Increasing the Temporal Resolution of Ambient Seismic Noise Monitoring

Celine Hadziioannou (PhD Student), Eric Larose, Adam Baird, Michel Campillo

Celine.Hadziioannou@obs.ujf-grenoble.fr

Data Used

Parkfield High-Resolution Seismic Network (HRSN):

13 stations - 76 station pairs

Whitening: 60 days 2001-2007 reference GF: stack of 6 years

REF: F. Brenguier et al.: Postseismic Relaxation

Adaptive Filter

Simultaneous Resolution Time & Frequency

Favors coherent parts of signal

Maintains phase information

Retrieve Temporal Velocity Variations: 2 Methods

Doublets

Divide signal in window

Calculate lag (L)

For each window

Plot lag vs timescale

Fit slope through measurements

ΔT/Δv = Δv

Stretching

Stretch reference signal: time \(t(t+\Delta t) \)

Compare to daily signal correlation coefficient (CC)

Δv maximum CC corresponds to \(\Delta v/\Delta T \)

CC leads to \(\text{rms} (\Delta v/\Delta T) \) estimate

References

1. R. Weaver, C. Hadziioannou, E. Larose - On the precision of noise-correlation interferometry
2. Fault-Parallel displacement measured at Pommi. More information:
 - http://quake.ldeo.columbia.edu/research/deformation/twood/dr/pommi.html

Retrieve Temporal Velocity Variations: 2 Methods

Doublets

Stack 30 days:

Moderate stack 30 days

Finish stacking stack 6 days

Stretching

Stack 30 days:

Finish stacking stack 1 day

Stack 1 day: