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Abstract
Deterministic earthquake scenario simulations are playing an increasingly important role in seismic hazard and risk estimation. Our aim is to calculate a substantial number of different finite-source scenarios embedded in a 3-D structure for a particular fault or fault system by pre-calculating numerical Green’s functions (NGFs). A large seismic fault is divided into sub-faults of appropriate size for which synthetic Green’s functions at the surface are calculated and stored. Consequently, ground motions from arbitrary kinematic sources can be simulated for the whole fault or parts of it by superposition. To illustrate this approach and its functionalities we simulate M7 (up to 0.5 Hz) scenario earthquakes for a simplified model of the Newport-Inglewood (NI) fault in the Los Angeles (LA) Basin. We quantify the variations of surface ground motion (e.g., peak ground velocity and synthetic seismograms) due to source parameters (e.g., hypocenter location and corresponding slip history). The results show a complex behavior, with dependence of absolute PGV and its variation on asperity location, source directionality and local structure and demonstrate the necessity to combine 3-D structural and finite-source effects to quantify ground motion characteristics and their variations. 
1. Introduction

The calculation of the complete wave-field for potential large earthquakes in a given seismically active region of known structure will play a central role in reliably estimating shaking hazard (e.g., Olsen and Archuleta, 1996; Olsen, 2000, Ewald et al., 2006). Such calculations will complement hazard estimation based on probabilistic estimates of seismicity (e.g., Gerstenberger et al., 2005) and/or stochastic means to calculate ground motion scenarios based on highly simplified physical models (e.g., Beresnev et al., 1998; Boore, 2003). Earthquake-induced ground motions strongly depend on: (1) the velocity structure, (2) the finite-fault slip histories and (3) source-receiver geometry (directivity effect). The local and regional velocity structure can be estimated and continuously improved using tomographic tools and/or direct measurements (e.g., borehole information). However, the variations due to the rupture processes (stress drop, source mechanisms, rupture velocity, slip velocity, etc.) remains. 

This poses a formidable problem when facing the task of estimating ground motions due to “scenario earthquakes” for a specific seismically active region. One has to consider many different slip scenarios for one presumed earthquake in order to account for rupture related variations. However, the numerical calculation of the complete 3D wavefield in the observed frequency band for a seismically active basin remains a computationally expensive task. Consequently, ground motion predictions so far were either restricted to simple (e.g., layered) structures allowing the investigation of many finite source scenarios (e.g., Convertito et al., 2006, Gallovič and Brokešová, 2004, 2007a, 2007b) or complex 3D media were incorporated resulting in severe limitations in terms of number of source scenarios that could be investigated (e.g., Olsen and Archuleta, 1996; Olsen, 2000; Ewald et al., 2006; Pitarka and Irikura, 1996). 

 In order to quantify (finite) source related variations without running the 3D code for each kinematic source scenario, we propose to generate databases with Green’s functions calculated for discrete models of faults or fault systems for areas with sufficiently well known 3D velocity structure and fault locations. The surface ground motions for each sub-fault excitation are stored, which allows arbitrary finite-fault scenarios to be synthesized at very little computational cost compared to a normal complete 3D calculation once the database is available. The opportunity to investigate ground motion variations as a function of many different rupture related parameters for a specific area comes at the price of a sufficiently large number of initial 3D  simulations for the pre-designed discretized fault and is economical only if the number of synthesized scenarios  exceeds the number of NGF calculations.  Nevertheless, current and future high-performance computing facilities and massive data storage technology will no doubt allow us to develop NGF data bases with frequency ranges (e.g., > 2 Hz) relevant and of interest to seismologists and earthquake engineers. 
In this paper we present the concept of the NGF method in connection with 3-D numerical tools, discuss the accuracy of the method as a function of sub-fault size and other earthquake related parameters, and present a first application to a model of the Newport-Inglewood fault in the Los Angeles basin. We investigate how the ground motion varies with the hypocenter location while final slip is unchanged. The method for calculating the quasi-dynamic rupture process published in Guatteri et al. (2004) is adopted to generate slip histories based on pre-generated sets of random final slip distributions. Finally, we discuss the potential functionalities of this approach for the quantification of local or regional shaking hazard estimates given the steady increase in available computational resources.  

