
Case Study: Mantle Convection Visualization on the Cray T3D

James S. Painter
�

Advanced Computing Laboratory
Los Alamos National Laboratory

Hans-Peter Bunge
�

Institute of Geophysics and
Planetary Physics

Los Alamos National Laboratory

Yarden Livnat
�

Department of Computer Science
University of Utah

ABSTRACT

The recent years have seen rapid advancement towards viewing the
Earth as an integrated system. This means that we have come to
understand the interdependence of the major planetary subsystems
— atmosphere, biosphere, oceans and the deep earth interior — on
a large range of time and length scales. One of the longest time
scales of the planet is imposed by solid state convection within the
silicate Earth mantle.

Mantle convection modeling, and other earth science modeling
efforts, now are producing simulation data on grids that are large
enough to strain the memory and processing power of even the
largest high-end graphics workstations. Another alternative is to
use parallel visualization tools running on the massively parallel
computers that generated the data. This is the approach that we
have taken for the visualization of mantle convection simulation
data.

Introduction to Mantle Convection Simula-
tion

Solid state convection within the Earth’s mantle determines one of
the longest time scales of our planet. The Earth’s mantle, the 2900
km thick silicate shell that extends from the iron core to the Earth’s
surface, though solid, is deforming slowly by viscous creep over
long time periods. While gradual in human terms, the vigor of this
subsolidus convection is impressive, producing flow velocities of
1-10 cm/year. Plate tectonics, the piecewise continuous movement
of the Earth’s surface, is the prime manifestation of this internal
deformation, but ultimately all large scale geological activity of our
planet, such as mountain building and continental drift, must be
explained dynamically by mass displacements within the mantle.

A major problem for researchers in computational mantle dy-
namics is to resolve the Earth’s outer 100 km deep skin, or litho-
sphere. This lithosphere is an integral part of the mantle and thus
a 100 km wide spatial resolution has to be achieved throughout the
volume. The resulting computational problem is formidable and
numerical discretizations with 1-10 million grid points have to be
formulated to resolve the mantle volume on scales of 50 km or less.
The resulting computational problem has been largely intractable
on conventional sequential computers, as it is necessary to follow
the time evolution of pressure, temperature and velocity over the
entire volume, requiring gigabytes of memory and computational
speeds of many gigaflops. However, such problems are well in

�
Advanced Computing Laboratory, Los Alamos National Laboratory,

Los Alamos, New Mexico 87545, jamie@acl.lanl.gov�
Institute of Geophysics and Planetary Physics , Los Alamos National

Laboratory, Los Alamos, New Mexico 87545, bunge@kokopelli.lanl.gov�
Department of Computer Science, University of Utah, Salt Lake City,

Utah 84112, ylivnat@cs.utah.edu

reach of modern parallel computers, such as the massively paral-
lel Cray Research, Inc. T3D system.

To address this problem, we use the 3D spherical mantle dynam-
ics code TERRA, which solves the Navier-Stokes equations in the
infinite Prandtl number limit using a multigrid approach [1]. Dis-
cretization of the spherical shell is based on subdivision of of the
regular icosahedron producing a data structure that is well suited for
modern parallel hardware using domain decomposition and mes-
sage passing [2]. A message passing version of TERRA runs on the
256 processor CRAY T3D at the Advanced Computing Laboratory
(ACL) at Los Alamos National Laboratory [3]. On this machine
our numerical modeling code shows excellent parallel performance,
displaying a communication overhead of less than ten percent. The
computational memory afforded by the T3D has allowed us to in-
vestigate convection employing a numerical grid of more than 20
million finite elements. We are thus able to resolve a large range of
dynamical length scales within the mantle.

Parallel Visualization Tools

Visualization of the vast simulation data is a serious challenge, as it
is necessary to display the large-scale flow without compromising
resolution of small scale structure. Small scale structure is gener-
ated primarily in thermal boundary layers, such as the lithosphere
at the top of the mantle, but swept around by the large scale flow
throughout the mantle. Moreover the temporal evolution must be
visualized by displaying long time-series of data, requiring capac-
ity many thousand times that of the individual timestep.

