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Abstract

A fast technological progress is providing seismic tomographers with comput-

ers of rapidly increasing speed and RAM, that are not always properly taken

advantage of. Large computers with both shared-memory and distributed-

memory architectures have made it possible to approach the tomographic

inverse problem more accurately. For example, resolution can be quantified

from the resolution matrix rather than checkerboard tests; the covariance

matrix can be calculated to evaluate the propagation of errors from data to

model parameters; the L-curve method can be applied to determine a range

of acceptable regularization schemes. We show how these exercises can be

implemented efficiently on different hardware architectures.
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1 Introduction

Earth tomography requires the solution of inherently large, mixed-determined

inverse problems. Since its very beginning, it has always involved the imple-

mentation of efficient algorithms on state-of-the-art computers.
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In 1984, John Woodhouse and Adam Dziewonski published in J.G.R. one

of the few articles that defined global seismic tomography. In their con-

clusions, they noted: ”The calculations reported upon here were performed

using an array processor (Floating Point, 120B) which, programmed in For-

tran, is typically 10 times as fast as, say, a VAX 11/780. The path by path

inversions and source determinations, using mantle waves and body waves,

occupied the machine for approximately 60 hours, and each global iteration

took approximately 7 hours. The inclusion of more data, and the exten-

sion of the method to higher frequencies, will probably require the use of

the most advanced ’mainframe’ computers.” They are referring to an image

of the Earth’s upper mantle parameterized in terms of a cubic polynomial

(vertically), and spherical harmonics up to degree 8 (laterally); that is to

say, entirely specified by just 324 parameters (Woodhouse and Dziewonski

1984). The lower mantle was mapped in a separate inversion, as a linear

combination of spherical harmonics up to degree 6, multiplied by Legendre

polynomials up to degree 4, resulting in 245 parameters; ”the size of the

array needed to store the lower (or upper) triangle of the corresponding in-

ner product matrix is 31,035; just a little less than the data memory of our

AP-120B array processor, without which this study would not be feasible”

(Dziewonski 1984).

In the following years, tomographers took advantage of a fast technolog-

ical progress. The following generation of models published by the Harvard

group covered the entire mantle, and were linear combinations of Chebyshev

polynomials and spherical harmonics up to degree 12 (e.g., Su et al. 1994).

Other authors preferred a different approach, parameterizing the Earth’s

mantle with grids of voxels (Hager and Clayton 1989, Inoue et al. 1990). The

”voxel” approach involved a substantially larger number of model coefficients

(∼ 104), but also implied that the integral of data sensitivity multiplied by

the basis functions be most often 0. The latter circumstance has important

consequences, as we shall briefly illustrate: the tomographic linear inverse
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problem is typically written

A · x = d, (1)

where the entries of the vector x are the coefficients of the solution model

(initially unknown), d are the data (e.g., travel times), and A is a matrix

whose ij entry equals the integral, over the entire volume of the mantle, of

the sensitivity of the i-th measurement to the Earth property (typically a

seismic velocity or slowness) to be mapped, times the j-th basis function

used to describe such property.

In the ray theory approximation, and if (as it will always be the case

here) d are observations of travel time anomaly, the volume integral reduces

to an integral along the seismic ray path (sensitivity is 0 everywhere but on

the ray path), and

Aij =

∫
i-th path

fj(r(s))ds, (2)

where s denotes the incremental length along the ray path, identified by

the equation r = r(s), with r denoting position; the N basis functions fj

are used to describe the slowness δp(r) =
∑N

k=1 xkfk(r) of the seismic phase

in question. (It would be equivalent to formulate the problem in terms of

velocity, but slowness happens to make algebra simpler.)

If the functions fj are spherical harmonics, nonzero over the entire surface

of the Earth, the integral in eq. (2) will be nonzero for all values of j. In the

case of a voxel (spline, wavelet or other ”local” functions) parameterization,

the same integral will be 0, except for values of j whose corresponding voxel

is crossed by a ray path. As anticipated, the matrix A will therefore be

dense if the model is parameterized in terms of spherical harmonics or other

”global” functions; sparse if local functions are used.

The same is consequently true of the matrix AT ·A, whose inverse has to

be calculated for the least squares solution xLS to (1) to be found (a necessary

step, as (1) in global seismology is strongly mixed-determined and does not

have an exact solution),

xLS =
(
AT · A + D

)−1 · AT · d, (3)
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where the matrix D depends on the regularization scheme (e.g., Boschi and

Dziewonski, 1999).

When A and AT ·A are sparse, equation (3) is most efficiently implemented

via an iterative algorithm like CG or LSQR (e.g., Trefethen and Bau 1997).

When they are dense, iterative algorithms become as slow as direct ones: the

most efficient approach is then to implement (3) via Cholesky factorization

of AT ·A, and subsequent backsubstitution (e.g., Press et al. 1994, Trefethen

and Bau 1997).

Implementation of LSQR does not require AT · A to be calculated, as

LSQR operates directly on A. A is bigger but sparser than AT ·A, and sparse

matrices can be stored efficiently (e.g., Press et al. 1994) to minimize the

required disc space or RAM; A is therefore often less cumbersome than AT ·A:

it is so, at least, when global body wave travel time databases are inverted to

derive global Earth structure. This, and the remarkable speed of LSQR in a

regime of sparse A, allowed Grand (1994) and van der Hilst et al. (1997) to

parameterize the Earth’s mantle in terms of as many as N ∼ 250, 000 voxels:

a three orders of magnitude increase in nominal resolution, with respect to

the early studies of Dziewonski (1984) and Woodhouse and Dziewonski (1984)

mentioned above.

Like Woodhouse and Dziewonski some ten years before, Grand and van

der Hilst were exploiting available computers to their limit. Although sparse,

A was still too large a matrix to be entirely fit on the RAM of a processor;

LSQR, however, required only parts of A to be available at one time in the

RAM: they could be run without ever storing A entirely in memory, at the

expense of massive input from disc at each iteration. Given the number of

solution coefficients, at least ∼ 102 iterations were probably needed for LSQR

to converge. This made even LSQR a very slow process, and left researchers

with relatively little freedom to test the model resolution and the effect on

the solution of different regularization schemes.

In view of the exponential growth in CPU speed over the last decade

(e.g., Bunge and Tromp 2003), and the concurrent decrease in the price of
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RAM, the current generation of global seismic tomographers has the means

to approach the discipline in an entirely new fashion. With a fast processor,

and enough RAM to store A entirely, not only LSQR is sped up enormously,

but more time-consuming direct algorithms like Cholesky factorization of

AT · A also become feasible.

2 Cholesky factorization on a multiprocessor,

shared-memory computer

It was originally proved by Paige and Saunders (1982), and later confirmed by

Nolet (1985) and Boschi and Dziewonski (1999), with applications to mixed-

determined tomographic problems, that LSQR converges correctly to the

damped least squares solution (3), typically after a number of iterations � N .

If A is sparse and sufficient RAM is available to store it, LSQR is therefore

the most efficient algorithm to solve an inverse problem in the least squares

sense. On the other hand, because it by-passes the calculation of AT · A

and the direct implementation of (3), LSQR cannot provide any measure

of goodness of resolution and covariance, except by means of resolution, or

”checkerboard” tests. The unreliability of the measure of resolution that

those tests provide has been pointed out, for example, by Lévêque et al.

(1993), and there have been efforts to derive the resolution matrix via an

iterative, LSQR-type calculation (Zhang and McMehan, 1995; Minkoff, 1996;

Nolet et al., 1999, 2001; Yao et al., 1999, 2001; Vasco et al., 2003).

