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[1] The resolution of tomographic images is most often
evaluated through synthetic tests: the inversion algorithm
used to derive the image itself is applied to a synthetic data
set having the same source-station geometry of the real one,
but theoretical travel times computed from a chosen ‘‘input
model’’ (e.g., a checkerboard). The similarity between input
model and solution of the synthetic test, used as a measure
of resolution, has the major shortcoming of depending on
the choice of the input model. Conversely, the similarity
of the ‘‘model resolution matrix’’ (R) to the identity matrix
is a rigorous measure of resolution that does not depend
on any input model, but has the drawback of being
computationally heavy. In the past decade, several authors
have devised complicated algorithms for the approximate
or iterative derivation of R. I show here that parallel
Cholesky factorization of AT � A (A being the matrix that
identifies the linear inverse problem), feasible on shared-
memory multiprocessor servers, provides an efficient way
of determining both least squares solutions and resolution
matrices in global tomography. I apply this procedure in
an evaluation of the resolution of mantle structure from a
global P-wave travel time data set. INDEX TERMS: 3260
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1. Introduction

[2] Tomographic images cannot reproduce the true struc-
ture of the Earth’s interior at all spatial wavelengths.
Current global tomographic models of the Earth are known
to be reliable at long wavelengths, where results of different
approaches are consistent, but become less so as wave-
length decreases [Boschi and Dziewonski, 1999; Becker and
Boschi, 2002].
[3] The resolution of a tomographic image is the highest

spatial frequency at which the image is expected to be
meaningful; its value is limited by two factors: the quality
of the data and the uniformity of their spatial distribution
(the ‘‘data coverage’’), and the approximations involved in
the formulation of the inverse problem.
[4] The latter issue can be relevant for seismic measure-

ments made at periods long enough for the ray-theory
approximation to break down [e.g., Spetzler et al., 2002];
it can also be relevant at the crustal scale, where velocity
heterogeneities are strong enough to alter significantly the

geometry of seismic ray paths [e.g., Zollo et al., 2002].
Here I shall only concern myself with teleseismic P-wave
travel time observations, and the ‘‘theoretical’’ issue
becomes secundary.
[5] If the effect of flaws in the theory is negligible,

resolution can be evaluated by ‘‘synthetic tests’’ or, pref-
erably [Leveque et al., 1993; Nolet et al., 1999], deriving
the ‘‘resolution matrix’’ associated with the inverse prob-
lem in question. Unfortunately, computing the resolution
matrix is not a trivial task. Iterative least-squares algo-
rithms like LSQR [Paige and Saunders, 1982], now
widely used in high-resolution global tomography, do not
provide it; several authors [Vasco et al., 1993, 1999, 2003;
Zhang and McMehan, 1995; Minkoff, 1996; Nolet et al.,
1999, 2001; Yao et al., 1999, 2001] devised algorithms for
its iterative, approximate computation.
[6] I show here that the resolution matrix, and the least-

squares solution, of a large global tomographic inverse
problem can be calculated exactly, implementing a well
known algorithm (parallel Cholesky factorization) on mul-
tiprocessor, shared-memory computers that are now of
widespread use. I show how this approach can be used to
assess the resolution of current P-velocity images of the
Earth’s mantle.

2. The Resolution Matrix

[7] The most common way to quantify the resolution of a
seismic data set is through a synthetic test: let the equation

A � x ¼ d ð1Þ

describe the corresponding tomographic inverse problem,
with d the data m-vector, x the solution n-vector, whose
entries are the unknown coefficients of P-wave velocity in
the mantle with respect to some set of n basis functions, and
A a m � n matrix that depends on data coverage and on the
choice of basis functions [e.g., Boschi and Dziewonski,
1999]; synthetic tests consist of (i) computing a theoretical
data vector

d0 ¼ A � xin; ð2Þ

based on the actual data coverage and a known ‘‘input
model’’ xin; (ii) replace d with d0 in equation (1); (iii) solve
the resulting synthetic inverse problem with the same
algorithm applied to the real one. The similarity between the
least squares solution thus obtained (the ‘‘output’’ model,
xout) and the input model xin can be interpreted as a measure
of resolution. This measure is not optimal, since it strongly
depends on the choice of the input model, but it is the one
most often seen in global seismology literature. A more
rigorous quantification of resolution is the ‘‘model resolu-
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tion matrix’’: it can be shown [e.g., Trefethen and Bau,
1997] that the least squares solution xLS of (1) equals

xLS ¼ AT � Aþ D
� ��1� AT � d; ð3Þ

where the matrix D represents the cumulative effect of the
regularization constraints that we impose [Boschi and
Dziewonski, 1999]; then, if d is replaced by d0,

