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Glossary

I. Definition of Subject and its importance: Seismic wave propagation
Seismology is the science that aims at understanding the Earth’s interior and its seismic sources from measurements of vibrations of the solid Earth. The resulting images of the physical properties of internal structures and the spatio-temporal behaviour of earthquake rupture processes are prerequisites to understanding the dynamic evolution of our planet and the physics of earthquakes. One of the key ingredients to obtain these images is the calculation of synthetic (or theoretical) seismograms for given earthquake sources and internal structures. These synthetic seismograms can then be compared quantitatively with observations and models that fit the observations be searched for using the theory of inverse problems. The methodologies to calculate synthetic seismograms have evolved dramatically over the past decades in parallel with the evolution of computational resources and the ever increasing volumes of permanent seismic observations in global, and regional seismic networks, volcano monitoring networks and experimental campaigns. Even today, it is a tremendous challenge to extract an optimal amount of information from seismograms. The imaging process is still primarily carried out using ray theory or extensions thereof not fully taking into account the complex scattering processes that are occurring in nature. 
To model seismic observations in their full complexity we need to be able to simulate wave propagation through 3-D structures with constitutive relations that account for anisotropic elasticity, attenuation, porous media as well as complex internal interfaces such as layer boundaries or fault systems. This implies that numerical methods have to be employed that solve the underlying partial differential equations on computational grids. The high-frequency oscillatory nature of seismic wave fields makes this a tremendously expensive endeavour as far as computational resources are concerned. As seismic waves are propagating hundreds of wavelengths through scattering media, the required accuracy of the numerical approximations has to be of the highest possible order. Despite the fact that the physics of wave propagation is well understood, only recently computational algorithms are becoming available that allow us to accurately simulate wave propagation on many scale such as reservoirs, volcanoes, sedimentary basins, continents, and whole planets. 

In addition to the imaging problem for structure and sources, the possibilities for 3-D wave simulations has opened a new route to forecasting strong ground motions following large earthquakes in seismically active regions. In the absence of any hope to deterministically predict earthquakes, the calculation of earthquake scenarios in regions with sufficiently well known crustal structures and fault locations will play a tremendously important role in mitigating damage particularly due to potentially amplifying local velocity structures. However, to be able to employ the advanced 3-D simulation technology in an efficient way, and to make use of the fast advance of supercomputing infrastructure, a paradigm shift in the concept of wave simulation software is necessary: the Earth science community has to build soft infrastructures that enables massive use of those simulation tools on the available high-performance computing infrastructure. 

In this paper we want to present the state of the art of computational wave propagation and point to necessary developments in the coming years, particularly in connection with finding efficient ways to generate computational grids for models with complex topography, faults, and the combined simulation of soil and structures. 
II. Introduction

We will first illustrate the evolution of methodologies to calculate and model aspects of seismic observations with global wave propagation. Seismology can look back at almost 50 years of systematic observations of earthquake induced teleseismic ground motions with the standardized global seismic and regional networks. The digital revolution in the past decades has altered the recording culture such that now seismometers are recording ground motions permanently rather than in trigger-mode, observations are becoming available in near-real time, and - because of the necessary sampling rates - the daily amount of observations automatically sent to the data centres is gigantic. If we take a qualitative look at a seismic observation (Fig. 1) we can illustrate what it takes to model either part or the whole information contained in such physical measurements. 
In Fig 1 a seismogram observed using a broadband seismometer (station WET in Germany) is shown.  Globally observed seismograms following large earthquakes contain frequencies up to 1 Hz (P-wave motions) down to periods of around one hour (eigenmodes of the Earth) in which case modelling is carried out in the frequency domain. Seismograms of the kind shown in Fig. 1 contain many types of information. For large earthquakes the first part of the seismogram (inlet) contains valuable information on the spatio-temporal evolution of the earthquake rupture on a finite-size fault. A model of the fault slip history is a prerequisite to model the complete wave form of seismograms as the whole seismogram is affected by it unless severe low-pass filtering is applied. Information on the global seismic velocity structure is contained in the arrival times of numerous body-wave phases (here only P- and S-wave arrivals are indicated) and in the dispersive behaviour of the surface waves (here the onset of the low-frequency Love waves is indicated). Further information is contained in the characteristics of the coda to body wave phases indicative of scattering in various parts of the Earth (see Kennett 2002 for further observational seismology).  
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	Figure 1: Transverse velocity seismogram of the M8.3 Tokachi-Oki earthquake near Hokkaido observed at station WET in Germany with a broadband seismometer. The total seismogram length is one hour.


Adding a temporal and spatial scale to the above qualitative discussion reveals some important insight what it takes to simulate wave propagation on a planetary scale using grid-based numerical methods. Given the maximum frequency of around 1 Hz (P-waves) and 0.2 Hz (S-waves) the minimum wavelength in the Earth is expected to be O(km), requiring O(100m) type grid spacing at least in the crustal part of the Earth leading to O(1012) necessary grid points (or volume elements) for accurate numerical simulations. This would lead to memory requirements O(100TByte) that are today possible on some of the world’s largest supercomputers. The message here is that despite the rapid evolution of computational power, the complete modelling of teleseismic observations using approaches such as spectral elements (Komatitsch and Tromp 2002ab) requiring tremendous numbers of calculations to constrain structure and sources will remain a grand challenge for some time to come. However, in many cases it is not necessary or not even desirable to simulate/model the whole seismogram, i.e. the complete observed frequency band. (If we lower the cutoff frequency to 0.1 Hz (period 10 s), the required memory drops down to O(100GByte). This is tremendously exciting, as such calculations can be done today on PC-clusters that can be inexpensively assembled and run on an institutional level (Bunge and Tromp 2003; Oeser et al. 2006). In addition, it means that the massive application for such forward simulations for imaging purposes and phenomenological investigations of wavefield effects is around the corner. This does not only apply to wave propagation or imaging on a planetary scale but in the same way to problems in volcanology and exploration geophysics. 
An illustration of global wave simulations using the finite difference method (Igel and Weber  1996; Thomas et al. 2000; Jahnke et al. 2007) is shown in Figure 2 (more details on the methodologies are given in the section III). The snapshot of the radial component of motion at a time when the direct P-wave has almost crossed the Earth reveals the tremendous complexity the wave field exhibits even in the case of a spherically symmetric Earth model (PREM, Dziewonski and Anderson 1980). The wavefield with a dominant period of ca. 15 seconds also highlights the short wavelengths that need to be propagated over very large distances. This is the special requirement for computational wave propagation that is quite different in other fields of computational Earth Sciences. While the theory of linear elastic wave propagation is well understood and most numerical methods have been applied to it in various forms, the accuracy requirements are so high that – particularly when models with complex geometrical features need to be modelled – there are still open questions as to what works best. One of the main goals of this paper is to highlight the need to focus on the grid generation process for various types of computational grid cells (e.g., rectangular, triangular in 2-D, and hexahedral and tetrahedral in 3-D) and the interface to appropriate highly accurate solvers for wave propagation problems.   
	Figure 2: Snapshot of wave propagation inside the Earth ca. 25 minutes after an earthquake occurs at the top part of the model. The radial component of motion is shown (blue and red denote positive and negative velocity, resp.). The simulation was carried using an axi-symmetric approximation to the wave equation (Igel and Weber 1996, Brietzke et al. 2004, Jahnke et al. 2007) and high-order finite-differences. Motion is allowed in the radial and horizontal directions. This corresponds to the P-SV case in 2-D cartesian calculations. Therefore the wavefield contains both P- and S-waves and phase conversions.  
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As mentioned above computational modelling of strong ground motions following large earthquakes (see Fig. 3 for an illustration) is expected to play an increasingly important role in producing realistic estimates of shaking hazard. There are several problems that are currently unsolved: (1) to achieve frequencies that are interesting for earthquake engineers in connection with structural damage the near surface velocity structure needs to be known and frequencies beyond 5 Hz need to be calculated. In most cases this structure is not well known (on top of the uncertainties of the lower basin structures) and the required frequencies demand extremely large computational models. (2) In addition to structural uncertainties, there are strong dependencies of the particular earthquake rupture process that will influence the observed ground motions. This suggests that many 3-D calculations should be carried out for any characteristic earthquake of interest, to account for such variations (e.g., Wang et al., 2006). (3) The large velocity variations (e.g., 300m/s up to 8 km/s) require locally varying grid densities which is difficult to achieve with some of the classical numerical methods in use (e.g. finite differences).  Some of the potential routes will be developed below.  
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	Figure 3: Snapshot of a horizontal component for a simulation of the M5.9 Roermond earthquake in the Cologne Basin in 1992 (Ewald et al., 2006). The 3-D sedimentary basin (maximum depth 2km) leads to strong amplification and prolongation of the shaking duration that correlates well with basin depth. Systematic calculations may help mitigating earthquake induced damage. 