The resolution matrix R can be thought of as the operator that relates

”output” and ”input” model in any checkerboard test; Menke (1989) shows

that

R =
(
AT · A + D

)−1 · AT · A. (4)

Clearly, R does not depend on the input model, and its similarity to the

identity matrix is a measure of goodness of resolution. Its calculation requires

that AT · A + D be explicitly inverted, and this is most efficiently achieved
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by Cholesky factorization of this matrix. Once the damped inverse of AT · A
is found, R is quickly determined by backsubsitution, applied on the matrix

AT · A instead of the vector AT · d; this endeavour is not significantly more

time-consuming than the implementation of (3) via Cholesky factorization

and backsubstitution.

Boschi (2003) computed R from the global teleseismic P-wave travel time

database of Antolik et al. (2003), based upon the ISC Bullettins and in-

cluding ∼ 600, 000 summary observations. He parameterized the Earth’s

mantle in terms of 20 vertical splines and 362 horizontal splines (N = 7240).

Boschi’s (2003) exercise was conducted on an IBM SP2 with 16 processors

and 32 Gbytes of RAM. The IBM SP2 is a ”shared-memory” machine: any

processor can access at the same speed its entire RAM. This is a very useful

feature when large matrices have to be factorized, a process that is inherently

hard to parallelize; clusters of PCs are by construction ”distributed-memory”

computers, and hence more useful for the solution of forward, rather than

inverse, problems.

Boschi (2003) notes that the most time-consuming step in deriving R is

the computation of AT ·A, which took about twenty-four hours. This process

was parallelized by subdividing the database in as many subsets as there

were available processors, computing each subset’s contribution to AT · A on

a separate processor, and eventually adding up the results. After computing

AT · A, which needs to be done only once, xLS and R can be derived in a

few minutes; Boschi (2003) was thus able to perform numerous inversions,

experimenting with the damping scheme and exploring the solution space,

calculating each time the associated R.

3 Running LSQR repeatedly on a distributed-

memory cluster of PCs

The computer on which this article is being written, a Linux PC sitting on

the second author’s desk, is equipped with a dual processor and 3 GBytes of
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RAM. One year ago, this much RAM costed just about 800 U.S. Dollars. We

concluded section 1 pointing out that, as one can easily afford enough RAM

to store arrays of ∼ 105 elements, iterative algorithms like LSQR become

extremely efficient. On this very computer, one LSQR inversion involving

some 25,000 model coefficients runs to convergence in a matter of seconds.

Let us now show how, on a parallel, distributed-memory computer (a

cluster of PCs), the resolution matrix R can also be derived in a reasonable

amount of time, without calculating and Cholesky-factorizing AT · A.

Implementing equation (4) is equivalent to implementing N times equa-

tion (3), replacing each time d with a different column of A (recall that N

denotes the number of model parameters, and hence the number of columns

of A). R can therefore be derived by means of N independent LSQR in-

versions of A, without finding AT · A. When only one or few processors are

available, and with N ∼ 105 as in some of the experiments mentioned above,

this process would be extremely time-consuming, to the point of not being

worthwhile. If a relatively large parallel machine is available, however, the

problem can be easily parallelized, by simply subdividing the N inversions

into N/nP subsets, nP denoting the number of processors. Each subset of

inversions is then performed independently on a separate processor, and the

time needed to compute R is reduced by a factor nP .

It should be noted that the most time-consuming step, input of A from

disc to RAM, needs to be performed only once per processor, no matter how

many inversions are then run on each processor.

Figures 1 and 2 illustrate how this procedure applies to a real inverse

problem. We describe the distribution of P-velocity heterogeneities in the

Earth’s mantle in terms of a grid of voxels of constant horizontal extent;

voxel functions guarantee that A be more sparse than in the case of splines.

We invert, again, the P-wave travel time database of Antolik et al. (2003).