To address this problem, we have developed visualization tools
that run on the massively parallel computer where the data was gen-
erated. This allows for both a rapid and high resolution display
of simulation results too large for visualization on even high-end
graphics workstations. In addition, by running the visualization
tools on the parallel computers used to generate the massive data,
we avoid the need for time consuming and cumbersome data trans-
fers of the simulation results. The ability to display fine simulation
details, such as the very localized generation and evolution of ther-
mal structures along major boundary layers, greatly enhances the
physical interpretation and presentation of these new high resolu-
tion convection experiments.

The parallel visualization tools consist of an isosurface extractor,
a parallel polygon renderer, and a parallel slicer that can interpolate
arbitrary planar slices through field data. These tools use a message
passing and active message programming model [11]. The tools op-
erate directly on the TERRA grid structure. While the TERRA grid
is not a structured grid, the recursive subdivision basis of the grid
allows the grid geometry to be implicitly represented rather than ex-
plicitly stored, saving memory and allowing for efficient geometric
queries of the grid.

Parallel Rendering

Many researchers have studied parallel algorithms for polygon and
volume rendering in recent years [5, 6]. Molnar et al., provide
a useful taxonomy for parallel rendering which classifies parallel
rendering methods as sort-first, sort-middle, or sort-last according
to where interprocessor communications occurs in the rendering
pipeline [9].

Our T3D parallel renderer uses a sort-middle based rendering al-
gorithm. Both the data domain and the image are partitioned evenly
among the processors. Each processor first handles the geometric
processing for the portion of the data it holds: isosurface extraction,
arbitrary slicing and geometric transformation. The resulting geo-
metric primitives are partitioned into scanline segments according
to the portion of screen space they cover and sent to the processor
responsible for that portion of the image using an active message
communications model. Scanline segments are buffered and sent
in groups to amortize the cost of a message over several scanline
segments.

When the active message arrives at its destination processor,
a handler function is invoked that completes the rasterization of
the primitives it contains. Opaque scanline segments are directly
z-buffered. Transparent scanline segments are buffered and han-
dled after all processors complete geometric processing. The trans-
parency segments are first depth sorted via a Newell-Newell-Sancha
depth sort then composited front to back [10].

Parallel Slicing

Arbitrary slicing is handled through software based texture map-
ping. Each slice plane is clipped against a bounding box for each
contiguous portion of data held on a processor. The resulting poly-
gons are scan converted with a texture lookup at each pixel. The
texture lookup function maps the pixel screen coordinates back to
the simulation grid in two steps. First, the screen coordinates are
mapped backwards into world coordinates via a four-by-four matrix
multiply. These world coordinates are then mapped to a grid cell
through a hierarchical grid search. The field values are interpolated
within the grid cell and mapped, through a color map, to a surface
color. Colored scanline segments are sent, via an active message,
to the processor responsible for their scanline, as described earlier.

The mapping from world coordinates to grid coordinates can be
done in O ���������
	 time

�
or the TERRA grid because of the subdi-

vision nature of the grid. We have also implemented slices for fields
defined over uniform regular grids, which can be indexed directly
in ����
�	 time. While we have not implemented slicing on arbitrary
unstructured grids, the texture mapping method could be applied
but would require a more elaborate search strategy.

An alternative approach to slicing is to generate a full geometric
intersection of the grid with the slice plane and render the result-
ing polygons using the normal rendering pipeline. Our method has
two benefits over this alternative. The texture mapping based slice
rendering time grows very slowly with the size of the grid (�������
for the TERRA grids). Further, the slice plane can be interactively
changed, since no expensive preprocessing work is done when the
slice plane is changed.

Parallel Isosurface Extraction

In traditional isosurfacing, e.g. marching cubes [8], the entire data
set is traversed in order to extract a single isosurface. This method
is not applicable in our case where interactive speed over huge data
sets is essential.

The disadvantages of the marching cubes algorithm are two fold.
First, the number of cells in a single isosurface are usually very

���
is the number of grid cells

small compare to the the total number of cells. Second, the deci-
sion of whether a cell does or does not intersect the isosurface is
as expensive as actually computing the intersection, i.e. no trivial
rejection.

More advanced algorithms employ a pre-process stage where the
data set in examined and some key information is retained. Trivial
rejection can be achieved by retaining the minimum and maximum
values attained in each cell. The first issue, reducing the search
time, i.e. checking as few cells as possible against the giving iso-
value, is much tougher and many algorithms have been developed
to address this issue.

