APPENDIX A: CALCULATIONS

1. High Quality Data

In the stretching technique we are looking to maximize the cross correlation coefficient (equation (4) in the paper):

\[
CC_k(\varepsilon) = \frac{\int_{t_1}^{t_2} h_k(t(1 - \varepsilon)) h_0(t) dt}{\sqrt{\int_{t_1}^{t_2} h_k^2(t(1 - \varepsilon)) dt \int_{t_1}^{t_2} h_0^2(t) dt}}
\] (A1)

In section IIIA we estimate \(CC_k\) for high quality data, without electronic or other noise. Our signals before and after a small temperature change then become:

\[
h_0(t) = G_0(R, R, t) \otimes e(t)
\] (A2)

and

\[
h_k(t) = G_k(R, R, t) \otimes e(t) = [G_0(R, R, t(1 + \varepsilon_k)) + f(t)] \otimes e(t)
\] (A3)

where \(\varepsilon_k\) is the amount by which the record is stretched, and \(f(t)\) represents the small fluctuations due to tiny physical changes in the medium as it expands slightly. Both \(h_0\) and \(h_k\) are assumed to be stationary. Applying (A2) and (A3) to (A1), we get:

\[
CC_k(\varepsilon) = \frac{\int_{t_1}^{t_2} [G_0(R, R, t(1 + \varepsilon_k)) + f(t)] \otimes e(t) [G_0(R, R, t)] \otimes e(t) dt}{\sqrt{\int_{t_1}^{t_2} [G_0(R, R, t(1 + \varepsilon_k)) + f(t)]^2 dt \int_{t_1}^{t_2} [G_0(R, R, t)]^2 dt}}
\] (A4)

We consider the simple case where \(t_1 = 0\) and \(t_2 = T\). We know that:

\[
\rho(t) = \frac{e(t) \otimes e(t)}{\int e^2(t) dt}
\] (A5)

and simplify the expression to:

\[
CC_k = \frac{\int_0^T [G_0^2 + G_0f] \otimes \rho(t) dt}{\sqrt{\int_0^T [G_0^2] \otimes \rho(t) dt \int_0^T [G_0^2 + f^2 + 2G_0f] \otimes \rho(t) dt}}
\] (A6)

Before calculating the mean value of \(CC_k\), we assume that the Green functions at different times \(G_0(t)\) and \(G_0(t')\) are random, \(\delta\)-correlated signals, with zero mean. This means that \(\langle G(t)G(t')\rangle \approx \delta(t - t')\) and \(\langle G_0 \rangle = 0\). Furthermore, we suppose that the mean intensity of the Green function will remain unchanged before and after a temperature change: \(\langle G_0^2 \rangle = \langle G_k^2 \rangle = \langle G^2 \rangle\). The mean of any crossterms with the fluctuations \(\langle G_0f \rangle\) are set to zero. We use that \(\langle \int_0^T G_0^2 dt \rangle = T\langle G_0^2 \rangle\). With all this we can estimate the mean of \(CC_k\):
\[A = \langle CC_k \rangle = \frac{T(G_0^2)}{T\sqrt{(G_0^2)/(G_0^2 + f^2))}} = \frac{\sqrt{G_0^2}}{\sqrt{(G_0^2 + f^2)}} \] (A7)

which is the constant \(A \) in equation (7) in the paper.

In order to find the amplitude of the fluctuations around the mean value we need to calculate the standard deviation of \(CC_k \). We can first estimate its variance: \(\text{var}(CC_k) = \langle CC_k^2 \rangle - \langle CC_k \rangle^2 \). Breaking it up into smaller pieces, we start by calculating the mean of \(CC_k^2 \):

\[CC_k^2 = \frac{\int_0^T [G_0^2 + G_0 f] \otimes \rho(t) \ dt \int_0^T [G_0^2 + G_0 f] \otimes \rho(t') \ dt'}{\int_0^T [G_0^2] \otimes \rho(t) \ dt \int_0^T [G_0^2 + f^2 + 2G_0 f] \otimes \rho(t) \ dt} \] (A8)

\[= \frac{\int_0^T \int_0^T [G_0^2 + G_0 f] [G_0^2 + G_0 f] \otimes \rho(t) \otimes \rho(t') \ dt \ dt'}{\int_0^T G_0^2 \otimes \rho(t) \ dt \int_0^T [G_0^2 + f^2 + 2G_0 f] \otimes \rho(t) \ dt} \] (A9)