Following, e.g., Inoue et al. (1990, section 3.3.1 and figure 2), we select rough-

ness minimization as our only regularization criterion, and perform a number

of preliminary inversions, at different parameterization levels, to assess the
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dependence of the solution on the regularization parameter. Plotting misfit

to the data (defined as 1− the variance reduction) against ”total roughness”

(the integral of the surface gradient of the model over the entire solid angle

is computed for each layer of the model, and then the RMS is taken) in fig-

ure 1, we find, for each parameterization, a set of points aligned along the

expected L-shaped curve (e.g., Hansen 1992; Boschi et al., 2006). Each point

on the L-curve corresponds to a model derived at this preliminary stage,

and the roughness damping parameter grows monotonically with increasing

misfit. The shape of the curve, resembling the letter L, confirms that the

data contain coherent and statistically significant information; the decrease

in misfit is very fast in an overdamped regime, where a small reduction in the

regularization parameter, and therefore a small increase in model complexity,

is sufficient to improve the data fit substantially. The white noise that the

data necessarily contain, and that regularization is supposed to eliminate,

is harder to fit, even with large increases in model complexity: this is why

the curve tends to become horizontal in the right part of the plot. Solution

models lying in the vertical and horizontal portions of the L-curve can be

discarded as overdamped and underdamped, respectively; preferred models

should be chosen near its corner.

The selection of a damping scheme has always been a largely arbitrary

process in global seismic tomography. The L-curve criterion is a way to

reduce this arbitrarity. It is practical so long as a large number of LSQR

inversions can be performed in a short time, and we have seen how this is

made possible by simultaneous storage of the entire matrix A in memory,

and/or availability of multiple processors.

After so selecting optimal roughness damping parameters at all param-

eterization levels, we restrict ourseleves to the case of 5◦ voxels. We show

in figure 2 the corresponding resolution matrix R as derived with multiple

runs of LSQR. As to be expected (Boschi, 2003), R is quite different from

the identity matrix; entries smaller than 1 on its diagonal indicate that the

amplitude of velocity heterogeneities in the corresponding voxel is underesti-
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mated. Entries different from zero away from the diagonal identify episodes

of fictitious coupling between model coefficients; naturally, the value of Rij is

proportional to the amount of coupling (”trade-off”, ”smearing”...) between

the i-th and j-th voxels (entries xi and xj of the solution vector).

4 Performance and accuracy of direct vs. it-

erative implementations

In analogy with Yao et al. (1999), we calculate R associated with one given

database and one choice of parameterization and regularization, both in

the direct (Cholesky, section 2 above) and iterative (LSQR, section 3) ap-

proaches, and compare the results. As opposed to singular value decomposi-

tion (SVD), the direct algorithm implemented by Yao et al. (1999), Cholesky

factorization does not involve the cancellation of the smallest singular fac-

tors (Press et al., 1994), so that in our experiment regularization is entirely

controlled by the matrix D, and is therefore exactly equivalent in the direct

and iterative calculations.

We implement equation (4) exactly, by Cholesky factorization of AT ·A+D,

for the 5◦-voxel parameterization described in section 3, and applying the

same regularization scheme that lead to R in figure 2. The result is shown in

figure 3, and in figure 4 two lines of the directly- and iteratively-calculated

Rs are compared in a geographic view. Differences are everywhere small, and

negligible for i, j such that Rij > 0.2. Discrepancies between R calculated

iteratively and directly (with SVD) by Yao et al. (1999, figure 5) appear to

be larger.

R in figures 2 through 5 is a 24, 840 × 24, 840 matrix, as opposed to the

7, 240×7, 240 R of Boschi (2003). With 24, 840 free parameters, Cholesky fac-

torization, backsubstitution (via the Lapack routines SPOTRF and SPOTRS,

respectively), and all necessary input/output from and to disc take about

10 hours on a shared-memory Compaq “Alpha” computer (an ES45 with

10Gbytes RAM and 4 CPUs at 1250MHz); To compare this performance
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with that of repeated LSQR on a PC-cluster, it should be kept in mind that,

in the latter architecture, computation time scales perfectly with the number

of processors; one LSQR inversion with 24, 840 free parameters, and applying

Paige and Saunders’ (1982) criterion to evaluate convergence, currently takes

∼ 1 minute on a standard PC.

