spherical- and aspherical-Earth kernels
are small, but comparable to the kernels themselves; while not affecting the
long-wavelength character of our global tomographic images, they become in-
creasingly relevant as features of shorter wavelength are to be resolved (Peter
et al., 2007).

4.1 Implementation and computational cost

The computation of sensitivity kernels is by far the most expensive step of any
finite-frequency tomography algorithm. There exists one kernel per source-
receiver couple, i.e. one kernel per observation, and in principle the adjoint
method requires that two simulations be conducted to compute each kernel.
However, the total number of simulations to compute all kernels associated
with a given database can be reduced in various ways (e.g., Capdeville et

al., 2005; Tromp et al., 2006). Most recently, Chen et al. (2006) show that
this number can be reduced to 3nR + nS, where nR denotes the number of
(3-component) receivers, and nS the number of sources.

Today, the most widely used, and possibly most efficient algorithm for nu-
merical simulations of global seismic wave propagation is the spectral-element
software package Specfem (e.g., Komatitsch et al., 2002). Ampuero and Nissen-
Meyer (2007) show that the cost of one run ofSpecfem is related to the shortest
(most expensive) period to be accurately modeled, Tmin, by

cost in Flop =

(

2π∆

c0Tmin

)4

× Γ, (1)

where ∆ denotes epicentral distance and c0 reference (mean) phase velocity,
and the parameter Γ depends on the largest tolerated error, which we define
as arrival time error normalized by total travel time. Choosing the latter to
be ∼ 10−4, the curve in figure 5 is found.

If only minor-arc phase-anomaly observations are considered, then ∆ ≤ 180◦,
and with Tmin = 20s (Qin et al., 2006) (hence the cost of one simulation
∼ 107Gigaflop from figure 5) and nR ∼ nS ∼ 102, we can expect the cost
of computing all necessary kernels to be ∼ 103 Petaflop. This figure does not
include the cost of input/output operations (which might become necessary as
the shortest modeled period is diminished, parameterization refined, and RAM
subsequently becomes insufficient), or reconstruction of the forward wavefield
by solving the wave equation backwards in time (Tromp et al., 2005; Chen et

al., 2006). In our preliminary runs of Specfem on a 20-CPU cluster, we have
found the backpropagation of the adjoint wavefield to take roughly as long as
three normal forward propagations with the same source-receiver geometry.
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Fig. 4. Example of numerical kernels (dimensionless) derived with the adjoint
method for 150 s Love waves in (a) homogeneous and (b) heterogeneous start-
ing phase-velocity models. (c) Difference between (a) and (b). (From Peter et al.,
2007.)

(a)

(b)

(c)
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Fig. 5. Expected cost of one global spectral-element simulation of waves propagating
from a source to its antipode, as a function of the shortest (and most expensive)
accurately modeled period. We chose accuracy, defined as arrival time error nor-
malized by total travel time, to be ∼ 10−4. (Based on Ampuero and Nissen-Meyer,
2007.)

Sensitivity kernels also need to be updated a few times, repeating each time
the same number of Specfem runs, and taking the result of each inversion as
the starting point for the next, until convergence is reached.

Specfem has been shown to perform and scale extremely well (Komatitsch et

al., 2003). Additionally, once an optimal number of processors per simulation
has been found, the computation can be further parallelized by performing a
number of simulations at the same time, each on a different chunk of the cluster
(recall that 3nR + nS simulations have to be performed at each iteration).

5 Summary

Improving the resolution of tomographic maps is crucial to answer important
questions on the nature of the Earth’s mantle–the best current example being
perhaps the debate on the origin of hotspots and on the very existence of
mantle plumes (e.g., Sleep, 2006), presumed narrow features that need high-
resolution tomography to be properly mapped.
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The RAM and speed of computers available to the scientific community are
now sufficient to solve very large inverse problems in a short time, making it
easy to derive very finely parameterized seismic images of the Earth. Never-
theless, as tomographers strive to enhance resolution, questions that still need
to be addressed are (i) how to identify appropriate parameterization and/or
regularization schemes, and (ii) how to surpass the resolution limit implic-
itly posed by the ray-theory approximation, still adopted by many researchers
today.

We propose here to tackle (i) by means of computationally expensive statis-
tical approaches like the Akaike criterion (Akaike, 1974; Hurvich and Tsai,
1989), now made feasible by the advent of petascale computing. We indicate
the numerical approach to finite-frequency (Born-approximation) tomography
as the best currently available answer to (ii), and analyze its cost as a func-
tion of increasing modeled/inverted seismic-wave frequency. The availability
of petascale hardware will be integral to the implementation of numerical
finite-frequency tomography at increasingly high resolution.
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