In summary, computational simulation of 3-D wave propagation will be more and more a central tool for seismology with application in imaging problems, earthquake rupture problems, questions of shaking hazard, volcano seismology and planetary seismology. In the following we will briefly review the history of the application of numerical methods to wave propagation problems and the evolution of computational grids. The increasing complexity of models in terms of geometrical features and range pf physical properties imposes the use of novel methodologies that go far beyond the initial solutions based on finite differences.   
III. The evolution of numerical methods and grids
In this section we give a brief history of the application of numerical methods to the problem of seismic wave propagation. Such a review can not be complete, certainly gives a limited perspective, and only some key references are given. One of the points we would like to highlight is the evolution of the computational grids that are being employed for wave propagation problems and the consequences on the numerical methods of choice now and in the future.  

Why do we need numerical approximations to elastic wave propagation problems at all? It is remarkable what we learned about the Earth without them! In the first decades in seismology, modelling of seismic observations was restricted to the calculation of ray-theoretical travel times in spherically symmetric Earth models (e.g., Cerveny 2001, Chapman, 2004). With the advent of computing machines these approaches could be extended to 2-D and 3-D media leading to ray-theoretical tomography and the images of the Earth’s interior that we know today (van der Hilst 2004). The analytical solution of wave propagation in spherical coordinates naturally leads to spherical harmonics and the possible quasi-analytical solution of wave propagation problems in spherically symmetric media using normal modes. As this methodology leads to complete waveforms the term “waveform inversion” was coined for fitting the waveforms of surface waves by correcting the phase differences for surface waves at particular frequencies (e.g., Woodhouse and Dziewonski, 1984). This allowed the recovery of seismic velocity models particularly of crust and upper mantle (surface wave tomography). A similar approach in Cartesian layered geometry led to complete solutions of the wave equation in cylindrical coordinates through the summation of Bessel functions, the reflectivity method (Fuchs and Müller 1971). This method was later extended to spherical media through the Earth-flattening transformation (Müller 1977). Recently there have been important extensions to ray-theory allowing the incorporation of finite-frequency effects leading to improved imaging of internal structures (e.g., Montelli 2004). 

Most of these methods are still today extremely valuable in providing first estimates of 2-D or 3-D effects and are important for the use in standard seismic processing due to their computational efficiency. Nevertheless, with the tremendous improvements of the quality of seismic observations we strive today to extract much more information on Earth’s structure and sources from recorded waveforms. As waveforms are in most places strongly affected by 3-D structural variations the application of numerical methods that solve “directly” the partial differential equations descriptive of wave propagation becomes mandatory. This necessity was recognized early on and the developments of numerical wave propagation began in the sixties of the 20th century.
Numerical Methods applied to wave propagation problems

The finite-difference technique was the first numerical method to be applied to the wave propagation problem (e.g., Altermann and Karal, 1968; Kelly 1976; Madariaga 1976; Virieux 1984, 1986). The partial differentials in the wave equation are replaced by finite differences leading to an extrapolation scheme in time that can either be implicit or explicit. The analysis of such simple numerical schemes led to concepts that are central to basically all numerical solutions of wave propagation problems. First, the discretization in space and time introduces a scale into the problem with the consequence that the numerical scheme becomes dispersive. This numerical dispersion – for the originally non-dispersive problem of purely elastic wave propagation – has the consequence that for long propagation distances wave pulses are no longer stable but disperse. The consequence is, that in any simulation one has to ascertain that enough number of grid points per wavelength are employed so that no numerical dispersion occurs. Finding numerical schemes that minimize these effects has been at the heart of any new methodology ever since.  Second, the so-called Courant criterion that follows from the same theoretical analysis of the numerical scheme basically relates a “grid velocity” the ratio between the space and time increments dx and dt, respectively, to the largest physical velocity c in the model. In order to have a stable calculation, this ratio has to be smaller than a constant  that depends on the specific scheme, a value usually close to unity
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This simple relationship has important consequences: when the grid spacing dx must be small, because of model areas with low seismic velocities, then the time step dt has to be made smaller accordingly leading to an overall increase in the number of time steps and thus overall computational requirements. In addition, the early implementations where based on regular rectangular grids, implying that large parts of the model where carrying out unnecessary calculations. As will be shown below local time-stepping and local accuracy are important ingredients in modern algorithms. 
The fairly inaccurate low order spatial finite-difference schemes ware later extended to high-order operators (Holberg 1987; Levander 1988; Igel et al. 1996). Nevertheless, the required number of grid points per wavelength was still large, particularly for long propagation distances. This has led to the introduction of pseudo-spectral schemes, “pseudo” because only the calculations of the derivatives where done in the spectral domain, but the wave equation was still solved in the space-time domain with a time-extrapolation scheme based on finite differences (e.g., Kossloff and Baysal 1982; Carcione et al. 1988). The advantage of the calculation of derivatives in the spectral domain is at hand: the Fourier theorem tells us that by multiplying the spectrum with ik, i being the imaginary unit and k the wavenumber, we obtain an exact derivative (exact to numerical precision). This sounds attractive. However, there are always two sides to the coin. The calculation requires FFTs to be carried out extensively and the original “local” scheme becomes a “global” scheme. This implies that the derivative at a particular point in the computational grid becomes dependent on any other point in the grid. This turns out to be computationally inefficient, in particular on parallel hardware. In addition, the Fourier approximations imply periodicity which makes the implementation of boundary conditions (like the free surface, or absorbing boundary conditions) difficult.
By replacing the basis functions (Fourier series) in the classical pseudo-spectral method with Chebyshev polynomials that are defined in a limited domain [-1,1] the problem with the implementation of boundary problems found an elegant solution (e.g., Seriani, Carcione, TEssmer, Komatitsch). However, through the irregular spacing of the Chebyshev collocation points (grid densification at the domain boundaries, see section below) new problems arose with the consequence that this approach was not much further pursued except in combination with a multi-domain approach in which the field variables exchange their values at the domain boundaries (Seriani, Danecek). 
So far, the numerical solutions described are all based on the strong form of the wave equation. The finite-element method is another main scheme that found immediate applications to wave propagation problems (early ref???). Finite element schemes are based on solving the weak form of the wave equation. This implies that the space- and time-dependent fields are replaced by weighted sums of basis (also called trial) functions defined inside elements. The main advantage of finite element schemes is that elements can have arbitrary shape (e.g., triangles, trapezoidal, hexahedral, tetrahedral, etc.). Depending on the polynomial order chosen inside the elements the spatial accuracy can be as desired. The time-extrapolation schemes are usually based on standard finite differences. There are several reasons why finite-element schemes were not widely used in the field of wave propagation.  First, in the process a large system matrix needs to be assembled and must be inverted. Matrix inversion in principle requires global communication and is therefore not optimal on parallel hardware. Second, in comparison with the finite-element method, finite- difference schemes are more easily coded and implemented due their algorithmic simplicity.  