The TERRA data sets can be characterized as both structured
and unstructured. The geometry of a cell can be inferred quickly
from its index and thus it does not have to be saved explicitly for
each cell. On the other hand, the overall structure of the data set
makes it difficult to utilizes structured methods such as Wilhelms
and Van Gelder’s octree [12].

We chose to use the NOISE algorithm [7] which is both near-
optimal in time and is flexible enough to handle any geometry. The
algorithm has a complexity of only ��������� ��	 in the worst case,
where � is the number of cells in the data set and � is the number
of cells which actually intersect a given isosurface. The algorithm
is near-optimal in the sense that in practice, � is almost always
greater then � � . NOISE is based on the projection of the data
set onto the span space, where each cell is represented by a sin-
gle point with 2 coordinates: the minimum and maximum values
attained in that cell. The projection is perform only once as either
an offline stage or, as in our case, in each processor after the data
is distributed. In order to achieve a near optimal performance, the
algorithm takes advantage of a kd-tree to hold the projected points
in the span space. The memory requirement for the kd-tree itself is
only a single id per cell. The kd-tree structure is saved implicitly
via the order in which these id’s are sorted. This property of the
algorithm makes it particular useful for very large data sets where
both the speed up of the search and memory requirements are of
great importance. Furthermore, NOISE can be used with or without
saving explicitly the minimum and maximum values of each cell.
Again, the trade off is between speed and memory. We took advan-
tage of the large amount of memory on the CRAY T3D and aimed
at accelerating the search by saving this additional information.

The parallel version of NOISE takes advantage of the flexibility
of the algorithm with respect to the structure of the data set and
the sort-middle parallel renderer discussed earlier. The data distri-
bution is left to the renderer and NOISE is applied locally to the
data on each processor. Isosurface extraction is then initiated by
distributing only the new isovalue. The extracted local isosurface
on each processor is temporarily added to the data set to be ren-
dered. It is then left to parallel renderer to distribute the rendering
of the isosurface to the other processors, a task which the renderer
performs for the rest of its local geometric data.

The integration of the isosurface extraction and the parallel ren-
derer enable us to take advantage of the renderer transparency capa-
bility. The use of transparency and the rapid isosurface extraction
achieved by the algorithm also enabled the rendering of several iso-
surfaces at the same time. Each such isosurface is extracted inde-
pendently from the others. The NOISE algorithm can determine,
virtually at no cost, the amount of storage needed for the isosurface
before it is computed. We take advantage of this capability and re-
frained from allocating memory by reusing the memory allocated
to the previous isosurface if it is large enough.

Image Delivery

Delivering images to the desktop is often the limiting factor for in-
teractive parallel renderers. While a parallel renderer may be able
to render frames at interactive rates, it can be difficult to get them

Figure 1: Slicing and Isosurfacing of the Temperature Field

off the parallel machine and onto a users display quickly enough to
allow interaction. In our case, the final image is gathered and dis-
played using either a HIPPI frame buffer or X11 output to the user’s
workstation. HIPPI frame buffer output provides the fastest perfor-
mance: up to 10 1280 by 1024 high resolution frames per second.
Our HIPPI frame buffer is switchable to a number of monitors, pro-
viding high speed interaction for users with access to one of these
monitors.

Image delivery over X11 is useful for users remotely located
from the T3D. High performance image display over X11 is diffi-
cult. A full color high resolution (1280x1024) frame uses 5 MB, un-
compressed, requiring 50MB/sec of bandwidth, much higher than
is available across 10Mb ethernet or over long haul internet con-
nections. To alleviate these bandwidth needs, our parallel renderer
compresses each frame to be display, in parallel. The compressed
image data is gathered to a single processor, and then sent, via a
socket, to a display process running on the users workstation. We
use zlib, a general purpose lossless compression library. Interac-
tive control is provided by a graphical user interface (GUI) running
on the user’s workstation. Typical frame rates on 64 T3D nodes
are 2-10 frames per second for 1280x1024 HIPPI output, includ-
ing slicing and isosurface generation on each frame. X11 output is
slower and highly depends on network speed, however we have ob-
served greater than 2 FPS at 640x512 resolution between our T3D
at LANL and remote workstations across the country.