2. Numerical Green’s Functions: Theory and Verification
In the following we describe the basic concept of the NGF approach and verify it against high-resolution (“continuous”) finite-fault solutions. A target fault plane is divided into equally sized, rectangular sub-faults and for each of these sub-faults the corresponding Green’s function is calculated using a double-couple source mechanism (here we restrict ourselves to pure strike-slip excitation). In this way, we compute the response of a medium to double-couple impulse sources distributed along the fault. These responses, called “Numerical Green’s functions”, are then considered as elementary wavefield contributions (or elementary seismograms) to the final synthetic seismogram for the whole earthquake. Note that we use the term Green’s function even though in a strict mathematical sense its use is improper (see Eq. (4) below). We use it in connection with our source time function (a Delta function in moment rate) and also to emphasize the relation to the concept of Empirical Green’s Functions developed by Hutchings and Wu (1990) or Bour and Cara (1997). In these approaches the authors deconvolve the finite-source effects from recordings of small earthquakes, obtaining empirical unite responses (Green’s functions) of the medium. Note that other methods also named “Empirical Green’s Functions methods”, developed by Irikura (1986), Joyner & Boore (1986) or Frankel (1995), do not deconvolve the source effects, which results in a different modeling philosophy that is not used in the present study. 

The forward calculations can be carried out using any numerical solution to the 3D wave propagation problem. Here we employ a high-order (4-th order in space, 2nd order in time) staggered-grid finite-difference approach (e.g., Igel et al., 1995; Graves, 1996, Ewald et al., 2006) with efficient absorbing boundaries based on the concept of perfectly matched layers (e.g., Collino and Tsogka, 2001; Marcinkovich and Olsen, 2003) and averaging of elastic moduli and densities to avoid diffraction effects (Moczo et al., 2002).
Theory and verification

Following Aki and Richards (2002), the Green’s function, 
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. By taking a time derivative and following the notation of Aki and Richards (2002), the velocity wave field introduced by a pure shear fault, 
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, embedded in an isotropic medium is described by the representation theorem as:  
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The fault plane, 
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, can be divided into N elements, 
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) and equation (1) is then reformulated as:
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Note that 
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Similarly, we further neglect the spatial difference between the individual Green’s function derivatives,  
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 (comma stands for the space derivative), within the rupture element and name the representative approximation as 
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. Note that the above-mentioned approximations introduce frequency-dependent errors depending also on receiver position with respect to the source position (directivity) (see e.g. Spudich and Archuleta, 1987). Finally, we obtain:


[image: image37.wmf](

)

)

4

(

,

)

(

)

,

(

~

~

)

,

(

1

,

å

=

×

×

*

-

×

=

N

n

n

n

n

n

n

q

ip

n

pq

i

A

t

s

t

x

G

M

t

x

v

m

t


where 
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. It can be calculated using a slip rate impulse with a given rupture mechanism. Finally, we obtain the basic equation for synthesis of ground motions:
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Note that the complete Gip,q tensor (see Eq. 4) could be stored to be able to model ground motions considering various rupture geometries or non-planar faults (Käser and Gallovič, 2008). However, it would require three times more in-advance calculations, which we can avoid in our application since we consider a simple (constant) rupture mechanism of pure strike-slip type. 
Considering that the goal of this approach is to be able to synthesize - within some limits (e.g., reliable frequency range) - complete ground motions from arbitrary finite-source scenarios on a discretized fault, and that the generation of a NGF database is computationally expensive, one should attempt to find a minimum number of sub-faults necessary to determine the ground motion with sufficient accuracy for a specific earthquake magnitude. As mentioned above, numerical errors in the strong-motion synthesis are introduced when using point sources to represent finite subfaults. To make the NGF method computationally efficient, an optimal (largest) size of the subfault should be first determined. The optimal (largest) size of such subfaults is expected to depend on (1) the properties of the ruptures themselves (rupture speed, slip velocity, rise time etc.), (2) the position of the receiver relative to the rupture propagation (directivity in both strike and dip directions) and (3) the desired frequency band for the synthesized ground motions (related to the shortest wavelengths in the considered velocity model). This dependency is thoroughly investigated for a homogeneous medium (with parameters shown in table 1). 