5 The covariance matrix

R describes the fictitious coupling between solution coefficients (model pa-

rameters); it depends on the geographic distribution of sources and stations,

and on the shape of ray paths, but not on the quality of inverted observa-

tions. The covariance of solution coefficients depends, instead, on the error

and covariance of the initial data, and on the error amplification occuring

in the inversion (Menke, 1989, section 3.11). In the assumption that seismic

data be uncorrelated and all have equal variance σ2, Menke (1989, equation

3.48) introduces a covariance matrix

C = σ2
(
AT · A + D

)−1 · AT ·
[(

AT · A + D
)−1 · AT

]T

(5)

(the regularization matrix D was not included explicitly in Menke’s (1989)

formula). Equation (5) can be rewritten

C = σ2
(
AT · A + D

)−1 · AT · A ·
[(

AT · A + D
)−1

]T

, (6)

and making use of (4)

C = σ2R ·
[(

AT · A + D
)−1

]T

. (7)

After Cholesky factorizing AT · A + D, we find C by (i) backsubsitution

of the N × N identity matrix, and (ii) dot-product (via the Lapack routine

SGEMM) of the (transposed) result with R. After R is read from disc or

calculated again, the process takes about 10 more hours, with N = 24, 840,

on the shared-memory machine described in section 4 above. Figure 6 shows

C, derived in the same parameterization (5◦ voxels) and regularization as
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figures 2 through 5 above, and assuming for Antolik et al.’s (2003) database

a standard deviation σ = 0.5 s (Antolik, personal communication, 2005).

We have not found an effective approach to calculating C on a distributed-

memory cluster.

Except for the upper mantle, where the solution is less stable owing to

strong nonuniformities in the data coverage, C (figure 6) is relatively close to

diagonal, indicating that errors in model parameters are not strongly corre-

lated. The N diagonal entries of C can be interpreted as squared errors as-

sociated with the corresponding model parameters (Menke, 1989; Tarantola,

2005): after taking their square root and multiplying it by 100 (in a voxel pa-

rameterization, solution coefficients coincide with velocity heterogeneities in

the corresponding voxel, which are typically expressed in percent), we show

in figure 7 each diagonal entry of C at the corresponding voxel. As to be ex-

pected, error is smallest in regions of good data coverage, e.g. the upper and

mid-mantle underlying North America and Eurasia, where seismic stations

are most densely distributed; it is highest at the top of the upper mantle,

where the almost vertical geometry of teleseismic ray paths poses a signifi-

cant limit to resolution (hence strong “smearing”); it grows with increasing

depth in the bottom layers of the lower mantle, sampled more uniformly

than shallowest regions, but by a decreasing number of ray paths. Mapped

P-velocity anomalies from the observations considered here (e.g., Boschi &

Dziewonski, 1999; Boschi, 2003) range between ±1% in most of the mantle,

so that the error of ±0.15% or less that we have derived from C is generally

nonnegligible, but small.

6 Summary

We have presented two approaches to the solution of large mixed-determined

inverse problems, both exploiting the quickly increasing speed and RAM of

modern computers (e.g., Bunge and Tromp 2003). We have verified (section

4) that the two approaches, applied to the same problem, yield coincident

11



results.

The first approach, described in section 2, is inherently sequential, and is

best applied to shared-memory computers. It rests on the direct implemen-

tation of the least squares formula to derive the least squares solution xLS

and model resolution matrix R associated with the inverse problem A · x = d.

xLS and R are computed with one Cholesky factorization of AT ·A and N +1

repetitions of the backsubstitution process, N being the number of model

coefficients. In this approach, the derivation of R is thus relatively fast.

Unfortunately, the number of floating point operations required to Cholesky-

factorize AT · A grows like N3, as finer parameterizations are implemented

(e.g., Trefethen and Bau 1997, page 175). Likewise, as N grows, the size of

AT ·A grows like N2, and RAM can also become an issue: routines performing

Cholesky factorization, available in the literature (e.g., Press et al. 1994) or

through optimized libraries, do not allow for efficient storage of AT ·A (which

could be quite sparse), and require a comparably large additional amount of

RAM to be left free for temporary storage.