xout ¼ AT � Aþ D
� ��1� AT � A � xin: ð4Þ

The model resolution matrix is precisely

R ¼ AT � Aþ D
� ��1� AT � A ð5Þ

[e.g., Menke, 1989, equation (4.5)]. Resolution can be
quantified, independently of xin, plotting the n � n matrix R
and comparing it to the n � n identitity matrix I. Clearly,
R = I in the limit case of perfect resolution. Nonzero off-
diagonal entries of R identify model coefficients that tend to
‘‘trade-off’’ with each other: in practice, a nonzero entry at
row i, column j of R indicates a trade-off between the i-th
and j-th model coefficients, whose entity is proportional to
the size of Rij.
[8] R can be thought of as the operator that relates xout

and xin in a synthetic test with damping D; it should be kept
in mind, however, that iterative algorithms do not involve
the direct implementation of (3) and (5): authors that follow
the iterative approach must estimate R by iterative approx-
imations [Yao et al., 1999], or through alternative approx-
imate expressions [Nolet et al., 1999].

3. Application to ISC P-Wave Travel Time Data

[9] I employ the data set of Antolik et al. [2003],
including m 	 626,000 ‘‘summary’’ travel time observa-
tions, derived, after further relocation of all seismic sources,
from the recompilation by Engdahl et al. [1998] of
International Seismological Centre (ISC) data. No weight-
ing is applied to the summary data. I choose to express the
solution as a linear combination of the products of 362
horizontal equally spaced spherical splines [Wang and
Dahlen, 1995], and 20 equal, and equally spaced, radial
cubic B splines (the number of free parameters is therefore
n = 7240); splines are more efficient than blocks in
representing a complicate function with a limited number of
free parameters [Lancaster and Šalkauskas, 1986; Boschi,
2001].
[10] I implement equations (3) and (5) via Cholesky

factorization of the symmetric, positive-definite matrix
AT � Aþ D, the most efficient non-iterative algorithm for
solving linear least-squares problems [e.g., Trefethen and
Bau, 1997, p. 172; Press et al., 1992, section 2.9],
employed in global tomography by, for example, Su et al.
[1994], and Antolik et al. [2003].
[11] As opposed to what stated, for example, by Zhao

[2001], once the generalized inverse is found the imple-
mentation of (5) is not much more time consuming than that
of (3); also, since m 
 n, the n� n matrix AT � A, although

often denser than A, does not necessarily require a larger
memory storage.
[12] The most time-consuming step of the process is the

computation of AT � A, which I perform directly, adding up
the contribution of each datum: finding AT � A from A
would take longer. On the fastest multiprocessor shared-
memory servers available to me (by far not the fastest
available on the market), computation of AT � A takes about
twenty-four hours, if I parallelize it by dividing the data set
into several subsets, find AT � A for each subset, and sum
the results. After computing AT � A, which has to be done
only once, xLS and R can be derived in a time ranging
between a few hours and a few minutes, depending on the
machine and using about eight processors (single-processor
LSQR typically takes hours longer). Library routines pro-
vided with the computers in question allowed me to make
use of parallel Cholesky algorithms with a minimum
programming effort (some basic MPI).

3.1. Data Coverage, Noise and Regularization

[13] It is well known that regularization (‘‘damping’’) is
essential to the solution of global tomographic inverse
problems [e.g., Boschi and Dziewonski, 1999]. Parallel
Cholesky factorization is a quite fast procedure (much
faster than sequential LSQR), and numerous differently
regularized inversions can be carried out in reasonable
time, before choosing the optimal regularization scheme.

Figure 1. (a) Underdamped P-velocity model at six
chosen depths in the Earth’s mantle, and (b) R derived in
the same inversion. Relative velocity heterogeneities range
between 1% (dark blue) to �1% (dark red). For
heterogeneities of amplitude >1%, the color scale saturates,
and becomes white (for fast anomalies) or black (slow)
over 3%. Each row/column of R corresponds to a ‘‘radial
spline � horizontal spline’’ couple; within each row/column
entries are grouped by radial splines; the radial splines are
indexed from shallowest (1) to deepest (20). I have
averaged R so that each pixel here represents 20 � 20 of
its actual entries: this way, coefficients of close horizontal
splines are merged in the same pixel; only trade-off between
radial splines remains visible, in the form of nonzero bands
parallel to the diagonal.
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For simplicity, and because my parameterization is in-
herently smooth with respect to the wavelength of the
heterogeneities that I expect to map, I make here the simple
choice that D be equal to a factor l times the n� n identity
matrix; for a spline parameterization, this is approximately
equivalent to size-damping [Boschi, 2001]. Naturally, the
algorithm works independently of the damping scheme.
[14] I show in Figure 1 a tomographic image (a), and

corresponding R (b), derived with a very weak damping: I
chose l to be 	106 times smaller than the mean value of
the diagonal entries of AT � A (lower values of l resulted in
AT � A being ‘‘too singular’’ for Cholesky factorization to
be feasible). R is too large to be plotted entirely on one
figure: for each 20 � 20 block of R I sum all entries and
divide the result by 20. R is very close to I, indicating that
the quality of data coverage would grant, in the absence of
noise in the measurements, an almost perfect resolution. On
the other hand, the undamped solution in Figure 1a is
characterized by too strong gradients and too large ampli-
tudes to be physically acceptable: more severe regulariza-
tion is needed to counter the effect of noise.
[15] Figure 2 shows model (a) and R (b) derived with a

value of l of the same order of magnitude as the mean value
of the diagonal entries of AT � A. The image of Figure 2a
correlates well with the P-velocity models discussed by
Becker and Boschi [2002]. Nevertheless, the averaged plot
of R in Figure 2b shows that nonnegligible trade-offs,
accompanied by a significant loss of amplitude (diag-
onal entries of R are <1), exist in the solution model. As
to be expected, resolution is particularly poor in the
upper mantle, where teleseismic ray paths are almost
vertical and data coverage is then limited to areas of
dense sismicity, or to the proximity of seismic stations.
[16] The tenth diagonal block of R from Figure 2b,

associated to the radial spline centered at 	1450 km depth,
is shown in Figure 3. Nonzero off-diagonal entries now
identify trade-offs between coefficients of horizontal splines
at that depth. As only a small portion of R is shown,
smoothing becomes unnecessary, and each pixel of the
image corresponds to one entry of the matrix.
[17] Figure 3 shows that horizontal resolution at this

depth is good, but not perfect. Off-diagonal nonzero fringes

indicate that coefficients of neighboring splines are cou-
pled. Particularly in the southern hemisphere (larger indi-
ces), covered by fewer data [Boschi, 2001], a certain loss of
amplitude is visible. An analogous plot (not shown here) of
R as derived in the undamped inversion (Figure 1),
shows at this depth almost perfect horizontal resolution.

4. Conclusions

[18] The direct implementation of the ‘‘exact’’ (non-
iterative) least-squares formulae (3) and (5), via parallel
Cholesky factorization of AT � Aþ D, makes it possible to
determine rapidly the least squares solution, and resolution
matrix R of very large inverse problems. With similar
approaches, it should now be possible to evaluate efficiently
other measures of resolution and covariance [Menke, 1989,
chapter 4].
[19] The images derived here are of intermediate nominal

resolution, equivalent to those of Antolik et al. [2003], with
n 	 10,000 model coefficients; modern multiprocessor
shared-memory computers allow applications to problems
of much higher nominal resolution, the main limiting factor
being their RAM, which should be �n2 � 4 bytes.
[20] The resolution matrix is the best possible measure of

model resolution. Naturally, R depends strongly on regu-
larization, and estimates of model resolution should take

Figure 3. Tenth diagonal block of R, without averaging,
showing trade-off between coefficients of horizontal splines
associated with the tenth radial spline (depth 	1450 km).
Horizontally, the basis function index increases West to East
(fast direction), and North to South. Most tradeoff occurs
with immediate East and West (nonzero entries adjacent to
the diagonal) and North and South (nonzero bands away
from the diagonal) neighbors. As the spline grid is equally
spaced, the number of its nodes decreases with increasing
(positive or negative) latitudinal range, hence the conver-
gence of off-diagonal bands.

Figure 2. Same as Figure 1, but a more adequate damping
scheme has been applied in the inversion.
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account of the regularization scheme that had to be applied
in the inversion. With a very weak damping, barely
sufficient for AT � A not to be singular, I have found R to
be very close to identity, but the least squares solution thus
obtained is not physically acceptable. A more strongly
regularized inversion leads to a more reliable model
(Figure 2), and the differences in R as found in the two
cases evidence the specific effects of limits in data quality,
as opposed to limits in data coverage.
[21] Tomographers attempting to derive high resolution

images of the Earth should be aware of the severe limits
imposed by the quality of available data. As resolution is
not everywhere constant, but higher in regions of more
uniform coverage, ad-hoc parameterization and regulari-
zation schemes can be designed to stabilize the solution
in undersampled areas, and avoid overdamping it in
regions whose short-wavelength structure can be properly
constrained.
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