At first, seismic motions from a set of double-couple point sources at different depths (1 km vertical separation) are calculated and stored (Fig. 1 top, solid circles). The seismograms synthesized at the surface can be used as Numerical Green’s functions. Making use of the translational invariance numerical Green’s functions corresponding to a planar vertical fault (Fig. 1 top, circles) can be acquired for a given station, and finally synthesized to calculate the ground motions for a large earthquake. The parameters for one kinematic rupture test case are defined in the following way. The fault dimension of an Mw 7 earthquake is chosen as 36×24 km (which can be evenly sub-divided into sub-faults of size 2x2, 3x3 and 4x4 km) and posed such that the strike direction is parallel to the x-axis of the study area.  The top of the fault plane is set to be 1 km from the free surface (Fig. 1 top) and the two different hypocenters, G1 and G2, are located at the bottom and top left part (red asterisk in Fig. 1 bottom).

 The rupture propagates radially from the hypocenter to the other parts of the fault plane with a constant velocity (Table 1). The scalar moment M0 in dyn-cm is related to the moment magnitude Mw as 
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 (Kanamori, 1977). The final average slip D is calculated as D=M0/(μA). A Gaussian static slip distribution is adopted with the widths in the strike and the dip direction chosen to be 17.2 and 5.8 km, respectively, following the results published in Mai and Beroza (2002, Table 2). The slip-rate function for each sub-fault in the time domain is assumed to be a boxcar function. Its duration (rise time) is the ratio between the local static slip and the given constant slip velocity (Table 1). The choice to keep constant slip velocity and not, e.g., the rise time is somewhat arbitrary. This model is not intended to represent a realistic source as it serves only as a demonstration of the effects of fault discretization.

The solution with sub-fault size of 1×1 km is first calculated in the range 0-0.5Hz and is used as the “continuous” solution. Fig. 2a (top left corner) shows two velocity seismograms from different solutions as an example. The misfit energy (ME) between the seismograms from the differently discretized solutions, i.e., sub-faults with side-length of 2.0 km, 3.0 km and 4.0 km, respectively, and the “continuous” solution, is used to estimate the accuracy of the discretized solutions:
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 is the velocity seismogram of the “continuous“ solution and 
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 is the time step. 
In Fig. 2a the ME distribution on the surface between the solution with 4 x 4 km subfaults and the “continuous” solution shows the effects of directivity. The y-component is used for this verification because it has larger ME than the other two components in most of the working area (Wang, 2007). The largest ME values are found in the triangular area opposite to the direction of rupture propagation and directly above the fault.

Two hypocenters, different in depth (G1 and G2 in Fig. 1), are considered and synthesized with different sub-faults sizes. The largest MEs between the solutions of 2x2, 3x3 and 4x4 km and the “continuous” solution of the entire study area shown in Fig. 2b as a function of hypocenter depth. When the hypocenter is deeper, the MEs are smaller. The resulting seismic motions are low-pass filtered (Gaussian filter) with different cut-off periods to investigate the frequency dependence of ME. The largest ME values (over the whole study area) are shown in Fig. 2c as a function of the cut-off period. The MEs increase as higher frequencies are admitted to the solutions. Finally, six Mw 7 earthquakes (two different rupture velocities and three different sub-fault sizes) are simulated and the resulting largest ME values of the study area are shown in Fig. 2d as a function of rupture velocity. From this we conclude that the accuracy increases with the rupture velocity keeping all other parameters fixed. 