A tremendous step forward was the introduction of basis functions inside the elements that have spectral accuracy, e.g., Chebyshev or Legendre polynomials (Quarteroni, Seriani, Priolo, Komatitsch). The so-called spectral element scheme became particularly attractive with the discovery that – by using Legendre polynomials – the matrices that required inversion became diagonal. This implies that the scheme does no longer need global communication, it is a local scheme in which extrapolation to the next time step can be naturally parallelized. With the application of this scheme to spherical grids using the cubed-sphere discretization (Chaljub, Komatisch) this scheme is today the method of choice unless highly complex models need to be initiated.  
Most numerical schemes for wave propagation problem were based on regular, regular stretched, or hexahedral grids. The numerical solution to unstructured grids had much less attention, despite the fact that highly complex models with large structural heterogeneities seem to be more readily described with unstructured point clouds. Attempts were made to apply finite volume schemes to this problem (Dormy …), and other concepts (like natural neighbour coordinates, Sambridge et al. ????) to find numerical operators that are applicable on unstructured grids (Käser ….). These approaches were unfortunately not accurate enough to be relevant for 3-D problems. Recently, a new flavour of numerical method found application to wave propagation on triangular or tetrahedral grids. This combination of a discontinuous Galerkin method with ideas from finite volume schemes (ADER DG Refs) allows for the first time arbitrary accuracy in space and time on unstructured grids. While the numerical solution on tetrahedral grids remains computationally slower, there is a tremendous advantage in generating computational grids for complex Earth models. Details on this novel scheme are given below. 
Before presenting two schemes (spectral elements and the discontinuous Galerkin method) and some applications in more details we want to review the evolution of grids used in wave propagation problems. 
Grids for wave propagation problems
The history of grid types used for problems in computational wave propagation is tightly linked to the evolution of numerical algorithms and available computational resources. The latter in the sense that – as motivated in the introduction – even today realistic simulations of wave propagation are still computationally expensive. This implies that it is not sufficient to apply stable and simple numerical schemes and just use enough grid points per wavelength and/or extremely fine grids for geometrically complex models. Optimal mathematical algorithms that minimize the computational effort are still sought for as the recent developments show that will be outlined in the following sections. 
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Figure 4: Examples of 2-D grids used for wave propagation simulations. a. Chebyshev grid with grid densification near the domain boundaries. b. Multidomain finite-difference grid in regular spherical coordinates. c.  Stretched regular finite-difference grid that allows following smoothly varying interface or surface boundaries. d. Triangular staggered grid following an interface that allows finite-difference type operators. e. Unstructured grid with associated Voronoi cells for calculations using the finite-volume method. f. Triangular cells for finite-element type calculations. See text for details and references.    
In Fig. 4 a number of different computational grids in two space dimensions is illustrated. The simple-most equally-spaced regular finite-difference grid is only of practical use in situations without strong material discontinuities. With the introduction of the pseudospectral method based on Chebyshev polynomials grids as shown in Fig. 4a grids appeared that are denser near the domain boundaries and coarse in the interior. While this enabled a much more efficient implementation of boundary conditions the ratio between the size of the largest to the smallest cell depends on the overall number of grid points per dimension and can be very large. This leads to very small time steps, that can in some way be compensated by grid stretching (Carione and Wang ????) but overall the problem remains. An elegant way of allowing grids to be of more practical shape is by stretching the grids using analytical functions (Fig. 4c, this basically corresponds to a coordinate transformation, e.g. Tessmer, others ????, Hestholm ). By doing this either smooth surface topography or smoothly varying internal interfaces can be followed by the grid allowing a more efficient simulation of geometrical features compared to a blocky representation on standard finite difference grids.    
The problem of global wave propagation using spherical coordinates (here in the two-dimensional, axi-symmetric approximation) nicely illustrates the necessity to have spatially varying grid density. The grid shown in Fig. 4b demonstrates that in spherical coordinates a regular discretization leads to grid distances that get smaller and smaller towards the centre of the Earth (e.g., Igel and Gudmundsson 1997; Thomas et al. 2000). This is inverse to what is required to efficiently model the Earth’s velocity structure: velocities are small near the surface (requiring high grid density) and increase towards the centre of the Earth (requiring low grid density). One way of adjusting is by re-gridding the mesh every now and then, in this case doubling the grid spacing appropriately. This is possible, however it requires interpolation at the domain boundaries that slightly degrades the accuracy of the scheme. 

The problems with grid density, and complex surfaces cries for the use of so-called unstructured grids. Let us define an unstructured grid as an initial set of points (a point cloud), each point characterised by its spatial coordinates. We wish to solve our partial differential equations on this point set. It is clear that – with appropriate grid generation software – it is fairly easy to generate such grids that obey exactly any given geometrical constraints be it in connection with surfaces or velocity models (i.e., varying grid density). It is important to note that such point cloud cannot be represented by 2-D or 3-D matrices as is the case for regular or regular stretched grid types. This has important consequences for the parallelization of numerical schemes. The first step after defining a point set is to use concepts from computational geometry to handle the previously unconnected points. This is done through the idea of Voronoi cells, that uniquely define triangles and their neighbours (Delauney triangulation). In Fig. 4d an example is shown for a triangular grid that follows an internal interface (Käser et al ????). For finite-difference type operators on triangular grids a grid-staggering makes sense. Therefore, velocities would be defined in the centre of triangles and stresses at the triangle vertices. Voronoi cells (Fig. 4e) can be used as volumetric elements for finite volume schemes (Dormy, Käser) ????. For finite element schemes triangular elements (Fig. 4f, e.g. Käser ????) with appropriate triangular shape functions are quite standard but have not found wide applications in seismology. 
If the grid spacing of a regular finite-difference grid scheme in 3-D would have to be halved this would result in an overall increase of computation time by a factor of 8 (a factor two per space dimension and another factor 2 because of the necessary halving of the time step). This simply means that the accuracy of a specific numerical scheme and the saving in memory or computation time is much more relevant in three dimensions. The evolution of grids in three dimensions is illustrated with examples in Fig. 5. A geometrical feature that needs to be modelled correctly particularly in volcanic environments is the free surface. With standard regular-spaced finite-difference schemes only a block representation of the surface is possible (Fig. 5a, e.g., Chouet Ohimato Ripperger). While the specific numerical implementation is stable and converges to correct solution a tremendous number of grid points is necessary to achieve high accuracy. 
Chebyshev grids and regular grids were applied to the problem of wave propagation in spherical sections (Fig 5b, e.g. Igel 1999,; Igel et al. 2002). The advantage of solving the problem in spherical coordinates is the natural orthogonal coordinate system that facilitates the implementation of boundary conditions. However, due to the nature of spherical coordinates the physical domain should be close to the equator and geographical models have to be rotated accordingly. A highly successful concept for wave propagation in spherical media was possible through the adoption of the cubed-sphere approach in combination with the spectral-elements (Fig 5c, Chaljub Komatitsch Capdeville). The cubed-sphere discretization is based on hexahedral grids. Towards the centre of the Earth the grid spacing is altered to keep the number of elements per wavelength approximately constant. 

Computational grids for wave propagation based on tetrahedra (Figs 5d,e) are only recently being used in combination with appropriate numerical algorithms such as finite volumes (Käser Dumbser) or discontinuous Galerkin (Käser Dumbser). The main advantage is that the grid generation process is tremendously facilitated when using tetrahedra compared to hexahedra. Generating point clouds that follow internal velocity structures and connecting them to tetrahedra are straight forward and efficient mathematical computations. However, as will be described in more detail below, tetrahedral grids require more involved computations and are thus less efficient than hexahedral grids. Complex hexahedral grids - even for combined modelling of structure and soil (Fig. 5f) are possible but - at least at present - require interaction during the grid generation process (Stupa). It is likely that the combination of both grid types (tetrahedral in complex regions, hexahedral in less complex regions) will play an important role in future developments. 
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Figure 4: Examples of 3-D grids. a. Blocky representation of a complex free surface with finite-difference cells. b.  Chebyshev grid in spherical coordinates for a spherical section. c. Cubed sphere grid used for spectral-element and multi-domain Chebyshev calculations. d. Tetrahedral grid of the Matterhorn. e. Tetrahedral grid of the Earth’s interior with the grid density tied to the velocity model. f. Hexadhedral grid of bridge structure and subsurface structure for spectral-element calculations. See text for details and references.    
In the following we would like to present two of the most competitive schemes presently under development, (1) the spectral element method and (2) the discontinuous Galerkin approach combined with finite-volume flux schemes. The aim is to particularly illustrate the role of the grid generation process and the pros and cons of the specific methodologies. 
IV. 3-D wave propagation on hexahedral grids: soil-structure interactions

We will briefly present the spectral element method (SEM) based on Legendre polynomial, focusing only on its main features and on his implementation for the solution of the elasto-dynamic equation. The SEM is usually regarded as a generalization of the finite element method (FEM) based on the use of high order piecewise polynomial functions. The crucial aspect of the method is the capability of providing an arbitrary increase in accuracy simply enhancing the algebraic degree of these functions (the spectral degree SD). On practical ground, this operation is completely transparent for the users, who limit themselves to choose the spectral degree at runtime, leaving to the computational code the task of building up suitable quadrature points and new degrees of freedom. Obviously, the increasing spectral degree implies the raise of the computational effort of the problem.

On the other hand, one can also play on the grid refinement to improve the accuracy of the numerical solution, thus following the standard finite element approach. Spectral elements are therefore a so-called "h-p" method [Faccioli 1996], where "h" refers to the grid size and "p" to the degree of polynomials. Referring to Faccioli [1997], Komatitsch [1998], Chaljub [2007] for further details, we briefly remind in the sequel the key features of the spectral element method adopted. We start from the wave equation:
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is the small strain tensor, 
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As in the FEM approach, the dynamic equilibrium problem for the medium can be stated in the weak, or variational form, through the principle of virtual work [Zienckiewicz 1989], and, through a suitable discretization procedure that depends on the numerical approach adopted, can be written as an ordinary differential equations system with respect to time:







[image: image20.wmf][

]

[

]

+=+

&&

()()()()

MtKttt

UUFT






where matrices 
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 are due to the contributions of external forces and tractions conditions, respectively. In our SE approach, 
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 denotes the displacement vector at the Legendre-Gauss-Lobatto (LGL) nodes, that correspond to the zeroes of the first derivatives of Legendre polynomial of degree N [Abramowitz 1966]. The advancement of numerical solution in time is provided by the explicit 2nd order leap-frog scheme (LF2-LF2) [Maggio 1994]. This scheme is conditionally stable and must satisfy the well known and already mentioned Courant-Friedrichs-Levy (CFL) condition. The key features of the SE discretization are the following:

· Like in the FEM standard technique, (i) the computational domain may be split into quadrilaterals in 2D or hexahedral in 3D, (ii) both the local distribution of grid points within the single element and the global mesh of all the grid points in the domain must be assigned, (iii) many of these latter are shared amongst several spectral elements, (iv) each spectral element is obtained by a mapping of a master element through a suitable transformation and all computations are performed on the master element. Research is in progress regarding the introduction of triangular spectral elements [Mercerat 2006].

· The nodes within the element where (i) displacements and spatial derivatives are computed, (ii) on which volume integrals are evaluated, are not necessarily equally spaced. An example of LGL nodes for spectral elements is shown in Fig.1a

· The interpolation of the solution within the element is done by Lagrange polynomials of suitable degree.

· The integration in space is done through Legendre-Gauss-Lobatto quadrature formula.

Thanks to this numerical strategy, the exponential accuracy of the method is ensured and the computational effort minimized, since the mass matrix results to be diagonal.