Again, crossterms with \(\langle G_0 f \rangle \) are zero. The same assumptions as before equation (A7) hold, and we use that:

\[\int \rho(t)^2 \ dt \approx \frac{\Delta \omega}{2\pi} \] (A10)

The mean value of \(CC_k^2 \) then becomes:

\[\langle CC_k^2 \rangle = \frac{2\pi}{\Delta \omega} \frac{T((G_0^2)^2 + (G_0^2)(f^2))}{T^2((G_0^2)^2 + (f^2))} \] (A11)

Now the standard deviation is \(\sqrt{\text{var}(CC_k)} \), or, using \(\langle CC_k \rangle^2 \) from equation (A7), \(\sqrt{\langle B^2 \rangle} = \sqrt{\langle CC_k^2 \rangle - \langle CC_k \rangle^2} \):

\[\sqrt{\langle B^2 \rangle} = \sqrt{\frac{2\pi}{\Delta \omega T}} \frac{\sqrt{(f^2)}}{\sqrt{(G_0^2) + (f^2)}} \] (A12)

which is equation (8) in the paper.

2. Low Quality Data

In section IIIB we consider a signal with some noise added, electronic or otherwise:

\[S_0 = h_0 + n_0 \] (A13)

\[S_k = h_k + n_k \] (A14)

The mean value of \(CC_k \) will be a bit different for this case:

\[CC_k(\varepsilon) = \frac{\int_0^T [h_0 + n_0][h_k + n_k] \otimes e(t) \otimes e(t) \ dt}{\sqrt{\int_0^T [(h_0 + n_0) \otimes e(t)]^2 \ dt} \sqrt{\int_0^T [(h_k + n_k) \otimes e(t)]^2 \ dt}} \] (A15)

\[= \frac{\int_0^T [h_0h_k + h_0n_k + h_kn_0 + n_0n_k] \otimes \rho(t) \ dt}{\sqrt{\int_0^T [h_0^2 + n_0^2 + 2h_0n_0] \otimes \rho(t) \ dt} \sqrt{\int_0^T [h_k^2 + n_k^2 + 2h_kn_k] \otimes \rho(t) \ dt}} \] (A16)
We assume that the mean of the crossterms involving noise (e.g. $\langle h_i n_j \rangle$ and $\langle n_i n_j \rangle$) are zero. We also assume that the mean of the main signal h will stay the same after a temperature change: $\langle h_0^2 \rangle = \langle h_k^2 \rangle = \langle h^2 \rangle$. With this, the mean of CC_k is:

$$A = \langle CC_k \rangle = \frac{\langle h^2 \rangle}{\langle h^2 \rangle + \langle n^2 \rangle},$$

which is equation (10) in the paper.

As before, the variance of CC_k is given by $\text{var}(CC_k) = \langle CC_k^2 \rangle - \langle CC_k \rangle^2$:

$$CC_k^2 = \int_0^T \int_0^T \frac{[(h_0 + n_0)^2(h_k + n_k)^2] \otimes \rho(t) \otimes \rho(t') dt' dt}{T^2(\langle h^2 \rangle + \langle n^2 \rangle)^2}$$

$$= \int_0^T \int_0^T \frac{[(h_0^2 + n_0^2 + h_0 n_0)(h_k^2 + n_k^2 + h_k n_k)] \otimes \rho(t) \otimes \rho(t') dt' dt}{T^2(\langle h^2 \rangle + \langle n^2 \rangle)^2}$$

Again, crossterms with noise are set to zero. Using equation (A10), the mean of CC_k^2 is now:

$$\langle CC_k^2 \rangle = \frac{2\pi T \left[\langle h^2 \rangle^2 + \langle n^2 \rangle^2 + 2\langle h^2 \rangle \langle n^2 \rangle \right]}{\Delta \omega T^2(\langle h^2 \rangle + \langle n^2 \rangle)^2}$$

and the variance of CC_k, using equation (A17):

$$\text{var}(CC_k) = \langle CC_k^2 \rangle - \langle CC_k \rangle^2 = \frac{2\pi}{\Delta \omega T} \frac{\langle n^2 \rangle^2 + 2\langle h^2 \rangle \langle n^2 \rangle}{\langle h^2 \rangle + \langle n^2 \rangle^2}$$

Now the standard deviation is just the square root of equation (A21):

$$\sqrt{\langle B^2 \rangle} = \sqrt{\frac{2\pi}{\Delta \omega T} \frac{\langle n^2 \rangle^2 + 2\langle h^2 \rangle \langle n^2 \rangle}{\langle h^2 \rangle + \langle n^2 \rangle}},$$

which is equation (11) in the paper.