3. Study area and NGF database

We apply the NGF method to the Newport Inglewood (NI) fault system located in the Los Angeles basin (Fig. 3). An area of 96x87 km2 horizontally with depth extent 25.5 km vertically is selected as study area, and rotated in order to have one horizontal grid axis parallel to the NI fault. The velocity model is a simplified version of the elastic part of the SCEC 3D velocity model for the Los Angeles (LA) basin (Version 3, Kohler et al., 2003). To reduce the computational effort and the size of the database we truncate the seismic velocities at 1.4 km/s, which gives a maximum frequency resolution of 0.56 Hz at a grid spacing of 0.3 km (Levander, 1988). For illustration, the depth of a shear wave velocity isosurface, 2.0 km/s, is shown in Fig. 4. The NI fault is chosen for several reasons: it hosted the M6.4 Long Beach earthquake in 1933 (Hauksson and Gross, 1991), causing serious damage; it is still considered the most probable source for a damaging earthquake to the LA area; the near-vertical plane can be approximated by a vertical plane to first order in the numerical calculation and the predominant right-lateral slip can be approximated with a pure strike-slip mechanism (Grant and Shearer, 2004). The aim is to test to what extent the NGF concept is useful and whether it is important to consider together both the 3D structure and scenario earthquakes in a realistic setting. 

The accuracy of the synthesized ground motions as a function of sub-fault size is investigated for an Mw 7 earthquake with the computational setup and source parameters given in Table 2. The fault length L and width W are chosen to be 36 km and 18 km, respectively. The method published in Guatteri et al. (2004) is adopted to produce rupture scenarios for an Mw 7 earthquake. This method is capable of accounting for the accelerating tendency of the crack front due to dynamic loading and the high stress-drop promotion of fast rupture propagation. The quasi-dynamic rupture process calculation starts with a 2D Gaussian random function (isotropic correlation-length of 5 km). The shear modulus on the fault is kept constant and corresponds to a shear velocity of 3.2 km/s. The final slip distribution is shown in Fig. 3 (top right corner). The resulting finite source scenario is simulated with three different equilateral sub-faults of side-length 0.3 km (120×60  grid points treated as the “continuous” solution, corresponding to the finest grid distance), and 1.5 km (5×5 grid points) and 1.8 km (6×6 grid points). The ground motions for the latter two sub-fault sizes are compared to those for the “continuous“ solution. 

As an indicator of the accuracy we compare the peak ground velocity (PGV) over the whole study area covering frequencies up to 0.5 Hz. The choice of PGV is somewhat arbitrary since other wave-field characteristics could be used (e.g., shaking duration, spectral ordinates, etc.). Fig. 5a shows the relative PGV difference, i.e., ratio of the PGV difference (x-component) between one discretized solution (sub-fault size of 1.8 km) and the “continuous” solution divided by PGV of the “continuous” solution. Large values are found to happen inside the basin. The largest relative PGV difference is 9.9% in the position of PGV 0.838 m/s (with an absolute PGV difference of 0.083 m/s). The waveforms from different solutions are almost identical in the profile shown in Fig. 5c with lowest peak correlation coefficient value of 0.988. This can also be seen from the waveform comparison (Fig. 5b) for one single station where the biggest PGV difference is observed (point P1, Fig. 5a). The maximum amplitude difference between the solution for 1.5 km sub-fault side-length and the “continuous” one is 0.039 m/s (4.6% in percentage). We consider that this level of accuracy is enough for our case. To be on the safe side, we chose a sub-fault size of 1.5 km for the generation of the NGF database. 