The second approach (section 3) involves the repeated application of an

iterative, CG-type algorithm (LSQR in our implementation). xLS is found

after one run of LSQR, the calculation of R requires N runs of the same algo-

rithm. However, we have shown that the problem can be simply parallelized,

and it is thus most appropriate for implementation on distributed-memory

PC-clusters. As N grows, the growth in the number of floating-point oper-

ations will not be as fast as in the case of the first approach, and it will be

relatively cheap to speed up the process by simply making use of a few more

processors. As long as A is sparse, which is always the case in the ray-theory

approximation and with local-basis-function (voxels, splines...) parameter-

izations, the amount of disc space (and/or RAM) needed to store A also

grows more slowly with increasing N than that needed to store AT ·A: in the

experiment discussed in section 3, A occupies roughly 1 Gbyte of RAM or

disc space; AT ·A would need twice this amount, plus the temporary storage

mentioned above.
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One drawback of the CG/LSQR multi-processor approach resides in the

difficulty of computing the covariance matrix C. We have shown in section 5

how C can instead be computed via the first, “sequential” approach, and we

have made use of C to evaluate model error in typical, global tomographic

inversions of seismic travel time observations (figure 7).

In summary, both approaches should prove profitable, depending on the

available hardware. The optimization of tomographic algorithms for use with

modern computers is leading to a better understanding of the tomographic

inverse problem, and to more reliable evaluations of model quality and reso-

lution.
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Figure 1: Data misfit achieved by a set of solution models, vs. the integrated

roughness of each model. This measure of model complexity is normalized

against model RMS. Least squares solutions were found from a wide range of

values of the roughness minimization parameter, and no other minimization

constraint. We repeated the experiment with voxels of lateral extent 15◦ ×
15◦, 10◦ × 10◦, 7.5◦ × 7.5◦, 6◦ × 6◦, 5◦ × 5◦, 3.75◦ × 3.75◦, 3◦ × 3◦, 2.5◦ ×
2.5◦, and constant vertical thickness (∼ 200 km) (Soldati and Boschi, 2004):

corresponding solutions align on different L-curves, and squares of decreasing

size correspond to increasingly fine parameterization.
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Figure 2: (Top) 24, 840 × 24, 840 (5◦-voxel grid) resolution matrix R for

the chosen regularization scheme, averaged (Boschi, 2003) so that it can

be plotted in this limited space; here, vertical tradeoffs are most evident.

(Bottom) Zooms on R, not averaged, at two selected layers (left: mid mantle

at ∼ 1300 km depth; right: lower mantle at ∼ 2600 km).
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Figure 3: Same as figure 2, but R was computed by Cholesky factorization

of AT · A + D, as described in section 4.
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Figure 4: Rows of R (figures 2 and 3) associated with a relatively well resolved

voxel i located in the mantle under Japan, at 700 km mean depth, from the

parallel LSQR (left) and Cholesky (right) approaches. For each value of j,

the color of the j-th voxel depends on the value of Rij ; Rij is a measure of

fictitious trade-off between i-th and j-th model parameters.
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Figure 5: Same as figure 4, but voxel i, less well resolved, is located under

Central America, at 2200 km mean depth.
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Figure 6: 24, 840 × 24, 840 (5◦-voxel grid) covariance matrix C associated

with the same data, parameterization and regularization as R above, defined

as in section 5, and derived by Cholesky factorization and backsubstitution.
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Figure 7: Absolute error on mapped percent P-velocity heterogeneity, cal-

culated from the diagonal entries of C (figure 6) and plotted at each corre-

sponding model voxel. All 15, ∼ 200 km thick layers of the 5◦-voxel grid

are shown; the shallowest layer is at the top and to the left, the plot be-

low corresponds to the second shallowest layer, and so on; the deepest layer

(∼ 2700 km depth to core-mantle boundary) is at the bottom and to the

right. Constant, uncorrelated variance σ = 0.5 is assumed on all travel-time

observations.
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