The spectral element (SE) approach developed by Faccioli [1997] has been recently implemented in the computational code GeoELSE (GeoELasticity by Spectral Elements  [Stupazzini 2004], [Zambelli, 2006], [Scandella 2007]) for 2D/3D wave propagation analyses. The most recent version of the code includes: (i) the capability of dealing with fully unstructured computational domains and (ii) the parallel architecture and (iii) visco-plastic constitutive behaviour [di Prisco, 2006],. The mesh can be created through an external software (e.g: CUBIT) and the mesh partitioning is handled by METIS.

Hexahedral grids

As already mentioned in the SEM here presented the computational domain is decomposed into a family of non overlapping quadrilaterals in 2D or hexahedral in 3D. The grid discretization should be suitable to accurately propagate up to certain frequencies. Obviously, owing to the strong difference of the mechanical properties between soft-soil and rock-soil (or building construction material) and to the different geometrical details as well, the grid refinement needed in the various parts of the model should be quite different. Therefore, a highly unstructured mesh is needed to minimize the number of elements. While 3D unstructured tetrahedral meshes can be achieved quite easily with commercial or non commercial software, the creation of a 3D non structured hexahedral mesh is still recognized as a challenging problem. In the following paragraph we will provide couple of state of the art work concerning the mesh creation.

Grid generation

Hexahedral meshes have much higher constrains in unstructuring efficiently, this is basically related to the intrinsic difficulty that arise from the mapping of the computational domain with this particular element; as a consequence usually automatic procedures have difficulty capturing specific boundary, create poor quality elements, the assigned size is difficult to be preserved and the speed generation process is usually much slower compared to the tetrahedral mesh generation algorithms. On the other hand the advantages of hexahedral mesh are usually related to the lower computational cost of the wave propagation analyses with respect to the one based on triangular meshes or hexahedral structured grids (like in finite difference method).
Nevertheless certain problems can be addressed reasonably well with specific solution. A quite typical case in “regional seismology” is the study of alluvial basin response under seismic excitation. In handling this problem, a first strategy try to “honour” the interface between the sediment (soft soil) and the bedrock (stiff soil). The two materials are divided by a physical interface and the jump in the mechanical properties is strictly preserved. The major drawback of this approach is that usually requires strong skills from the user side to build-up the mesh and a significant amount of working time (Fig. Stupa_1). Stated that the “honouring approach” is not always feasible in a reasonable time (or with a reasonable effort) a second strategy is worth to be mentioned: the so called “not honouring” procedure. In this second case the mesh is refined in proximity of the area where the soft deposit are localised but the elements do not respect the interface. On a practical ground the mechanical properties are assigned node by node (LGL nodes) and the sharp jump is smoothed through the Lagrange interpolation polynomial and substitute with smeared interface (Fig. Stupa_2). At the present time it is still strongly under debate if it is worth to honour or not the physical interface or not.

Finally, we highlight the fact that, on the market, are available software that seem to be extremely promising and potentially very powerful for the creation of geophysical and seismic engineering unstructured hexahedral meshes (e.g.: CUBIT) . Furthermore very interesting mesh generation procedure based on hexahedral are under study [Shepherd, 2007].
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	Figure 5: 3D numerical model used for the simulations of ESG06 “Grenoble Benchmark”. “Honouring” technique: the computational domain is subdivided into small chunks and each one is meshed starting from the alluvial basin down to the bedrock. For simplicity only the spectral elements are shown without LGL nodes.
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	Figure 6: 3D numerical model used for the simulations of ESG06 “Grenoble Benchmark”. “Not Honouring” technique: the computational domain is meshed with a pave coarse mesh and then refined twice approximately in the area where the alluvial basin is located.


Scale problem with structure and soil

In engineering practice one of the most common approaches to design buildings under seismic load is the imposition of an acceleration time history to the structure, basically acting like an external load. An excellent example of this technique can be found in couple of recent publications ([Krishnan, 2006] [Krishnan, 2006]). In this case the excitation is computed through a very well know and accurate software (SPECFEM3D, “basin” version [Komatisch, 2004]) to predict the effect of large simulated San Andreas earthquakes on tall buildings. The period analyzed and the sophisticated mechanical behaviour of the structure justifies the decoupling between the soil and the structure; practical evidence show that neglecting the interaction is not always allowed.

An example can be found in the study of the so-called “urban-seismology”, recently presented by Bielak [XXXX]. In this case the goal is to understand how the presence of an entire city can modify the incident wave-field. Due to the size of the simulation and the number of buildings, the latter are modelled has simple single degrees of freedom oscillator. The interaction between soil and structure is preserved but the buildings are simplified. For important structure (e.g.: historical buildings, world heritage buildings, hospitals, schools, theatres, railway and highways) it is worth to provide an ad-hoc analyses capable to take into account the full complexity of the phenomena.

Here we present an example of a fully coupled modelization: a real bridge and his geological-topographical sorroundings. The Acquasanta bridge on the Genoa-Ovada railway, North Italy, is located in the Genoa district and represents a typical structure the ancestor of which can be traced back to the Roman "Pont du Gard". This structural type did not change significantly along the centuries, thanks to the excellent design achieved no less than 1900 years ago. The Acquasanta bridge structure is remarkable both for the site features and the local geological and geomorphological conditions. The foundations of several of the piers rest on weak rock; moreover, some instability problems have been detected in the past on the valley slope towards Ovada (west side), although no warnings have been recently reported.

The bridge consists of eleven spans of 18.5 m long (Fig. Stupa_4). The bridge axis is a segment of a circle, the piers have trapezoidal cross-section and the structure of each arch is half a circle. The piers are externally in brick masonry, filled with a concrete made of stone and mortar. The pier shaft tapers upwards; the maximum height is 50 meters. The four central spans have an intermediate deck, made of brickwork arches. The central piers are lined with sandstone blocks from the foundation to the level of the intermediate deck. The spans of the bridge are circular brickwork arches; they support two side walls, in brick masonry, crowned by a cornice of stone masonry at side-walk level. The maximum height of the walls is 11.8 m and their thickness is 0.9 m. Finally, the material characteristics and dynamic behavior of the Acquasanta bridge may be deduced from experimental tests and from numerical simulations already presented in the study commissioned by Italian State Railways in 1998.

The valley slope towards Ovada (west side) could pose some problems, due to the presence of schists. They are moderately weathered near the west abutment but close to the valley bottom they become worse, looking like an unstructured mass. On the Genoa side, the piers lie on serpentine rock, massive or weathered. On the Ovada side, the abutment and the pier lie on fractured limestone schist or on alluvial river sediments. Their depth and characteristics have been investigated through geophysical tests, site soil survey, and  analysis of existing data. In detail, the existing geological map and the site survey show a thick cover, produced by decomposition and weathering of limestone schists belonging to the "Voltri - Rossiglione" unit, with poor geomechanical characteristics [Resemini, 2003].

Several simulations have been performed with GeoELSE, in order to evaluate the influence of seismic site effects on the dynamic response of the Acquasanta bridge. A fully coupled 3D soil-structure model was designed: the grid is characterized by a "subvertical fault" between calcareous schists and serpentine rocks. This is in accordance with available data, even if further investigations in future should identify more in detail the tectonical structure of the area. The geometry of weathered materials overlaying the calcareous schists on the Ovada side has been assumed according to available informations. The dimension of hexahedral elements ranges some tens of centimetres to about 1000 m. With such a model, the problem can be handled in its 3D complexity and we can examine the following aspects that are usually analysed under restrictive and simplified assumptions: (i) soil-structure interaction, (ii) topographic amplification, (iii) soft soil amplification (caused by the superficial alluvium deposit shown in cyan), (iv) subvertical fault (red line) between the schists, on the Ovada side, and serpentine rock, on the Genoa side.

For excitation a shear plane wave (x direction) was used (Ricker wavelet, fmax = 3 Hz, t0 = 1.0 s. and amplitude = 1 mm) propagating vertically from the bottom (red elements in Fig Stupa_3).
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Figure 7: 3D model of Acquasanta bridge and the surrounding geological configuration. The investigated area is 2 km in length, 1.75 km in width and 0.86 km in depth. The model was designed to propagate waves up to 5 Hz with a SD = 3 (Order 4) and has  38,569 hexahedral elements and  1,075,276 grid points. The contact between calcareous schists (brown color) and serpentine rocks (green color) is modelled with two sub-vertical faults (red-line). Cyan color represents the alluvial and weathered deposits. The radiation condition is imposed by 1st order absorbing boundary conditions according to Stacey (1988).
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	Figure Stupa_4: 3D structural model of Acquasanta bridge. Mechanical properties: arches (1st and 2nd order) and shoulders (red): Young modulus (E) = 2.30e+03 MPa, density ()= 1750 kg/m3, Poisson modulus ()= 0.25. Masonry piers (orange): E = 6.00e+03 MPa,  = 1700 kg/m3,  = 0.25. Rock piers (gray): E = 2.03e+04 MPa,  = 2500 kg/m3,  = 0.25.


In Fig. Stupa_5 are presented some snapshots of the modulus of the displacement vector and the magnified deformed shape of the bridge. It is worth to note that at T = 2s the motion of the bridge is almost in-plane (direction x), while at T = 4s is clearly evident how the coupling between the in-plane and out-plane (y direction) motion starts to be important. 
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Figure Stupa_5: Snapshots of the modulus of the displacement vector and the magnified deformed shape of the bridge.


The study of the soil-structure interaction problem could be easily enhanced (i) improving the input excitation of the model here presented and (ii) taking into account complex constitutive behaviour both from the soil and the structure side. The former it is already available in GeoELSE thanks to the recent implementation [Faccioli, 2004; Scandella, 2007] of the domain reduction method (DRM), a methodology that divides the original problem into two simpler ones [Bielak, 2003], to overcome the problem of multiple physical scales that is created by a seismic source usually located at some depth on rock of about kilometres far away from the structure with typical element size of the order of meters and located over a relatively small area (less than 1 square km) on soft deposit. The latter still need to be improved because of the lacking of a complete tool capable to handle in 3D non linear soil behaviour, non-linear structural behaviour and the presence of the water, that play a crucial role in the failure of buildings. Partial response to this problem can be found in the recent work of Bonilla [Bonilla 2005] and in the visco-plastic rehology recently introduced in GeoELSE [di Prisco, 2006].

V. 3-D wave propagation on tetrahedral grids: application to volcanology

Today, computer simulations of the propagation of seismic waves represent an invaluable tool for the understanding of the wave phenomena, their generation and their consequences. However, the simulation of a complete, highly accurate wave field in realistic media with complex geometry is still a great challenge. Therefore, in the last years a new, highly flexible and powerful simulation method has been developed that combines the Discontinuous Galerkin (DG) Method with a time integration method using Arbitrary high order DERivatives (ADER) of the approximation polynomials. The unique property of this numerical scheme is, that it achieves arbitrarily high approximation order for the solution of the governing seismic wave equation in space and time on structured and unstructured meshes in two and three space dimensions. 

Originally, this new ADER-DG approach (Dumbser 2003, Dumbser & Munz 2005) was introduced for general linear hyperbolic equation systems with constant coefficients or for linear systems with variable coefficients in conservative form. Then, the extension to non-conservative systems with variable coefficients and source terms and its particular application to the simulation of seismic waves on unstructured triangular meshes in two space dimensions was presented (Käser & Dumbser 2006). And finally, the further extension of this approach to three-dimensional tetrahedral meshes has been achieved (Dumbser & Käser). Furthermore, the accurate treatment of viscoelastic attenuation and anisotropy has been included to handle more complex rheologies (Käser et al. 2007, de la Puente et al. 2007). The governing system of the three-dimensional seismic wave equations is hereby formulated in velocity-stress and leads to the hyperbolic system of the form
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where the vector Q of unknowns contains the six stress and the three velocity components. The Jacobian matrices A, B and C include the material values as explained in detail in (Käser and Dumbser, 2006; Dumbser and Käser, 2006).

The ADER-DG Method: Basic Concepts 
The ADER-DG method is based on the combination of the ADER time integration approach (Toro & Millington 2001), originally developed in the finite volume (FV) framework (Schwartzkopff & Munz 2002, Titarev & Toro 2002, Schwartzkopff et al. 2004), and the Discontinuous Galerkin finite element method (Reed & Hill 1973, Cockburn & Shu 1989a, Cockburn et al. 1989b, Cockburn et al. 1990, Cockburn & Shu 1991, Cockburn & Shu 1998, Cockburn et al. 2000). As described in detail in (Dumbser & Käser, 2006) in the ADER-DG approach the solution is approximated inside each tetrahedron  by a linear combination of space-dependent polynomial basis functions and time-dependent degrees of freedom as expressed through
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where the basis functions Φl form an orthogonal basis and are defined on the canonical reference tetrahedron. The unknown solution inside each element is then approximated by a polynomial, whose coefficients - the degrees of freedom Qpl - are advanced in time. Hereby, the solution can be discontinuous across the element interfaces, which allows to incorporate the well-established ideas of numerical flux functions from the finite volume framework (Toro 1999, LeVeque 2002). To define a suitable flux over the element surfaces, so-called Generalized Riemann Problems (GRP) are solved at the element interfaces. The GRP solution provides simultaneously a numerical flux function as well as a time-integration method. The main idea is a Taylor expansion in time in which all time derivatives are replaced by space derivatives using the so-called Cauchy-Kovalewski procedure which makes recursive use of the governing differential equation (1). The numerical solution of equation (1) can thus be advanced for one time step without intermediate stages as typical e.g. for classical Runge-Kutta time stepping schemes. Due to the ADER time integration technique the same approximation order in space and time is achieved automatically. Furthermore, the projection of the elements in physical space onto a canonical reference element allows for an efficient implementation, as many computations of three-dimensional integrals can be carried out analytically beforehand. Based on a numerical convergence analysis this new scheme provides arbitrary high order accuracy on unstructured meshes. Moreover, due to the choice of the basis functions in equation (2) for the piecewise polynomial approximation (Cockburn et al. 2000), the ADER-DG method shows even spectral convergence.