The conclusion about the trend of the accuracy as a function of cut-off frequency (as shown for the homogeneous case) still holds in the 3D heterogeneous case. These results justify the choice of the final parameter setup used to calculate a complete set of NGFs for Mw 7 earthquakes on the NI fault estimated to cover an area of 69×20 km2 (Jennings, 1994). We calculate a fault area of 40 (along strike) × 13 (along depth) (60×19.5 km2 from the north west edge of the NI fault) sub-fault NGFs (side length 1.5km) for a grid spacing of 300 m and seismograms up to 0.5 Hz. This fault area is capable to cover the historical M6.4 Long Beach earthquake. The complete NGF database includes the seismograms for the 140×166 equally spaced surface grid at 600 m distance, for the three ground-motion components. 

4. Source-related inter-event variations of 3D ground motions: effect of hypocenter location

The NGF database calculated allows us - within the limits of the method (e.g., frequency range < 0.5 Hz) in which the FD method and fault approximation do not bias the results  - to synthesize ground motions from arbitrary strike-slip histories on the NI fault for the complete study area. A question of considerable practical relevance to estimates of seismic hazard is how variations of the hypocenter location for a given final slip distribution influence the shaking for a scenario earthquake of a given magnitude. Amongst many other possibilities, this is the question we will focus on in this sample study: we assume the existence of a scenario Mw 7 earthquake on the NI fault section from the north-west fault edge and synthesize ground motions for a 4×6 regular grid of hypocenter locations in the seismogenic zone (5 - 15 km depth) as indicated in Fig. 3 (inlet). The same process as in the former section is adopted to produce the needed quasi-dynamic rupture processes, with varying hypocenter at this time. In this way, the slip velocity functions vary according to chosen hypocenter location. To illustrate the combination of finite-source and basin effects snapshots of the y-component velocity on the surface are shown in Fig. 6. Most energy is radiated in one direction due to the unilateral rupture propagation. Wave propagation is slowed down by the basin (e.g., area A at T=28 s). Basin amplification is observed in area B (T=38 s) and C (T=43 s), where the large ground velocities coincide with the edge of the basin.  

In Fig. 7 we show velocity seismograms excited by two hypocenters H1 and H2 (see Fig. 3) on the profile AB (Fig. 4) for different ground motion components. The corresponding epicenters are marked as E1 and E2 and shown in Fig. 4. The profile crosses the fault trace at y=19.0 km and the sedimentary basin of the study area indicated at the bottom of Fig. 7.  In region C, hypocenter H1 (20 km distance from the profile) results in considerably larger velocities for the y-component (perpendicular to the fault) than H2 (5 km of fault distance from the profile). In the same region C, H2 leads to much larger velocities than H1 for the x-component of motion. This is likely to be caused by the asperity located between H2 and the profile. Finally, in region D (Fig. 7) H2 leads to larger velocities for both horizontal components. These results indicate the complex interaction between the position of receivers w.r.t. hypocenter location, the fault trace and the basin structure but also the sensitivity to specific aspects of the slip history (e.g., asperities). 

This simple example illustrates the problems of reliable quantification of expected ground motions for scenario earthquakes without knowledge of structural details, hypocenter location and finite source characteristics. To further highlight this issue we compare the attenuation of ground motion amplitudes with distance from the fault obtained by our numerical study with commonly used empirical relations. 
We compare our results to attenuation relationships between the acceleration response spectrum (PSA) and the fault distance developed and widely used for the southern California region (Campbell and Bozorgnia, 2003). We compare PSA at a period of 4.0 s, considering that the seismograms are low-pass filtered at period of 2.0 s which is imposed by the threshold frequency of the finite difference method to avoid numerical dispersion. The comparison is shown in Fig. 8 for different components, i.e., horizontal (modulus) and vertical components. First, the mean value of our results fits well with that predicted by the attenuation relationship at all distance ranges for the horizontal average component and the vertical component. Secondly, the PSA from our simulations saturates at short distances (<3 km) from the fault plane. Thirdly, for the horizontal average component, there are high PSAs in the fault distance range A (Fig. 8). This is the distance range that includes the basin edges where the largest amplifications occur. The empirically predicted behavior decreases smoothly in this range. 
The most important aspect of this type of modeling is the opportunity to carry out statistical analysis of the resulting ground motion characteristics due to source related variations.  In addition to the calculation of statistical moments like the variance and mean motion characteristics, we can forecast deterministically by what factor mean ground motions are exceeded in the worst case. In our view, this is – particularly from an engineering point of view – important information and complements the statistical relations that in principle allow infinite motion amplitudes (of course with very small probabilities). This is the focus of the following sections. 