Results

Figures 1 and 2 illustrate two example stills from the TERRA vi-
sualization tools. These figures and the accompanying video are
rendering a static data set at a resolution of 1.25 million grid cells.

Figure 1 shows the temperature field over the spherical model
of the Earth. In this simulation the viscosity (or stiffness) of the
mantle fluid increases with depth by a factor of 30, as suggested
by geophysical observation. This one parameter change results in
a dramatic difference in convection structure displaying elongated
downwellings from the upper surface instead of pointlike patterns
typical for isoviscous flow [4]. Such elongated downwellings are
analogous to Earth’s linear subduction zones where plates dive un-
der one another.

The outer surface of the sphere is a spherical radial shell cut-
ting through the grid structure. Note that the sphere is hollow and

Figure 2: Two Iso-Temperature Surfaces, With Transparency

an inner shell is shown as well. The simulation model covers only
the outer 50% of the Earth’s diameter where the mantle exists. A
“wedge” has been removed by 3 slicing planes. Within the wedge
opening an isosurface has been extracted with a “hot” temperature
value. The isosurface and grid slices give insight on how hot mate-
rial convects upwards through the Earth mantle.

Figure 2 again shows the temperature field with two isosurfaces
over an inner spherical radial shell. The outer blue transparent iso-
surface used a relatively cold temperature, indicating where cold
material moves back toward the interior of the mantle. The inner
orange opaque surface is a relatively high iso-temperature surface
and again illustrates hot material moving outwards.

The accompanying video illustrates an exploration of a single
time step snapshot of the TERRA simulation results. While the
video was rendered in batch mode, the rendering rate was still over
3 frames per second, excluding image write time.

Conclusions and Future Work

Parallel visualization tools have proven to be an invaluable aid in in-
terpreting mantle convection simulation results. Because of the grid
sizes involved, commercial visualization software running on high
end graphics workstations was too slow and used too much memory
to be an effective interactive exploration tool. A much faster and
more convenient visualization system is possible for these “mas-
sive data” problems by running the visualization tools directly on
the massively parallel processor where the data was generated.

Current and future work with TERRA is aimed at incorporating
the information of the geological record into the mantle convection
simulations, primarily the effects of continents and tectonic plates
at the surface of the Earth. These new simulations are expected to
improve substantially our understanding of the temporal evolution
of Earth’s mantle.

References

[1] J.R. Baumgardner. Three dimensional treatment of convective
flow in the Earth’s mantle. J. Stat. Phys, 39(5-6):501–511,
1985.

[2] J.R. Baumgardner and P.O. Fredrickson. Icosahedral dis-
cretization of the two sphere. Siam J. Numer Anal.,
22(6):1107–1115, 1985.

[3] H.-P Bunge and J.R. Baumgardner. Mantle convection mod-
eling on parallel virtual machines. Computers in Physics,
9(2):207–215, 1995.

[4] H.-P Bunge, M.A. Richards, and J.R. Baumgardner. Effect of
depth-dependent viscosity on the planform of mantle convec-
tion. Nature, 379:436–438, 1996.

[5] IEEE Computer Society. 1993 Parallel Rendering Symposium
Proceedings. ACM SIGGRAPH, October 1993.

[6] IEEE Computer Society. 1995 Parallel Rendering Symposium
Proceedings. ACM SIGGRAPH, October 1995.

[7] Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson.
A near optimal isosurface extraction algorithm using the span
space. IEEE Transactions on Visualization and Computer
Graphics, 2(1):73–84, 1996.

[8] W.E. Lorensen and H. E. Cline. Marching cubes: A high reso-
lution 3d surface construction algorithm. Computer Graphics,
21(4):163–169, July 1987.

[9] Steven Molnar, Michael Cox, David Ellsworth, and Henry
Fuchs. A sorting classification of parallel rendering. IEEE
Computer Graphics and Applications, 14(4):23–32, July
1994.

[10] J. Newell, R. Newell, and T. Sancha. A solution to the hidden
surface problem. In Proceedings ACM National Conference,
pages 443–450, 1972.

[11] J. Painter, P. McCormick, M. Krogh, C. Hansen, and G. Colin
de Verdière. The ACL message passing library. EPFL Super-
computing Review, 7, November 1995.

[12] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface
generation. ACM Transactions on Graphics, 11(3):201–227,
July 1992.