Grid Generation: Unstructured Triangulations and Tetrahedralization
Both tetrahedral and hexahedral elements are effectively used to discretize three-dimensional computational domains and model wave propagation with finite element type methods. Tetrahedrons can be the right choice because of the robustness when meshing any general shape. Hexahedrons can be the element of choice due to their ability to provide more efficiency and accuracy in the computational process. Furthermore, techniques for automatic mesh generation, gradual mesh refinement and coarsening are generally much more robust for tetrahedral meshes in comparison to hexahedral meshes. Straightforward tetrahedral refinement schemes, based on longest-edge division, as well as the extension to adaptive refinement or coarsening procedures of a refined mesh exist (Bey 1995, Carey 1997). In addition, parallel strategies for refinement and coarsening of tetrahedral meshes have been developed  (De Cougny & Shephard 1999). 

Less attention has been given to the modification of hexahedral meshes. Methods using iterative octrees have been proposed (Schneiders 2000, Kwak & Im 2002), but these methods often result in nonconformal elements that cannot be accommodated by some solvers. Lately also conformal refinement and coarsening strategies for hexahedral meshes have been proposed (Benzley et al. 2005). Other techniques insert non-hexahedral elements that result in hybrid meshes that need special solvers that can handle different mesh topologies. Commonly, the geometrical problems in geosciences arise through rough surface topography, as shown for the Merapi volcano in Figure 5, and internal material boundaries of complex shape that lead to wedges, and overturned or discontinuous surfaces due to folding and faulting. However, once the geometry of the problem is defined by the help of modern computer aided design (CAD) software, the meshing process using tetrahedral elements is automatic and stable. After the mesh generation process, the mesh vertices, the connectivity matrix and particular information about boundary surfaces are typically imported to a solver. 
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Figure 5: Tetrahedral mesh for the model of the volcano Merapi. The zone of interest, such as the free surface topography and the volcano’s interior are discretized by a fine mesh, whereas the spatial mesh is gradually coarsened towards the model boundaries. 
The computational possibilities and algorithmic flexibility of a particular solver using the ADER-DG approach for tetrahedral meshes presented in the following.

Local Accuracy: p-Adaptation

In many large scale applications the computational domain is much larger than the particular zone of interest. Often such an enlarged domain is chosen to avoid effects from the boundaries that can pollute the seismic wave field with possible, spurious reflections. Therefore, a greater number of elements has to be used to discretize the domain describing the entire model. However, in most cases the high order accuracy is only required in a restricted area of the computational domain and it is desirable to choose the accuracy that locally varies in space. This means, that it must be possible to vary the degree p of the approximation polynomials locally from one element to the other (Dumbser et al. 2007). As the ADER-DG method uses a hierarchical order of the basis functions to construct the approximation polynomials, the corresponding polynomial coefficients, i.e. the degrees of freedom, for a lower order polynomial are always a subset of the those of a higher order one. Therefore, the computation of fluxes between elements of different approximation orders can be carried out by using only the necessary part of the flux matrices. 

Furthermore, the direct coupling of the time and space accuracy via the ADER approach automatically leads to an local adaptation also in time accuracy, which often is referred to as p-adaptivity. In general, the distribution of the degree p might be connected to the mesh size h, i.e. the radius of the inscribed sphere of a tetrahedral element. In particular, the local degree p can be coupled to the mesh size h via the relations
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where the choice of the power r determines the shape of the p-distribution. Note, that depending on the choice of the first term and the sign the degree p can increase as in equation (3) or decrease as in equation (4) with increasing h, starting from a minimum degree pmin up to a maximum degree pmax. This provides additional flexibility for the distribution of p inside the computational domain. An example of a p-distribution for the volcano Merapi is given in Figure 6.
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	Figure 6: The local degree p of the approximation polynomial depends on the insphere radius of each tetrahedral element and is given in color code. Close to the surface topography an approximation polynomial of degree p=5 (blue) is used, whereas in depth the degree is reduced to p=4 (green) and p=3 (yellow).


Here the idea is to resolve the slowly propagating surface waves with high accuracy, whereas the waves propagating towards the absorbing model boundaries pass through a zone of low spatial resolution. This approach leads to numerical damping due to an amplitude decay that reduces possible boundary reflections. Furthermore, the computational cost is reduced significantly due to the strongly reduced number of total degrees of freedom in the model.

Local Time Stepping: t-Adaptation

Geometrically complex computational domains or spatial resolution requirements often lead to meshes with small or even degenerate elements. Therefore, the time step for explicit numerical schemes is restricted by the ratio of the size h of the smallest element and the corresponding maximum wave speed in this element. For global time stepping schemes all elements are updated with this extremely restrictive time step length leading to a large amount of iterations. With the ADER-DG approach, time accurate local time stepping can be used, such that each element is updated by its own, optimal time step (Dumbser et al. 2007). An element can be updated to the next time level if its actual time level and its local time step t fulfill the following condition with respect to all neighboring tetrahedrons n: 
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Figure 7 is visualizing the evolution of four elements (I, II, III and IV) in time using the suggested local time stepping scheme. A loop cycles over all elements and checks for each element, if condition (5) is fulfilled. At the initial state all elements are at the same time level, however, element II and IV fulfill condition (5) and therefore can be updated. In the next cycle, these elements are already advanced in time (grey shaded) in cycle 1. Now elements I and IV fulfill condition (5) and can be updated to their next local time level in cycle 2. This procedure continues and it is obvious, that the small element IV has to be updated more frequently than the others. A synchronization to a common global time level is only necessary, when data output at a particular time level is required as shown in Figure 7. 

Information exchange between elements across interfaces appears when numerical fluxes are calculated. These fluxes depend on the length of the local time interval over which a flux is integrated and the corresponding element is evolved in time. Therefore, when the update criterion (5) is fulfilled for an element, the flux between the element itself and its neighbor n has to be computed over the local time interval:  
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As  example, the element III fulfils the update criterion (5) in cycle 5 (see Figure 7). Therefore, when computing the fluxes only the remaining part of the flux given by the intervals in equation (6) has to be calculated.  The other flux contribution was already computed by the neighbors II and IV during their previous local updates. These flux contributions have been accumulated and were stored into a memory variable and therefore just have to be added. 
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Note that e.g. element IV reaches the output time after 10 cycles and 9 local updates, which for a global time stepping scheme would require 9*4=36 updates for the all four elements. With the proposed local time stepping scheme only 16 updates are necessary to reach the same output time with all elements as indicated by the final number of grey shaded space time elements in Figure 7.

Figure 7: Visualization of the local time stepping scheme. The actual local time level t is at the top of the gray shaded area with numbers indicating the cycle, in which the update was done. Dotted lines indicate the local time step length t with which an element is updated.

Comparing these numbers leads to a speedup factor of 2.25. For strongly heterogeneous models and local time step lengths this factor can become even more pronounced.  However, due to the asynchronous update of elements that might be spatially very close to each other the mesh partitioning for parallel computations becomes an important and difficult issue. Achieving a satisfying load balancing is a non-trivial task an still poses some unresolved problems as explained in the following.
Mesh Partitioning and Load Balancing
For large scale applications it is essential to design a parallel code that can be run on massively parallel supercomputing facilities. Therefore, the load balancing is an important issue to use the available computational resources efficiently. For global time stepping schemes without p-adaptation standard mesh partitioning as done e.g. by METIS (Karypis & & Kumar 1998) is sufficient to get satisfying load balancing. The unstructured tetrahedral mesh is partitioned into subdomains that contain a equal or at least very similar number of elements as shown in Figure 8. Therefore, each processor has to carry out a similar amount of calculations. However, if p-adaptation is applied, the partitioning is more sophisticated as one subdomain might have many elements of high order polynomials whereas another might have the same number of elements but with lower order polynomials. Therefore, the parallel efficiency is restricted by the processor with the highest work load.  However, this problem can usually be solved by weighted partitioning algorithms, e.g. METIS.

In the case of local time stepping, mesh partitioning is becoming a much more difficult task. One solution is to divide the computational domain into a number of zones, that usually contain a geometrical body or a geological zone that typically is meshed individually with a particular mesh spacing h and contains a dominant polynomial order. Then each of these zones is partitioned separately into subdomains of approximately equal numbers of elements.  Then each processor receives a subdomain of each zone, which requires a similar amount of computational work as shown in Figure 8. In particular, the equal distribution of tetrahedrons with different sizes is essential in combination with the local time stepping technique. Only if each processor receives subdomains with in total give a similar amount of small and large elements, the work load is balanced. The large elements have to be updated less frequently than the smaller elements and therefore are computationally cheaper. Note, that the separately partitioned and afterwards merged zones lead to non-connected subdomains for each processor (see Figure 8). This increases the number of element surfaces between subdomains of different processors and therefore increases the communication required. However, communication is typically low as the degrees of freedom have to be exchanged only once per time step and only for tetrahedrons that have an interface at the boundary between subdomains. Therefore, the improvements due to the new load balancing approach are dominant and outweigh the increase in communication.
However, care has to be taken as the distribution of the polynomial degree p or the seismic velocity structure might influence the efficiency of this grouped partitioning technique. A profound and thorough mesh partitioning method is still a pending task as the combination of local time stepping and p-adaptivity requires a new weighting strategy of the computational cost for each tetrahedral element considering also the asynchronous element update. The automatic partitioning of unstructured meshes with such heterogeneous properties together with the constraint of keeping the subdomains as compact as possible to avoid further increase of communication is still subject to future work.
In Figure 8 an example of a grouped partition of the tetrahedral mesh is shown for 4 processors. Two non-connected subdomains indicated by the same color are assigned to each processor including small - and therefore computationally expensive - tetrahedrons that are updated frequently due to their small time step, and much larger elements that typically are cheap due to their large time step. This way, the work load often is balanced sufficiently well over the different processors.
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Figure 8: Standard partitioning of the computational domain (left) and an example of 4 subdomains grouped together for more efficient local time stepping.
Relevance of High Performance Computing: Application to Merapi Volcano
In recent years the development of the ADER-DG algorithm including the high order numerical approximation in space and time, the mesh generation, mesh adaptation, parameterization, and data visualization form the basis of an efficient and highly accurate seismic simulation tool. Realistic large scale applications and their specific requirements will further guide these developments. On the other hand, the study and incorporation of geophysical processes that govern seismic wave propagation insures, that the simulation technology matches the needs and addresses latest challenges in modern computational seismology. Hereby, the accurate modeling of different source mechanisms as well as the correct treatment of realistic material properties like anelasticity, viscoplasticity, porosity and highly heterogeneous, scattering media will play an important role.  

However, only the combination of this state-of-the-art simulation technology with the most powerful supercomputing facilities actually available can provide excellent conditions to achieve remarkable scientific progress for realistic, large scale applications. This combination of modern technologies will substantially contribute to resolve current problems, not only in numerical seismology, but will also influence other disciplines. The phenomenon of acoustic, elastic or seismic wave propagation is encountered in many different fields. Beginning with the classical geophysical sciences seismology, oceanography, and volcanology such waves also appear in environmental geophysics, atmospheric physics, fluid dynamics, exploration geophysics, aerospace engineering or even medicine. 

With the rapid development of modern computer technology and the development of new highly accurate simulation algorithms computer modeling just started to herald a new era in many applied sciences. The 3D wave propagation simulations in realistic media  require a substantial amount of computation time even on large parallel computers. Extremely powerful national supercomputers already allow us to run simulations with unrivaled accuracy and resolution. However, using the extremely high accuracy and flexibility of new simulation methods on such massively parallel machines the professional support of experts in supercomputing is absolutely essential. Only professional porting, specific CPU-time and storage optimizations of a current software with respect to continuously changing compilers, operating systems, hardware architectures or simply personnel, will ensure the lifetime of new simulation technologies accompanied by ongoing improvements and further developments. Additionally, the expertise and support in the visualization of scientific results using technologies of Virtual Reality for full 3-D models not only enhances the value of simulations results but will support data interpretation and awake great interest in the new technology within a wide research community. 
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Figure 9: Snapshots of the seismic wave field after an explosive event close to the summit of Merapi volcano. The free surface topography introduces strong scattering of the waves making it extremely difficult to invert for the seimic source mechanism or the exact source location. 

As an example, volcano monitoring plays an increasingly important role in hazard estimation in many densly populated areas in the world. Highly accurate computer modelling today is a key issue to understand the processes and driving forces that can lead to dome building, eruptions or pyroclastic flows. However, data of seismic observations at volcanoes are often very difficult to interpret. Inverting for the source mechanism, i.e. seismic moment tensor inversion, or just locating an exact source position is often impossible due to the strongly scattered  wave field due to an extremely heterogeneous material distribution inside the volcano. Furthermore, only the rough topography can affect the wave field by its strongly  scattering properties as shown in Figure 9.

Therefore, it is fundamental to understand the effects of topography and scattering media and there influence on the seismic wave field. A systematic study of a large number of scenarios computed by highly accurate simulation methods to provide reliable synthetic data sets is necessary to test the capabilities of currently used inversion tools. Slight changes in parameters like the source position, the source mechanism or the elastic and geometric properties of the medium can then discover the limits of such tools and provide more precise boundaries of their applicability in volcano seismology.
VI. Discussion and future directions
To be written
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