Two examples of the resulting PGVs in the LA basin are shown in Fig. 9a, 9b for the hypocenter locations H1 (5 km depth, located at SE fault edge) and H2 (15 km depth, located towards the center) as indicated in Fig. 3 (inlet). The shallow hypocenter with unilateral rupture propagation (H1, Fig. 9a) leads to a directivity-dominated distribution of PGVs towards the NW end of the fault, while the PGVs of the bilaterally propagating rupture from the deeper hypocenter (H2, Fig. 9b) shows a clear distance dependence from the fault with dominant PGVs in the NW part. This is due to the main slip occurring in the northern part of the fault (see Fig. 3, inlet). 
The parameter study in the hypocenter space allows us to extract the PGVs of all 24 simulations (Fig. 9c) containing the dominant features of the previously shown two examples with basin wide shaking, fault-distance dependent ground motion, and peak motions above the fault area with the largest slip (asperity). The variations of the hypocenter-dependent ground motions can be expressed by the relative variance of the PGVs (absolute variance divided by the mean in percent) at each point of the surface grid (Fig. 9d). The resulting distribution illustrates the regions in which most variations of ground motions are to be expected from the hypocenter location. These variations are symmetric around the fault edges with some amplification from the basin edges particularly on the SE end.  The large variations of peak ground velocity at regions off the two tips of the fault trace are also observed in Gallovič and Brokešová (2007b) for a 1D medium considering a frequency range much higher than ours.  It is interesting to note that the largest variations of peak ground motions due to variations in hypocenter location are actually occurring not inside the basin but either just at the edge of the basin or in the areas with bedrock. 
The ratio between the maximum PGV and the mean PGV is also shown for the entire study area. For the x-component (Fig. 10 top left) the largest ratios are observed in regions A and B near the basin edges. For the y-component (Fig. 10 top right) large ratios are observed in regions C and D. These two regions are aligned with almost equal angle to the fault trace possibly related to the S-wave radiation pattern. In region D, even outside the basin, high ratios are observed. For the z-component the ratios are more evenly distributed with maximum values inside the basin (region E). The largest deviation from the mean is thus predicted for the y-component of motion (factor 3) close to the edges of the basin.

We complete this study by systematically investigating the relationship between PGV and source depth for all simulated scenarios and two receivers indicated in Fig. 9 (R1, 40 km from the fault, inside the basin; R2, above the center of the fault). Horizontal velocity seismograms (fault-parallel component) are shown for receivers R1, R2 and four different hypocentral depths (same epicenter) as indicated in Fig. 3 (inlet, white rectangle).  The PGVs (and variance) for all 24 simulations at receivers R1, R2 are displayed as a function of source depth in Fig. 11c, 11d, respectively. For the distant receiver (R1, Fig. 11c) the mean PGV increases slightly with source depth, while the variance is much larger for deeper hypocenters. Different behavior is observed for receiver R2 close to the fault (Fig. 11d). The PGV variations are larger for the shallow hypocenters and the mean PGV is almost independent of hypocentral depth. These results indicate the difficulties to quantify in general the dependence of peak ground motion characteristics from such fundamental source parameters like the hypocenter depth and motivate systematic parameter space studies for specific regions with sufficiently known structure and possible source locations.  
5. Conclusions     

We propose the calculation of numerical Green’s functions (NGFs) for subfaults embedded in 3-D velocity structures as an important tool to quantify local source and structure related variations of peak ground motion characteristics. NGF databases allow in particular a systematic study of source related uncertainties/variations of seismic hazard relevant wave field properties (peak ground motions, static displacements and rotations, shaking duration, etc.) due to varying slip distributions (e.g., asperity locations), slip and rupture velocities, hypocenter locations, and others. A further possibility is the combination with high-resolution slip histories from dynamic rupture simulations and the investigation of their influence on ground motions. We show for our study area that – due to finite source and basin related effects – the resulting attenuation can deviate substantially from the one predicted by empirical relations.
Our simple example on the influence of hypocenter location on the resulting ground motions indicates complex behavior with dependence of PGV distribution and its variation on asperity location, directionality and local structure. The high slip asperity leads to large velocity amplitudes in its neighboring regions. Large velocities and variations are observed close to the basin edge. An important result is the observation that the largest deviations from the mean PGVs due to hypocenter location are not observed inside the basin but either near the edges or in the areas with bedrock. 

This study was subject to severe limitations. Amongst others, (1) the fault is approximated by a vertical plane and pure strike-slip source mechanism. (2) The lowest shear-velocity (1.4 km/s) is too high to be useful for realistic hazard estimates and the highest frequencies (0.5 Hz) are only relevant for very tall buildings. (3) We limited ourselves to investigate only one Mw 7 earthquake happening on the same fault with the same final slip distribution. 
Yet, the main purpose of this study is to illustrate the potential of database with NGFs to systematically investigate source related uncertainties in 3D areas with high seismic hazard. Source related uncertainty in 3D media is an issue that has so far not been addressed properly, partly due to limitations of computational resources. It is important to note that such NGF databases only make sense if the crustal structure is sufficiently well known and that the NGF database would need to be recalculated with every model update. Nevertheless, the improvements of imaging technologies and thus local velocity models combined with high-performance computing facilities will make the proposed methodology an attractive approach for systematic local ground motion modeling studies useful also on a larger scale particularly for mega-faults in subduction zones with tsunami-generating potential. 
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Table 1: Setup for the homogeneous case

	Spatial discretization (km)
	1

	Time step (s)
	0.0822

	S-wave velocity (km/s)
	3.9

	P-wave velocity (km/s)
	6.8

	Density (kg/m3)
	2811.0

	Time window (s)
	50

	Study region (km3)
	120×130x45

	PML Nodes 
	15

	Slip velocity (km/s)
	2.9


Table 2: Setup for the heterogeneous model in the Los Angeles basin

	Spatial discretization (km)
	0.3

	Time step (s)
	0.018

	Lowest S-wave velocity (km/s)
	1.4

	Simulation time (s)
	65

	Number of cells
	320×350x100

	PML Nodes 
	15

	Memory (GB)
	5.14

	Fault area (km2)
	18x36

	Minimum fault depth (km)
	1.5
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Figure 1: Top. Schematic set-up for the homogeneous case. The thick black line is the free surface. Black solid circles are the hypocenters of a set of double-couple point sources and the asterisks mark the hypocenters. Bottom. Final slip distribution calculated for an Mw 7 earthquake (see Mai and Beroza 2002) with two hypocenters, G1 and G2. 
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Figure 2: Accuracy of seismogram synthesis as a function of sub-fault size, hypocenter depth, frequency range and rupture velocity. a. Map of misfit energy (ME) (%) (see definition in equation (6)) between sub-fault size 4.0×4.0 km and “continuous” solution (1.0×1.0 km). The rupture propagates along the vertical fault from left to right. In the inlet two velocity seismograms are shown. Thick black line (36 km in length) marks the Mw 7 earthquake fault trace.  b. Peak ME as a function of hypocenter depth. c. Peak ME as a function of cut-off period (Gaussian low-pass filtering). d. Peak ME as a function of rupture velocity. 
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Figure 3: Los Angeles area with modelled region (green rectangle) and the idealized Newport-Inglewood fault (NI, red line). Inlet: Final slip distribution of an Mw 7 earthquake on the vertical NI fault plane and hypocenter grid (red asterisks, for investigation of hypocentral effect on ground motion). H1 and H2 represent two hypocenters investigated in detail. 
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Figure 4: Depth of shear wave velocity isosurface at 2.0 km/s (grey scale). The thick white line marks the fault trace of the Mw 7 earthquake. Profile AB (black solid triangle) is used for detailed discussion. E1 and E2 are the epicenters corresponding to hypocenters H1 and H2 (Fig. 3 inlet).
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Figure 5:  Optimal sub-fault size determination for an Mw 7 earthquake in LA basin. a. Relative PGV difference distribution (see definition in text) between the discretized solution of 1.8 km and the “continuous” solution where dashed thick white line marks the fault trace and the big asterisk, the epicenter. The biggest relative PGV difference is observed at station P1. b. Velocity seismograms of differently discretized solutions, i.e., 0.3 km, 1.5 km and 1.8 km, respectively, for station P1 in a.  c. Velocity profile, EE’ (a), of differently discretized solutions. The maximum velocity amplitude on this profile is shown with the inlet number. The grey area at the bottom illustrates the isosurface depth of shear wave velocity at 2 km/s.
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Figure 6: Velocity snapshots of y-component at different times (Hypocenter is shown as red solid circle with depth of 7.6 km from the surface). Black thin lines show the contours of isosurface of shear wave velocity at 2 km/s. Thick black line shows the fault trace. Areas A, B and C are depicted to illustrate the structure effect on wave propagation. Note the change of the color scale.
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Figure 7: Velocity profile (Fig. 4 AB) simulated with two hypocenters H1 and H2 (Fig. 3 inlet, the corresponding epicenters E1 and E2 are shown in Fig. 4 as black asterisks). From top to bottom are the x-, y- and z-components, respectively. The shear wave velocity isosurface depth (at 2.0 km/s) is depicted at the bottom as the shadowed area. The maximum velocity amplitude across this profile is shown with the inlet number. 
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Figure 8: Comparison with the attenuation relation. Left. Horizontal average component of acceleration response spectrum (PSA) for period of 4 s at each surface point is plotted with respect to the fault distance by small dots. Right.  Same illustration for the vertical component. The mean empirical PSA attenuation curve and its log-normal standard deviations (Campbell and Bozorgnia, 2003) are shown by thick black line and thin dashed lines, respectively. Region A is further discussed in the text. 
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Figure 9: a. Peak ground velocity (PGV, modulus of horizontal components) for hypocenter H1 (Fig. 3). b. Same for H2 (Fig. 3). The epicenters are indicated as red solid circles. The straight white line indicates the fault trace. Thin white lines are contours of the seismic velocity model. c. Maximum PGVs for all 24 simulations. d. The ratio between the standard deviation and the mean PGV (all 24 simulations) in percent. R1 and R2 are receiver locations discussed in detail.
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Figure 10: The ratio between the maximum and the mean PGV. Top left. x-component. Top right. y-component. Bottom left. z-component. The white line indicates the fault trace. Thin white lines are contours of the seismic velocity model. Regions A, B, C, D and E are discussed in the text.  
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Figure 11: a+b: Velocity seismograms (x-component) for the Mw 7 earthquake with same epicenter but varying source depth (see Fig. 3, inlet, white rectangle) at receivers indicated in Fig. 9c. a. R1, approx. 40 km off fault. b. R2, close to the fault trace. c+d: PGV as well as mean and variance for all simulations. c. R1; d. R2. Mean value and variances are offset for illustrative reasons. 
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